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Abstract—Stochastic gradient descent (SGD) is a commonly
used algorithm for training linear machine learning models.
Based on vector algebra, it benefits from the inherent parallelism
available in an FPGA. In this paper, we first present a single-
precision floating-point SGD implementation on an FPGA that
provides similar performance as a 10-core CPU. We then adapt
the design to make it capable of processing low-precision data.
The low-precision data is obtained from a novel compression
scheme—called stochastic quantization, specifically designed for
machine learning applications. We test both full-precision and
low-precision designs on various regression and classification data
sets. We achieve up to an order of magnitude training speedup
when using low-precision data compared to a full-precision SGD
on the same FPGA and a state-of-the-art multi-core solution,
while maintaining the quality of training. We open source the
designs presented in this paper.

I. INTRODUCTION

FPGAs have become increasingly popular hardware acceler-
ators for machine learning due to the inherent parallelism and
the deeply-pipelined computation they offer. Recently, FPGAs
have been used to accelerate both training and inference for
a range of machine learning models (e.g., generalized linear
models [2], [12], [16] and deep learning [7], [8]), using various
optimization algorithms (e.g., conjugate gradient [9], [21] and
stochastic gradient descent [4], [14]). One prominent feature
of machine learning algorithms, especially those trained with
stochastic gradient descent, is that they can tolerate certain
types of noise and errors incurred during execution and still
return statistically the same answer. This observation has
enabled a range of system optimizations such as lock-free [20]
and asynchronous execution [22]. Recently, one emerging
line of research has focused on developing machine learning
algorithms that can tolerate a different type of noise—low-
precision data representation and/or computation [8], [10],
[13], [19]. Using low-precision data for training on FPGAs has
been considered before, using nearest-value (naive) rounding
to reduce data precision [2], [13], [17].

In this paper, we focus on the question: “What is impact of
using low precision data for FPGA-based stochastic gradient
descent on (1) performance and (2) result quality?” To address
this question, we explore a novel way of reducing the precision
of data—stochastic quantization, which has been shown by
recent machine learning studies [1], [6], [23] to produce high
quality and unbiased results for training dense linear models.

Machine Learning Scope. We focus on training one of
the simplest class of machine learning models—dense linear
models. Despite their simplicity, dense linear models are
fundamental for applications such as regression and classi-
fication, compressive sensing, and image reconstruction. For
applications such as human-in-the-loop analytics and feature
selection, one often needs to train hundreds or thousands of
models. Thus, the training speed is important.
Performance Objective. SGD is an iterative algorithm that
performs multiple passes over the data (so called epochs).
There are two decoupled metrics to assess the performance of
SGD: (1) statistical efficiency, the number of epochs (Nepochs)
the algorithm needs to converge, and (2) hardware efficiency,
the time the algorithm requires to execute each epoch (Tepoch).
Our objective is to increase the hardware efficiency, by low-
ering Tepoch, and maintain statistical efficiency, by keeping
Nepochs the same. We show that this is possible on an FPGA
when using stochastically quantized data.
Design Space. The reason quantized data leads to better
hardware efficiency is simple: The FPGA needs to read less
volume of data per epoch. However, the parallelism of the
design has to be increased to be able to process quantized
data. Furthermore, stochastic quantization has been shown to
maintain statistical efficiency [23]. However, the quantization
level (precision) needs to be an adjustable parameter, since
its effects on statistical efficiency highly depend on the data
set characteristics, among other SGD related configurations.
Thus, the design space required for complete control over
both hardware and statistical efficiency of SGD contains the
following parameters: 1) design decisions for the implemented
circuit, 2) data precision, and 3) SGD algorithm configuration
parameters (learning rate, mini-batch size).
Contribution 1. We design flexible prototypes to explore
different points in the design space. We first present an FPGA-
based SGD implementation working on 32-bit floating-point
data (floatFSGD). Apart from being scalable (handling high
dimensionality) and resource-efficient, floatFSGD’s perfor-
mance is on par with a 10-core CPU, despite being bound
on the available memory bandwidth on our current platform.
Then, we increase floatFSGD’s internal parallelism, so that
it can process quantized data—qFSGD is up to 11× faster
than floatFSGD and up to 10.6× faster than the fastest 10-
threaded CPU version of SGD we have access to.



Contribution 2. We reveal a new trade-off space that helps us
to determine the most efficient way to do SGD on an FPGA:
(I) We explore different circuit designs for qFSGD to achieve
better scalability in order to process lower precision data. We
show that with 1-bit quantization linear scaling does not work,
leading to a compute bound design.
(II) As we vary the precision and the quantization strategies
(stochastic quantization vs. naive rounding), we find that:
1) The lower the precision, the better the hardware efficiency,

because of higher bandwidth utilization (less volume of
data being read).

2) The lower the precision, the worse the statistical efficiency,
because of increased variance in the data.

3) The optimal precision regarding statistical and hardware
efficiency depends on the data set, especially its number
of features.

4) Stochastic quantization leads to an unbiased convergence of
SGD, compared to biased naive rounding, while the latter
does not require any pre-processing of input data.

(III) We experiment with various data sets and algorithmic
configurations to explore the training quality vs. performance
trade-off. Among other aspects, we look into the number of
quantized samples needed, before qFSGD can be used. Our
key conclusion is that the FPGA-based SGD on stochastically
quantized data is a very efficient and well performing way of
training dense linear machine learning models.

II. PRELIMINARIES

A. Stochastic Gradient Descent (SGD)

We consider the following problem: Given a dataset
(ai)i=1,N of D-dimensional data points, each with its own
label (bi)i=1,N , we wish to identify the dense linear model x
which minimizes the classification loss over this dataset:

arg min
x
Q(x) =

1

N

N∑
i=1

lossi(x) =
1

N

N∑
i=1

(aix− bi)2

2
(1)

• ai ∈ R1×D, a single sample of data set a ∈ RN×D

• bi ∈ R, the corresponding true inference value to ai
• x ∈ RD×1, the model to be trained and used for inference
• N ∈ N, the number of samples
• D ∈ N, the number of features per sample

A standard tool for solving this problem is stochastic
gradient descent (SGD), consisting of the iterative process
in Algorithm 1. For a small enough step size γ, SGD will
converge to the optimal solution [3].

Data: dataset a1, a2, . . . , aN of D-dimensional data
Result: optimal value of the model x
Initially, x is zero;
while not converged do

for i from 1 to N do
gi =

∂lossi(x)
∂x

= (ai · x− bi)ai ;
x← x− γgi ;

end
end

Algorithm 1: Stochastic Gradient Descent

B. Stochastic Rounding (Quantization)

Recent work by Zhang et al. [23] shows that SGD con-
vergence can be guaranteed even if the data undergoes a
compression process called stochastic quantization before it
is used in the gradient update. We now provide a brief
explanation of this procedure. Assume that the data consist
of floating-point values contained in an interval [L,U ]. We
quantize each data point ai,j to one of s levels, as follows.
First, we split the interval [L,U ] into s− 1 intervals of equal
length ∆ = (U −L)/(s−1). Then, each datapoint is rounded
stochastically to one of the endpoints of its interval:

QL,U
s (ai,j) =

(
⌊
ai,j

∆

⌋
+ 1)∆ with prob. ai,j −

⌊
ai,j

∆

⌋
∆⌊

ai,j

∆

⌋
∆ otherwise.

(2)

Example: Quantize value 0.7 between [0,1] with 2 levels. ∆ = 0.3̄

Q
0,1
2 (0.7) =

{
1 with prob. 0.7

0 with prob. 0.3

This quantization procedure is chosen so that the expected
quantized value returned equals the value itself, that is:

E[Q(ai,j)] = ai,j . (3)

In other words, if we iterate the quantization procedure on
a sample, the average of the returned values would converge
to the value of the sample. The key observation by Zhang
et al. [23] is that SGD still converges even if samples are
quantized in this way. However, to preserve correctness, we
must take two independent quantizations Q′ and Q′′ for each
sample ai, and update the gradient value to:

ĝi = (Q′(ai)
Tx− bi)Q′′(ai) (4)

This choice of update ensures that E[ĝi] = gi., i.e., the update
is an unbiased estimator of the true gradient, which in turn
ensures convergence of SGD.

III. IMPLEMENTATION

A. Target platform: Intel Xeon+FPGA

Our target platform is the Intel Xeon+FPGA [18] (Figure
1), made available through the Intel-Altera Heterogeneous
Architecture Research Platform.1 It combines a 10-core CPU
(Intel Xeon E5-2680 v2, 2.8 GHz) and an FPGA (Altera
Stratix V 5SGXEA) on a 2-socket motherboard. The FPGA
has cache-coherent access to the CPU-connected main mem-
ory through QPI (Quick Path Interconnect) with a combined
read and write bandwidth of around 6.5 GB/s. The FPGA
accelerator, implemented with VHDL, is straightforward to
use with Intel-provided software libraries, a QPI endpoint, and
an FPGA-based page table of our own implementation: at the
start of an application, the required amount of shared memory
is allocated by software in 4MB pages and the page table
on the FPGA is populated with the corresponding addresses.

1Following the Intel legal guidelines on publishing performance numbers,
we would like to make the reader aware that results in this publication were
generated using preproduction hardware and software, and may not reflect the
performance of production or future systems.
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Fig. 1: Intel Xeon+FPGA Architecture

The accelerator can request cache-line wide (64B) reads and
writes to the entire memory through the use of the page table
and the QPI endpoint, which, in addition to handling the
QPI protocol, also implements an FPGA-local cache (128KB
two-way associative) using BRAMs. We also added a reorder
buffer, since, by default, QPI requests arrive out of order.
In addition to an accelerator requesting data from QPI, the
software can also issue direct writes, a useful feature for
configuring registers containing runtime parameters.

The designs we present in this work are not dependent
on the cache-coherency features of the Xeon+FPGA: the
processing is done in a streaming fashion, where memory
bandwidth, not memory latency, determines performance So,
the designs can be integrated into other FPGA platforms (e.g.,
attached to the network or to storage) with ease.

B. FPGA-SGD on float data (floatFSGD)

We first present an SGD implementation that works on 32-
bit floating-point data (Figure 2), a common data representa-
tion in machine learning. As the data access width is a 64B
cache-line, the circuit is designed to work on that data width. It
is able to accept a cache-line at every clock cycle (200 MHz),
resulting in an internal processing rate of 12.8 GB/s.
Scale to # of features: The challenging part of the design is
to make it capable of handling a number of features D that
is larger than 16, which is the default width of the pipeline.
This is possible since all vector algebra in Algorithm 1 can be
performed iteratively, where each portion contains 16 values.
To stay cache-line aligned, we use zero-padding if D mod
16 6= 0. Thus, we can calculate how many cache-lines it takes
for ai (one row in the set) to be completely received:

#ai cache-lines =

{
D/16 if D mod 16 = 0
D+(16−D mod 16)

16
if D mod 16 6= 0

The only parameter determining the scalability of
floatFSGD is the maximum dimensionality Dmax,
because it determines the amount of BRAM needed for
storing the model x. We choose Dmax to be 8192, which
is more than enough for most existing linear dense model
training examples. The design can handle any number of
samples, N, since training is done in a streaming fashion.
Walk-through of computation pipeline: In the following, we
explain each stage of the computation pipeline. The first stage
is the dot product ai · x =

∑D
j=1 ai,jxj . When a cache-line

containing a part of vector ai arrives, it is first multiplied ( 1 )
with the corresponding part of vector x, in floating-point with
multiplier IPs,2 which have 5-cycle latency and throughput of

2All floating point IPs are created via Altera Quartus II 13.1.
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Fig. 2: Computation pipeline for floatFSGD, latency: 36
cycles, data width: 64B, processing rate: 64B/cycle.

one result per cycle. Then, the values are converted to a 32-
bit integer ( 2 ) by multiplication with a large constant that
is configurable during runtime, depending on the value range
desired. This float2fixed conversion takes 1 cycle. After that,
an adder tree ( 3 ) accumulates 16 values, each layer taking 1
cycle. At the output of the adder tree is an accumulator ( 4 ).
It accumulates the results coming out of the adder tree for the
pre-calculated number #ai cache-lines, building the final value
for the dot product. The dot product result is converted back to
floating-point ( 5 ), since the next stages of the calculation will
be performed with floating-point data. In the next part, the rest
of the gradient calculation takes place. First, the scalar value
b (the true inference value in the data set), is subtracted from
the dot product ( 6 ) using a floating-point adder IP, which has
7-cycle latency and throughput of one result per cycle. The
b value is received some cycles before the subtraction takes
place and is placed into a FIFO ( B ), waiting there until the dot
product result is ready. After the subtraction, a floating-point
multiplication takes place with step size γ ( 7 ), which can be
configured to any float value. At the end of this step, we have
a scalar value γ(ai ·x−bi), which needs to be multiplied with
vector ai. At this stage, a FIFO ( A ) already contains all parts
of vector ai, because the incoming cache-lines are written to
this FIFO simultaneously as they were sent to the dot product
calculation. The scalar-vector multiplication ( 8 ) takes place
in floating-point, where all parts of ai are multiplied with the
same scalar value. This gives the gradient gi one part at a time,
which undergoes float2fixed conversion ( 9 ), so that a cycle-
by-cycle update of the model x ( C ) can take place. This would
not be possible with a floating-point adder having 7-cycle
latency, since the result of the current calculation is needed
in the next cycle. The gradient is applied to the corresponding
part of the model as it becomes available. After the last part
of the gradient is subtracted from the model, the update for ai
is completed. After all rows go through the same calculation,
one epoch is completed (Algorithm 1).

3



Staleness vs. batch size (as a result of pipelined execution):
The model updated and the model read for the dot product
are separate (Figure 2). Only when a certain batch size (the
number of already processed ai) is reached, the updated model
is carried on to the actual model ( D ). The reason is the
latency introduced by the computation pipeline: in theory,
the whole gradient calculation and the update to the model
as in Algorithm 1 should be an atomic operation. However,
to exploit deep-pipelining, we don’t perform this operation
atomically. Instead, we keep the actual model and the updated
model separate and carry out the accumulated update only
when a certain batch size is reached (called a mini-batch
SGD). The batch size is a configurable parameter, which
should be set to the latency of the pipeline (36 cycles) to
avoid any so-called stale updates.
End-to-end float vs. hybrid computation: We choose a hy-
brid (float+fixed) over end-to-end float computation, because
a 7-cycle floating-point addition latency leads to: (1) A high
latency adder tree ( 3 ) that imposes a larger batch-size to avoid
staleness, slowing down the convergence rate, (2) not being
able to do a cycle-by-cycle accumulation ( 7 ), since the result
of an ongoing addition is required in the next cycle. Thus,
to keep the processing rate at 64B/cycle, we choose a hybrid
design that eliminates both these disadvantages.

C. FPGA-SGD on quantized data (qFSGD)

We explain how we change the floatFSGD design to work
on quantized data. The main purpose is simple: Instead of
reading float data (only 16 values in a cache-line), we quantize
the data beforehand, so that more than 16 values fit into a
cache-line, thus reading less volume of data in total. There
is one main challenge in making the FPGA-SGD work on
quantized data: scaling out the floatFSGD pipeline so that
it can work on more than 16 values in parallel. Before we
explain how this is achieved, we first review the quantization
options we consider and how the data layout looks like.
Quantization for qFSGD: Equation (2) shows that, given a
non-integer value, the quantization still might produce a non-
integer value. However, floating-point arithmetic induced by
non-integer values are hard to implement on the FPGA and
scaling out such a design would be difficult. We take advantage
of the fact that we can select the quantization variables [L,U ]
and s aptly, so that only integer values are produced. Table I
shows our choices for these values.

TABLE I: Choice of quantization levels, lower and upper
bounds, so that only integer values are produced.

Levels Data set positive Data set negative Needed bits
s=2 [L,U ] = [0, 1] N/A 1, Q1
s=3 [L,U ] = [0, 2] [L,U ] = [−1, 1] 2, Q2
s=9 [L,U ] = [0, 8] [L,U ] = [−4, 4] 4, Q4

s=129 [L,U ] = [0, 128] [L,U ] = [−64, 64] 8, Q8

After selecting a quantization precision (one of Q1, Q2, Q4
or Q8; powers of two to stay cache-line aligned), the data set
(the values in matrix a) must be normalized to the selected
quantization’s corresponding [L,U ]. At this stage, the sign of

the data set is considered for the normalization: we do not
normalize a negative data set into a positive interval in order
to keep existing zeros (maintain sparsity). Thus, we do not use
Q1 for negative data sets.
The layout of quantized data: As we showed in Section
II-B, to calculate the correct gradient, we need 2 quantization
samples of the same data point. That is, if we, for example,
select Q8, a quantized sample has 8 bits and we need 2 of them
to calculate the gradient; the actual amount of bits we use is
16. That’s why, when we perform quantization on a data set,
we always create 2 samples and store them in memory next
to each other. Thus, we can calculate how many quantized
values can fit into one cache-line, a value we call K, in Table
II. The value K dictates the amount of zero-padding we need
to perform, in order to be cache-line aligned, similar to as it
did for floatFSGD. Thus, the number of cache-lines required
to receive one quantized row Q(ai) can be calculated:

#ai cache-lines(K) =

{
D/K if D mod K = 0
D+(K−D mod K)

K
if D mod K 6= 0

(5)

TABLE II: Number of received values in a single cache-line.

Data type Q1 Q2 Q4 Q8 float
# of values in a cache-line, K 256 128 64 32 16
Processing rate (GB/S), PR 6.4 12.8 12.8 12.8 12.8

When and where does quantization happen?: Unfortu-
nately, there is no way to perform stochastic quantization
on the fly and gain the same performance benefits on the
target platform. Some naive ideas prove to be useless in
this regard: (1) the 10-core CPU can’t create samples at the
rate of FPGA’s memory bandwidth, (2) naively rounding the
data once, and then creating stochastically quantized samples
on the FPGA is not possible, since quantization depends on
the full-precision value itself. Thus, in the current system,
the quantization happens as a pre-calculation step on the
CPU, before running qFSGD. To achieve perfect statistical
soundness, we have to create as many quantized samples (so
called indexes) of the same data set as the number of epochs.
However, creating a separate index for each epoch might
be undesirable, because of space or time overheads (exact
memory space needed: # of indexes×NCL, from Equation 6).
We consider the possibility of reusing indexes and its effect
on statistical efficiency in Section IV.
Computation pipeline for quantized data (Figure 3): The
selection of Qx, which determines the width of the pipeline
is a generic parameter that can be set before synthesis. Thus,
each Qx results in a different bitstream. The explanation here
only focuses on the differences from floatFSGD and how
the pipeline is scaled out. The first thing to note is that Qx
pipelines work only on integer data, so there is no need
for converters. This is because the arriving quantized data
Q(ai) is already in integer form, as explained previously,
and the inference values b are also converted to integer by
multiplication with a large constant. Another difference here
is that for a given value in vector ai, 2 quantized samples

4
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(a) Q2, Q4 and Q8 qFSGD,latency: log(K)+5 cycles, data
width: 64B, processing rate: 64B/cycle.
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(b) Q1 qFSGD, latency: 12 cycles, data width: 32B,
processing rate: 32B/cycle.

Fig. 3: Computation pipelines for all quantizations. Although for Q2, Q4 and Q8, the pipeline width scales out and maintains
64B width, for Q1 it does not scale out and the pipeline width needs to be halved, making Q1 qFSGD compute bound.
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(a) Signed integer multiplication for Q8 and Q4 data, implemented with DSPs.
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(b) Signed integer multiplication for Q2 and Q1 data, implemented with
combinational logic.

Fig. 4: Multiplication implementations depending on the quan-
tization type.

arrive due to the double sampling method. The first sample is
given to the dot product calculation ( 1 ) and the second sample
is put into a FIFO ( A ), where it is kept until the dot product
result is ready, as depicted in Figure 3. The last difference
is applying the step size γ ( 2 ), which is actually a division.
Since we are dealing with integer data here, we choose to
apply γ as a bit-shift operation. By how many bits the value
is shifted to the right is a runtime configurable parameter,
allowing adjustments according to the data set characteristics.
Scaling out for quantized data and trade-offs: Scaling out
the pipeline for Q8 and Q4 is straightforward using conven-
tional signed multipliers ( 3 ) implemented by DSP resources,
followed by a bit-shift, to keep the data width at 32-bit (Figure
4a). However, for Q2 and Q1, we can do a more efficient
multiplication using multiplexers (Figure 4b), since one of
the multiplicands is only 2-bit and 1-bit, respectively. Doing
this efficient multiplication allows the Q2 pipeline to scale to
128-value parallelism, which would have otherwise required

TABLE III: Resource consumption for computation pipelines.

Data type Logic (ALMs) DSP BRAM (bits)
float 38% (89194) 12% (33) 7% (3.471K)
Q8 35% (82152) 25% (64) 6% (3.145K)
Q4 36% (84500) 50% (128) 6% (3.145K)

Q2, Q1 43% (100930) 1% (2) 6% (3.145K)

a 100% usage of the available DSP resources on the target
FPGA (see Table III). However, the pipeline shown in Figure
3a does not scale to 256-value parallelism (we can’t meet
timing with the target frequency of 200 MHz), even though
the Q1 multiplier is just one multiplexer. The main issue here
is (1) the bus for propagating the model from the BRAM to
compute units becomes too wide (8192 signals), (2) the adder
tree becomes too wide and deep. Note that, we still have to
perform addition in full-precision, because we can’t simplify
the addition as we have done with the multiplication. Using
compressor trees [11] instead of standard adder trees also did
not help in meeting timing. For this reason, we decided to
halve the qFSGD pipeline to process Q1 data (Figure 3b). To
do so, we split an arriving cache-line into 2 parts ( 4 ), which
are processed sequentially by the pipeline shown in Figure 3b.
The processing rate of this pipeline is 32B/cycle, or 6.4 GB/s,
which is slightly less than the memory bandwidth available in
our platform.

Model for predicting the speedup with quantized data
(hardware efficiency): We can now create a simple model
to predict if using quantization will provide any speedup,
depending on the dimensionality of the data set, the selected
precision, and memory bandwidth. The total number of cache-
lines floatFSGD or qFSGD needs to read is:

# of cache-lines NCL(K) = N · #ai cache-lines(K) (6)

The time for each SGD epoch with the processing rate of the
circuit (PR) and available platform bandwidth B is thus:

Tepoch =

{
NCL(K)/B if PR > B

NCL(K)/PR else
(7)
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The model shows that as long as quantization leads to a
reduction of the data size, Tepoch can be reduced. An exception
to this occurs between Q1 and Q2, when the bandwidth
available is larger than 12.8 GB/s. There, Q1 is not faster
than Q2 (both are compute bound): even when the data size is
halved with Q1, Q2 can process twice the data twice as fast.
However, Q1 can still be interesting in platforms with higher
memory bandwidth, because one can put multiple qFSGD
instances, multiplying the bandwidth requirements, making
Q1 still more attractive compared to Q2. As for the decision
between Q2, Q4, Q8, and float, their processing rates are the
same, so lower-precision quantization always leads to speedup
regardless of bandwidth, unless cache-aligned zero padding
causes #ai cache-lines(K) to be the same.

IV. EXPERIMENTAL EVALUATION

The main hypothesis that we would like to experimentally
validate is: (1) low-precision data representation created via
stochastic quantization can be used for training dense linear
models while maintaining quality, and (2) since the processor
doing the training needs to read less data per epoch, using
quantized data provides speedup. To validate this, we run our
FPGA-SGD on various data sets having different character-
istics (see Table IV). As the CPU baseline, we use both a
single-threaded SGD doing exactly the same calculation as
floatFSGD and a high performance parallel library called
”Hogwild!” [20] working on float data, with a mini-batch
size of 36 (equivalent to floatFSGD). The multi-thread
parallelism in Hogwild! is achieved through asynchronous
updates: each thread works on a separate portion of the data
and applies gradient updates to a common model without any
synchronization. The asynchrony might reduce the statistical

TABLE IV: Data sets used in experimental evaluation.

Name Training size Testing size # Features # Classes
cadata 20,640 8 regression
music 463,715 90 regression

synthetic100 10,000 100 regression
synthetic1000 10,000 1000 regression

mnist 60,000 10,000 780 10
gisette 6000 1000 5000 2
epsilon 10,000 10,000 2000 2

efficiency, especially if the data set is dense. Both CPU
baselines make use of vectorized instructions and are compiled
with GCC 4.8.4, with -O3 enabled.

Methodology: Since we apply the step size as a bit-shift
operation, we choose one of the following step sizes, which
results in the smallest loss for the full-precision data after 64
epochs: (1/26, 1/29, 1/212, 1/215). With a given constant step
size, we run FPGA-SGD on all the precision variations that we
have implemented (Q1-only for classification data-, Q2, Q4,
Q8, float). For each data set, we present the loss function over
time in Figures 5 and 6, showing 4 curves: single-threaded
and a 10-threaded CPU-SGD for float, floatFSGD, and
qFSGD for the smallest precision data that has converged
within 1% of the original loss. We would like to show
the difference in time for all implementations to converge to
the same loss, emphasizing the speedup we can achieve with
qFSGD compared to full-precision variants.

Main results: In Figure 5 we observe that for all classifica-
tion data sets, qFSGD achieves a speedup while maintaining
convergence quality. For gisette in Figure 5a, Q2 reaches the
same loss 6.9x faster than Hogwild!. Due to the high variance
data in epsilon, both Hogwild! and Qx curves seem to be
unstable (Figure 5b). We can see that floatFSGD in this
case behaves well, providing both 1.8x speedup over Hogwild!
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(a) gisette. γ = 1/212.
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(b) epsilon. γ = 1/212.
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(c) mnist, trained for digit 7. γ = 1/215.

Fig. 5: SGD on classification data. All curves represent 64 SGD epochs. Speedup shown for Qx FPGA vs. float CPU 10-threads.
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(a) cadata. γ = 1/212.
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(b) synthetic100. γ = 1/29.
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(c) synthetic1000. γ = 1/29.

Fig. 6: SGD on regression data. All curves represent 64 SGD epochs. Speedup shown for Qx FPGA vs. float CPU 10-threads.
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and better convergence quality. The results for the music data
set are very similar to epsilon, so we omit them for space
reasons. On the mnist data set (Figure 5c), we can even use
Q1 without losing any convergence quality, showing that the
characteristics of the data set heavily effect the choice of
quantization precision, which justifies having multiple Qx im-
plementations. For mnist, Q1 qFSGD provides 10.6x speedup
over Hogwild! and 11x speedup over floatFSGD. In Figure
6a, floatFSGD converges as fast as Q2 for cadata, because
they read the same number of cache-lines. The reason is the
cache aligned zero padding (set D = 8 and respective Ks
for Q2 and float into Equation (5)). For synthetic100 and
synthetic1000, we need to use Q4 and Q8, respectively, to
achieve the same convergence quality as float within the same
number of epochs. In Figure 6c, Hogwild! convergence is
slightly faster than that of floatFSGD, and Q8 provides
2x speedup over that. Hogwild! becomes faster with higher
dimensionality (compare Figures 6b and 6c), because with
lower dimensionality cache pollution occurs more frequently
[20].
The outcome of the main results: We can converge to the
same loss using quantized data within the same number of
epochs as with full-precision data; thereby achieving better
hardware efficiency while maintaining statistical efficiency. To
achieve this, the precision has to be selected carefully (which
we did empirically). Predicting the ideal precision for a given
data set is out of the scope of this work.
Effects of quantized SGD parameters: We now study the
effects of various parameters on the convergence quality. We
have performed the same experiments on all our data sets and
observed similar results. Here we present a subset (due to
space constraints) of our experiments.

1) Precision: Previously, we observed that, for some data
sets, at least Q8 precision is needed to be within 1% of the
original loss given the same number of epochs. Figure 7a
shows how the convergence curves look like, if we insist on
using lower precision data on epsilon. The inherently higher
variance of epsilon is amplified by having quantized data, and
so statistical efficiency drops. This can be fixed by applying a
smaller step size, as we discuss next.

2) Step Size: A higher step size causes higher variance dur-
ing quantized SGD, since the error introduced by quantization
has a greater effect during each gradient update. In the first
part of the experimental section, we chose step sizes optimized

for float precision data. This is why very low precision data
does not converge to the original loss for some data sets:
the variance caused by float-optimized step size is too high.
In Figure 7b, SGD for all data sets can converge even with
Q2 data if the step size is chosen to be small enough. The
downside of a smaller step size is the slower convergence rate.

3) Dimensionality: Higher dimensional data causes higher
variance in qFSGD, since the summed-up quantization error
for each data sample is greater. We see this effect when
comparing Figures 6b and 6c: while for synthetic100, Q4
provides high-quality convergence, for synthetic1000, we need
at least Q8.

4) Reusing indexes: In all previous experiments, the num-
ber of indexes for an SGD run is chosen to be equivalent
to the number of epochs for keeping statistical soundness, as
explained in Section III-C. Here, we discuss the possibility
of reusing indexes, and how it affects SGD convergence
quality. Theoretically, reusing indexes of quantized data intro-
duces bias to the gradient, since not every quantized sample
is statistically independent. Figure 7c shows the effects of
reusing indexes, thereby causing samples not to be statistically
independent. We empirically conclude that using more than
16 indexes is enough to get the same convergence quality, but
using fewer than 16 causes the convergence curve to be biased.

5) Naive Rounding vs. Quantization: Figure 7d shows the
difference between having stochastically quantized data (Qx)
vs. naively rounded (to the nearest integer) data (Fx). If the
data is naively rounded, the original optimization problem
changes; the global minimum the algorithm converges to is
a different one than the original one, showing itself as a bias
in the convergence curve.
Classification accuracy: We discuss the accuracy for mnist,
for which 10 separate models (for each digit) are trained. This
can be parallelized with the CPU very well since each model
can be trained completely independently. The CPU reaches a
processing rate of 10 GB/s for this test, the highest we observe
for the CPU. On the FPGA, we need to train 10 models one
after the other, since there is only one SGD instance. In Table
V, Q1 achieves 8x speedup against the highest performing
CPU implementation we have, while maintaining the same
multi-classification accuracy.

V. RELATED WORK

FPGAs have been extensively used for accelerating and
prototyping machine learning algorithms. Most of the existing
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(b) Effect of decreasing the step size
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Fig. 7: SGD on various data sets, showing the effects of data precision, step size γ, index reuse, and naive rounding.
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TABLE V: Multi-class classification on mnist. Run times are
for training 10 models with 100 iterations and γ = 1/215.

Precision Accuracy for 10 digits Training time (s)
float CPU-SGD 85.82% 19.0354s

Q1 qFSGD 85.87% 2.4083s

work focuses on classification with a pre-trained model [12],
[13], [15] since classification is thought to be the more
frequent operation, often with real-time constraints. As the
demand for machine learning applications and data sizes keep
growing, accelerating training also becomes highly important.
Contrary to common belief, training is an operation that has
to be run many times, often as a human-in-the-loop process,
until an optimal model is produced.

There is a large body of work considering FPGA as the
target processor for linear model and neural network training.
Mahajan et al. [14] present Tabla, a framework for automat-
ically generating SGD solvers with different loss functions.
The architecture of the generated circuit resembles a MIMD
processor with static scheduling, making the approach general
purpose. The highest dimensional data set tested is mnist.
No absolute performance numbers are presented. Kesler et
al. [9] focus on accelerating linear algebra operations and
present simulation results of a CPU-integrated accelerator
architecture. A maximum matrix size of 150 is presented.
Roldao et al. [21] consider accelerating a conjugate gradient
algorithm, which takes symmetric matrices of a maximum
size 58 as input. Cadambi et al. [4] consider using low
precision (naive rounding) arithmetic, achieving a maximum of
256-value parallelism with 4-bit precision, for support vector
machine (SVM, also a linear classifier) training. Their FPGA
accelerator is implemented as a coprocessor for accelerating
the multiply-accumulate part of the algorithm. Bin Rabieah et
al. [2] implement SVM training with custom precision data
(4-bit and 8-bit, via naive rounding). The parallelism on the
FPGA is exploited by partitioning the data, and then training
multiple models with each partition and, at the end, aggregat-
ing the models, similarly to the asynchronous update method
used for achieving parallelism for SGD on a CPU. Majumdar
et al. [16] present a framework—MAPLE, not necessarily
designed for FPGAs, but using an FPGA as a prototyping
platform. Its architecture is based on a many core with large
on-chip memory, enabling highly parallel computation. The
FPGA-SGD we presented achieves the highest dimensional
scalability among existing work, considering reported test data
sets and workloads.

To our knowledge, the only efforts considering stochastic
quantization as a viable data representation for deep neural
network training and combining this with an FPGA accelerator
are presented by Gupta et al. [8] and Courbariaux et al. [5].
Gupta et al. [8] use the FPGA as a matrix multiplication
accelerator working on quantized data. Courbariaux et al. [5]
focus on reducing multiplication precision on FPGAs, not
necessarily on stochastically quantized data. In contrast to
these, our study focuses on the detailed analysis of statistical
vs. hardware efficiency trade-offs when using stochastically
quantized data for dense linear model training on FPGAs.

VI. CONCLUSION

We present various highly scalable and parameterizable
FPGA-based stochastic gradient descent implementations for
performing linear model training. We open source our designs
for the community.3 Our key takeaways are: (1) The most
efficient way of training linear models on an FPGA is through
the usage of low-precision data obtained with stochastic quan-
tization. (2) Doing so opens up a trade-off space: precision vs.
end-to-end runtime, convergence quality, design complexity,
data and system properties. (3) The multivariate trade-off space
motivates new research focusing on how to optimize a linear
model training system on FPGAs and heterogeneous systems.
Acknowledgements: We would like to thank Ji Liu and
Hantian Zhang for their contributions. The HARP v1 prototype
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[13] B. Lesser, M. Mücke, and W. N. Gansterer. Effects of Reduced Precision
on Floating-Point SVM Classification Accuracy. Proc. Comp. Sc.’11.

[14] D. Mahajan, J. Park, E. Amaro, et al. TABLA: A Unified Template-based
Framework for Accelerating Statistical Machine Learning. In HPCA’16.

[15] D. Mahmoodi, A. Soleimani, H. Khosravi, M. Taghizadeh, et al. FPGA
Simulation of Linear and Nonlinear Support Vector Machine. JSEA’11.

[16] A. Majumdar, S. Cadambi, M. Becchi, S. T. Chakradhar, and H. P.
Graf. A Massively Parallel, Energy Efficient Programmable Accelerator
for Learning and Classification. TACO’12.
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