

CarnegieMellor

Today's Best Software Speech Recognizers

- Best-quality recognition is computationally *hard*
 - ▼ For speaker-independent, large-vocabulary, continuous speech
- 1-10-100-1000 rule
 - ▼ For **~1X** real-time recognition rate
 - ▼ For ~10% word error rate (90% accuracy)
 - Need ~100 MB memory footprint
 - Need ~100 W power
 - Need ~1000 MHz CPU
- This proves to be very *limiting* ...

© Rob A. Rutenbar 2007

© Rob A. Rutenbar 2007

Slide 3

CarnegieMellon

The thesis: It's time to liberate speech recognition from the unreasonable limitations of software The solution: Speech recognition in silicon

Aside: About the Name "In Silico Vox" In Vivo Latin: an experiment done in a living organism Latin: an experiment done in an artificial lab environment Latin: an experiment done via computation only (Not real Latin): an experiment done via computation only Vox Latin: voice, or word

Slide 5

© Rob A. Rutenbar 2007

About This Talk Some philosophy Why silicon? Why now? Why us (CMU)? A quick tour: How speech recognition works What happens in a recognizer An SoC architecture Stripping away all CPU stuff we don't need, focus on essentials Results ASIC version: Simulation results FPGA version: Live, running hardware-based recognizer

CarnegieMellon

About This Talk

- Some philosophy
 - Why silicon? Why now? Why us (CMU)?
- A quick tour: How speech recognition works
 - What happens in a recognizer
- An SoC architecture
 - Stripping away all CPU stuff we don't need, focus on essentials
- Results
 - ASIC version: Simulation results
 - ▼ FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007

Slide 7

CarnegieMellon

Why Silicon? Why Now?

Why? Two reasons:

- History
 - We have some successful **historical** examples of this migration
- **■** Performance
 - **▼** Tomorrow's compelling apps need 100X 1000X more performance
 - (Not going to happen in software)

© Rob A. Rutenbar 2007

Slide 8

About This Talk Some philosophy Why silicon? Why now? Why us (CMU)? A quick tour: How speech recognition works What happens in a recognizer An SoC architecture Stripping away all CPU stuff we don't need, focus on essentials Results ASIC version: Simulation results FPGA version: Live, running hardware-based recognizer

CarnegieMellon **Example of Different Phone Building Blocks** Let's use my name as an example English: /r/ /00/ /t/ /n/ **/b/** /ar/ ルル 1111 /テ/ レン Japanese: Aside: ■ Japanese has some reputation as being an "easier" language for automatic recognition ■ Mapping from basic sounds (mora) to words is simpler than English © Rob A. Rutenbar 2007 Slide 22

CarnegieMellon

About This Talk

- Some philosophy
 - Why silicon? Why now? Why us (CMU)?
- A quick tour: How speech recognition works
 - What happens in a recognizer
- An SoC architecture
 - Stripping away all CPU stuff we don't need, focus on essentials
- Results
 - ASIC version: Simulation results
 - ▼ FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007

Slide 27

CarnegieMellon

This Talk: How to Get to Fast...

Audio-mining

- Very fast recognizers much faster than realtime
- App: search large media streams (DVD) quickly

FIND: "Hasta la vista, baby!"

© Rob A. Rutenbar 2007

Hands-free appliances

- Very portable recognizers high quality result on << 1 watt
- App: interfaces to small devices, cellphone dictation

Slide 28

Essential Implementation Ideas Custom precision, everywhere Every bit counts, no extras, no floating point – all fixed point (Almost) no caching Like graphics chips: fetch from SDRAM, do careful data placement (Little bit of caching for bandwidth filtering on big language models) Aggressive pipelining If we can possibly overlap computations – we try to do so Algorithm transformation Some software computations are just bad news for hardware Substitute some "deep computation" with hardware-friendly versions

About This Talk Some philosophy Why silicon? Why now? Why us (CMU)? A quick tour: How speech recognition works What happens in a recognizer An SoC architecture Stripping away all CPU stuff we don't need, focus on essentials Results ASIC version: Simulation results FPGA version: Live, running hardware-based recognizer

Design Flow: C++ Cycle Simulator → Verilog 2006 benchmark: 5K-word "Wall Street Journal" task Cycle sim results: No accuracy loss; not quite 2X @ 125MHz ASIC clock ■ Backend search needs: ~1.5MB SRAM, ~30MB DRAM Speedup Over Real Time (bigger is better) 1 GHz 0.74X Software: Sphinx 3.3 (fast decoder) 7.32% Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X © Rob A. Rutenbar 2007 Slide 35

FPGA Experimental Results

■ Aside: as far as we know, this is the *most complex* recognizer architecture ever fully mapped into a running, hardware-only form

© Rob A. Rutenbar 2007

Slide 39

CarnegieMellon

CarnegieMellon

Summary

- Software is too constraining for speech recognition
 - Evolution of graphics chips suggests alternative: **Do it in silicon**
 - **▼**Compelling performance and power reasons for silicon speech recog
- Several "in silico vox" architectures in design
 - **▼**SoC and FPGA versions
 - ▼~10X realtime speedup architecture in progress at CMU
- Reflections
 - Some of the most interesting experiences happen when you get people from very different backgrounds silicon + speech on same team

WHEN IS WINDOWS HUNILABLE

CarnegieMellon

Acknowledgements

- **■** Work supported by
 - US National Science Foundation (www.nsf.gov)
 - Semiconductor Research Corporation (www.src.org)
 - ▼ FCRP Focus Research Center for Circuit & System Solutions (www.fcrp.org, www.c2s2.org)
- We are grateful for the advice and speech recognition expertise shared with us by
 - Richard M. Stern, CMU
 - Arthur Chan, CMU
 - Mosur K. Ravishankar, CMU

© Rob A. Rutenbar 2007

Slide 41