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Supplementary Note 1  

Validation of BNSim output with chemoreceptor precise adaptation 

 

In order to capture the essential methylation and demethylation noise, we model 370 receptor 

clusters individually. Each receptor cluster has 13 Tsr receptors and 6 Tar receptors. The methylation 

level of each receptor has a range from 0 to 8. The methylation and demethylation dynamics is then 

simulated using exact stochastic simulation algorithm. More precisely, similar to the DOR reactions 

of NFSim1, each receptor cluster participates in the methylation and demethylation reaction rules2 

with different rates, depending on their activity. In every step, one receptor inside one of the 370 

receptor clusters is selected to be methylated or demethylated by CheR or CheB. However, we do 

not model CheR and CheB binding reactions explicitly. One reason for this is that these reactions 

are computationally too expensive to be explicitly modeled at population level. Another reason is 

because the high frequency component of the binding noise induced by CheR and CheB is filtered 

out by the slow methylation and demethylation kinetics due to its large relaxation time3. Instead, we 

use a Wiener process to describe the fluctuation of CheR4. More specifically, the fluctuating term is 

added as 

 tddR       (1)      

 

where   is the noise parameter and  t  is the Wiener process. Simulation results with different 

value of   are available in Supplementary Note 3. 

 

The activity of each individual receptor cluster depends on its methylation level and ligand 

occupancy. In this paper, it is calculated according to the “assistance neighborhoods” model5.  
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where F is the sum of the individual free-energy differences between the receptor on and off states. 

Since the entire receptor cluster is considered to be either in an on or off state, A represents the 

average activity of the receptors in the cluster. The offset energy of receptor at different methylation 

levels follows the original “assistance neighborhoods” model. Please refer to the BNSim simulation 

results of bacterial precise adaptation reproduced in Figure S1 from the original reference5. 

 

 

 

 

 

 

 

 

 

 
 

Figure S1. Bacteria precise adaptation 

 



Supplementary Note 2 

Validation of BNSim output with chemoreceptor dose response 

 

Bacteria accurate response to various chemical gradients is of critical importance in 

chemotactic swimming. The dose response curve for wild-type E. coli is obtained by adding a 

certain level of MeAsp to the environment with a single bacterium. The chemical pathway of 

the bacterium is already in equilibrium in the nutrient-free environment before adding stimuli. 

The response curve shows how much the receptors are suppressed when adding a certain 

amount of stimuli. The BNSim simulation results (shown in Figure S2b below) shows the 

effectiveness of our simplified receptor cluster model and is consistent with the experimental 

result6 (shown in Figure S2). 

 

 

 

 
 

Figure S2. Chemoreceptor dose response 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3 

Validation of BNSim output with fast phosphorylation cascade 

 

The phosphorylation relay in our work is similar to the one in the work of Sourijik and Berg6. 

The signaling protein CheY is phosphorylated by the kinase CheA, then diffuses away to 

downstream pathway flagella motor. The binding of CheY-P with motor complex regulates the 

motor rotation direction. The dephosphorylation of CheY-P is accelerated by CheZ.  

As it can be observed from the Figure S3, the trend of CheY-P fluctuation faithfully reflects 

the fluctuation of CheR. The value of   in the Wiener process  tddR    determines the 

fluctuations of CheR, and thus determines the switching activity of the flagella motor. As indicated 

in reference4, since the methylation process has a certain relaxation time, the chemotaxis signaling 

pathway functions like a low-pass filter of the CheR fluctuations. Therefore, to change the switching 

frequency significantly, the internal concentration of CheY-P must have enough time to adapt to a 

change in the level of CheR; this is only possible if the level of CheR stays above or below the 

average value for a longer time. Figure S3 shows the fluctuation of CheY-P with different CheR 

fluctuations, this translates directly into different exponential distributions of the bacteria run length. 

In Figure S3d below, the values of CheY-P are much lower in the time window 10min to 50min, 

which results in much lower CW bias as shown in the figure of Supplementary Note 4.  

 
Figure S3. CheY-P level as a function of CheR fluctuation 

 



Supplementary Note 4 

Validation of BNSim output with two state flagella motor 

 

Thermal fluctuations and upstream signaling cause the flagella motor to spontaneously transit 

between alternating rotational states. In this work, we use a coarse-grained, two-state model that 

captures the key dynamic behavior of the motor response. In other words, we treat the flagella motor 

as a two-state model with each state, namely clockwise (CW) and counterclockwise (CCW) sitting 

in a potential wall7. The energy barriers for CCW to CW and CW to CCW are ))((0 tYG p and

))((0 tYG p , respectively. Here we use the definition of ))((0 tYG p  from reference1 (Note that 

other definitions of ))((0 tYG p  are possible, such as reference8), specifically  
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     (3)    

The switching rates from CW to CCW and from CCW to CW are then 

 

)))((exp( 00 tYGwk p      (4)    

)))((exp( 00 tYGwk p     (5)    

Figures S4 shows the simulation results for CW bias and motor switching frequency as function of 

CheY-P concentration. The parameters are turned to match the experimental results9 shown in the 

figure.  

 

 
Figure S4. CW bias and motor switching frequency as function of CheY‐P concentration 



Supplementary Note 5 

Performance and memory scaling tests for the chemotaxis model 

 

 

Figure S5. Performance scaling as a function of bacteria number 

Figure S5 shows the runtime (CPU seconds) of Gillespie’s exact stochastic simulation versus 

multiscale stochastic simulation as function of bacteria population size. Since the simulation using 

Gillespie’s Exact SSA is extremely time consuming, we compare simulations involving up to 103 

bacteria for the first experiment. As expected, the multiscale stochastic simulation scheme 

accelerates the time evolution of the chemical system by several orders of magnitude. At the same 

time, the Gillespie’s Exact SSA algorithm scales much slower than the multiscale stochastic 

simulation .  

 

On the other hand, the multithreading feature of BNSim allows simulation of a large population of 

bacteria efficiently, while the performance of single-threaded BNSim starts to drop dramatically 

after considering only 103 bacteria.  However, we also observe that the multithreaded BNSim does 

not simulate a small number of bacteria efficiently mainly because of the synchronization overhead 

introduced when compared to single-threaded BNSim. Therefore, BNSim allows users to enable or 

disable the multithreading feature as needed in order to get the highest efficiency in simulation. Also, 

BNSim allows users to specify the number of threads to be used. However, the maximum number 

of threads that can be used depends on how much CPU is available for BNSim. 

Memory is another important issue when 

simulating a large population of bacteria. 

However, BNSim does not model every 

molecule as an independent object for non-

key subsystems, but rather relies on 

continuous variables. This feature make 

BNSim consume much less memory 

compared to exact stochastic simulation. In 

practice, an average desktop computer with 

4GB memory supports approximately 4*104 

bacteria population simulation. To  simulate 

up  to  107  bacteria  requires  resources  that 

can be provided only by a super computer center, or by cloud computing services. 
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Supplementary Note 6 

Overview of stiffness in biological systems and multiscale stochastic simulation algorithm 

 

Complex biochemical systems typically involve tens or even hundreds of reactants participating in 

a multitude of reactions, which occur on a broad spectrum of time scales ranging from microseconds 

to seconds10. In such systems involving multiple time scales, the fastest reactions are often found to 

be dependent on the slower ones. More precisely, the theory of near decomposability11 indicates that 

a complex system consists of small subsystems that can perform specific functions without too much 

interaction with the rest of the system for short interval of times. In other words, the short-run 

behavior of each subsystem is approximately independent  of  the  short-run  behavior  of the 

other  components. Consequently, the complex systems satisfying the near decomposability 

property reduce the interdependence of components, enhance robustness, facilitate adaptation and 

evolution12, 13. Such hierarchy is clearly visible in biological systems14, and has been regarded as 

one of the biology’s first laws15. 

 

The bacterial chemotaxis is a typical stiff chemical system which contains slow and fast dynamics. 

More precisely, the slow dynamics are the methylation and demethylation kinetics of receptor 

clusters by CheR and CheB. The fast dynamics is the phosphorylation relay in the signaling pathway, 

which involves several thousands of molecules and has a high reaction rate. Hence, it becomes 

impractical to simulate the full system using exact stochastic simulation for bacteria population. In 

practice, the exact method needs to keep track of up to 106 reaction events for chemotaxis in every 

second of simulation time. The time interval chosen by exact stochastic simulation algorithm for 

methylation and demethylation kinetics only is around 10-2 ~10-3 s, while the time interval for the 

full chemotaxis system is around 10-5 ~10-9 s. On the other hand, the memory requirements to 

represent the molecules, reactions, and the internal data-structure for a single bacterium may take 

up to 104 bytes. Thus, 104 ~ 7 bacteria population size also makes this approach impractical in terms 

of space complexity.  

 

Therefore, if we can take advantage of the hierarchy existing in biological system, identify the key 

subsystem, and simulate the key subsystem according to the exact stochastic simulation method16 

(while use accelerate approximation methods for other fast subsystems), then we can get a speed up 

of orders of magnitudes compared to exact stochastic simulation algorithm16.  

 

Take chemotaxis as an example, at each time step, we choose time interval using (6) 

 

r
In

xa

1

)(

1

0

         (6)    

 
where r is a random number and )(0 xa  is the propensity function of all reactions of slow dynamics 

(adaptive chemoreceptor subsystem), as defined in the Gillespie’s algorithm. In each time interval

 , one methylation and demethylation related reaction takes place. We use tau-leaping or Langevin 

approximation17 to simulate the phosphorylation relay, and a course-grain function to describe the 

motor switching activity. To approximate the phosphorylation relay, we check whether the expected 

number of occurrences of reaction an    is much larger than 1, where a is the propensity 



function of fast-dynamics according to (7).  

 

21)( xxkxa jj         (7)    

where )(xa j   is the propensity for reaction channel Rj,  jk is the reaction constant for Rj,  1x is 

the copy number of the first reactant,  2x is the copy number of the second reactant.   

If the reaction number is much larger than 1, then we use Langevin method17 (as shown in eq. (9) 

below) to approximate the number of reactions that is likely to happen in time  ; otherwise, we 

use Poisson approximation18 as in (8): 

j
M

j jj vxaPxtX  


1
))(()(       (8)    

where )(tX is the state vector,  ))(( xaP jj   is a statistically independent Poisson random variable 

with mean  )(xa j .  jv   is the state change vector for reaction channel Rj. 

 )1,0()())(()(
11 j

M

j jj
M

j jj NxavxavxtX  
     (9)    

where )1,0(jN   is a normal (Gaussian) random variable.  

 

 

Table 1 Multiscale stochastic simulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiscale stochastic simulation algorithm

a. Choose time step  ߬ ൌ 	 ଵ

௔బ ௫
݈݊ ଵ

௥
for key subsystem 

according to exact stochastic simulation algorithm
b. At each time step, calculate the propensity function for 
other subsystems according to

௝ܽ ݔ ൌ ݇௜ݔଵݔଶ
Then the number of expected reactions is ݊ = ߬ ൈ ௝ܽ ݔ
c. If the reaction number is much larger than 1, use Langevin
method to simulate the fast dynamics

ܺ ݐ ൅ ߬ ൌ ݔ ൅෍ݒ௝ሺܽ௝ሺݔሻ߬ሻ ൅

ெ

௝ୀଵ

෍ݒ௝ ௝ܽ ݔ ௝ܰሺ0,1ሻ ߬ሻ

ெ

௝ୀଵ

d. If the reaction number is not much larger than 1, use ߬-
leaping method to simulate the fast dynamics

ܺ ݐ ൅ ߬ ൌ ݔ ൅෍ߏ௝ሺܽ௝ሺݔሻ߬ሻ

ெ

௝ୀଵ

௝ݒ

e. Go to step a if the simulation is not finished



Supplementary Note 7 

Model of Swimming 

 

Bacteria use runs and tumbles to effectively swim in liquids characterized by low Reynolds 

numbers19. Berg and Brown in 1972 tracked individual cells in 3D20. To be consistent with their 

experimental results, we assume that bacteria speed is constant during runs and the direction of a 

run is affected by the rotational Brownian diffusion. When bacteria tumble, the direction change is 

chosen from a Gamma distribution which fits the distribution of tumbling angles measured by Berg 

and Brown20 (see figure below).  

 

 

 

The rotational frictional drag coefficient21 for a sphere of radius R is calculated as, 

3
, 8 Rf spherer     (10)      

where   is the viscosity of the environment. 

 

The rotation angle  is therefore  

sphererfk ,T/4     (11)      

where k is Boltzmann constant, and T is the temperature of the environment. 

 

Besides rotational diffusion, we also consider collisions between bacteria, and collisions between 

bacteria and the reflective boundaries of the environment. This is important because the collisions 

between bacteria themselves and bacteria with reflective boundaries may change their forwarding 

direction dramatically. Typically, the bundled flagella filaments of a bacterium fall apart, hence the 

bacterium tumbles and chooses a new direction. 

 

 



Supplementary Note 8 

Extended description of the multithreading multiscale time evolution 

 

 
Figure S8. Parallel structure of BNSim 

 

As shown in the figure, the time evolution of the stochastic simulation follows a tick-tock fashion. 

In “tick”, bacteria sense the environment, update their internal dynamic, and swim in the 

environment. In “tocks”, the chemicals diffuse and decay in the environment. This is done by 

exploiting the multithreading feature of BNSim. More precisely, at “ticks”, the threads scheduler 

uses two cyclic barriers to synchronize all the threads therefore ensuring that all bacteria are active 

in the same “time space”. The “cubes” of the environment (explained below) are updated in a similar 

manner at “tocks”.  

 

In order to capture bacteria interaction with nearby bacteria and environment efficiently, we consider 

cube-based partitions. The 3D space is therefore tessellated in cubes of a typical size 100*100*100 

μm, while E. coli is a sphere with a radius of 1 μm. One data element storing all references of living 

and non-living objects in the cube local environment is associated with each cube; these data 

elements can therefore be accessed very efficiently according to their indexes as a function of their 

absolute position in the global environment. This way, we can ensure that interactions between 

bacterium and environment, also interactions among bacteria themselves can be efficiently 

simulated. Of note, to ensure the correctness of the result, access to each cube needs to happen in a 

mutually exclusive manner so each bacterium needs to obtain the corresponding mutex beforehand. 

 

BNSim collects various statistical metrics during simulation and provides a better insight into the 

dynamics of bacteria population. More specifically, BNSim records the distribution of the bacteria, 

concentration of certain chemical species in the 2D/3D space, or trajectories of particular bacteria. 

BNSim also records statistics such as the mean square displacement, hitting time to a certain targeted 

region, etc. These statistics are processed automatically and finally plotted using Matlab scripts. 

Moreover, in order to show the time evolution of the bacteria population more intuitively during 

simulation, we also provide means to visualize the motion of bacteria population in a 3D GUI. 

 

 



Supplementary Note 9 

Brownian motion and Levy walk 

 

In a nutrient free environment, the fluctuations of CheR propagate to the regulatory protein CheY, 

and results in a power-law distribution of run intervals and an exponential distribution of the tumble 

intervals4, 7, 22. The extended runs allow bacteria to perform a Levy walk (see Figure S10b), instead 

of Brownian motion (see Figure S10a). Recent work4 shows that Levy walk turns out to be a good 

strategy over the Brownian movement when the food is located randomly and sparsely in an 

environment. See figures below for BNSim simulation result of single bacterium trajectory with and 

without CheR fluctuation in nutrient free environment. 

 

 

 

Figure S10a. Single bacterium with constant CheR perform Brownian Motion in nutrient free environment 

 

 

 

Figure S10b. Single bacterium with fluctuate CheR perform Levy walk in nutrient free environment 
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Supplementary Note 10 

Equations for the genetic circuits 

 

As shown in [23][24], for the AND gate in the USC, the authors provide a steady-state transfer 

function to model the behavior of the AND gate, namely,  

 

ܣ
௠௔௫ܣ

ൌ
ଶܫଵܫ

ଶ

ܽሺܾ ൅ ଶሻଶܫ ൅ ଶܫଵܫ
ଶ 

 

where ܣ௠௔௫ is the maximum concentration of AHL for the output, I1 and I2 are the activity of 

input promoters T7ptag and supD tRNA, respectively.  

 

Then, AHL molecules diffuse into the DSC through the environment, and the equilibrium 

concentration of bound transcription factor in DSC is  

ܥ ൌ ଴ܥ
௡ܣ

ௗܭ
௡ ൅ ௡ܣ

 

where ܥ is the concentration of bound transcription factor, ܥ଴ is the total concentration of 

transcription factor, ܭௗ  is the dissociation constant, and n is hill coefficient. Therefore, the 
activity of ୪ܲ୳୶୰ୣ୮	is, 

୪ܲ୳୶୰ୣ୮ ൌ
ܫ

1 ൅ ݇/ܥ
 

 

where I is the strength of the promoter ୪ܲ୳୶୰ୣ୮, ݇ is the binding affinity of LuxR to ୪ܲ୳୶୰ୣ୮.  

Therefore, for the AND gate in DSC, the two inputs are ܫଵ
ᇱ ൌ ୪ܲ୳୶୰ୣ୮ and ܫଵ

ᇱ ൌ ଵܫ ൅  .ଶܫ

 

Finally, the fluorescence level from the output is, 

 

ܤ
௠௔௫ܤ

ൌ
ଵܫ
ᇱܫଶ
ᇱଶ

ܽሺܾ ൅ ଶܫ
ᇱሻଶ ൅ ଵܫ

ᇱܫଶ
ᇱଶ 

 

 

where ܤ௠௔௫	is the maximum blue-green light intensity observed from the bacterial luciferase (lux 

system) at the output of DSC. 

 
 Parameter  Description  Value  

A  Parameter in AND gate, see [24].  50±10  

B  Parameter in AND gate, see [24]. 3000±1000  

Kd  Binding affinity of AHL to LuxR.  0.50  

K  Binding affinity of LuxR to plux_rep.  0.03±0.01  

N  Hill coefficient to describe the 
cooperative effect of AHL  

2.0±0.3  

I  Strength of Plux_rep  100  

C0  Translation strength of luxI  1  

 



Supplementary Note 11 

Modeling parameters 
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