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m Quality =OK Vocab =large

m Quality = poor Vocab =small

m Commonality: all software apps
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Today’s Best Software Speech Recognizers

m Best-quality recognition is computationally hard
N For speaker-independent, large-vocabulary, continuous speech

m 1-10-100-1000 rule
~For ~1X real-time recognition rate
“For ~10% word error rate (90% accuracy)
~ Need ~100 MB memory footprint
< Need ~100W power
~ Need ~1000 MHz CPU

m This proves to be very limiting ...

CarnegieMellon

The Carnegie Mellon In Silico Vox Project

m The thesis: It’s time to liberate speech recognition
from the unreasonable limitations of software

m The solution: Speech recognition in silicon

Rob A. Rutenbar
Carnegie Mellon University
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Aside: About the Name “In Silico Vox”

m In Vivo [
~ Latin: an experiment done in a living organisme«««««««««««-eeees

m In Vitro
~ Latin: an experiment done in an artificial lab environment:----

m In Silico
N (Not real Latin): an experiment done via computation only----
m Vox ' [
~ Latin: voice, or word --«+-++--+- E -
- -

CarnegieMellon

About This Talk

m Some philosophy
N Why silicon? Why now? Why us (CMU)?

m A quick tour: How speech recognition works
N What happens in a recognizer

m An SoC architecture
~ Stripping away all CPU stuff we don't need, focus on essentials

m Results
N ASIC version:  Simulation results
N FPGA version: Live, running hardware-based recognizer

Rob A. Rutenbar
Carnegie Mellon University
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About This Talk

m Some philosophy
N Why silicon? Why now? Why us (CMU)?
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Why Silicon? Why Now?

Why? Two reasons:

m History
N We have some successful historical examples of this migration

m Performance
~ Tomorrow’s compelling apps need 100X — 1000X more performance
~ (Not going to happen in software)

Rob A. Rutenbar
Carnegie Mellon University
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History: Graphics Engines

m Nobody paints pixels in software anymore!
~ Too limiting in max performance. Too inefficient in power.

True on the desktop (& laptop) ...and on your cellphone too

NVIDIA" GeForce” 7950 GX2

http://www.nvidia.com

l\lJ

http://www.mtekvision.com

CarnegieMellon

Performance: Next-Gen Compelling Applications

Audio-mining Hands-free appliances

m Very fast recognizers — m Very portable recognizers —
much faster than realtime high quality result on << 1 watt

m App: search large media m App: interfaces to small
streams (DVD) quickly devices, cellphone dictation

FIND: “"Hasta la vista, baby!”

“send email
to arnold -
let's do lunch..”

Carnegie Mellon University




2007 STARC Forum

Rob A. Rutenbar

CarnegieMellon

Silicon Solution: Speed and Power Wins

m A famous graph from Prof. Bob Brodersen of Berkeley
N Study looked at 20 designs published at ISSCC, from 1997-2002
~ In slightly older technologies, relative to today: 180nm — 250nm
~ Dedicated designs up to 10,000X better energy efficiency (MOPS/mW)

1000 Million Ops (MOPS) / milliWatt (mw)

Microprocessors General ‘Di(i%
100 PUrpose
10 DSP 2 ordersof '
1 l".‘i.—./.» magnitude

0.1 or——* 20rd
p magnitude
0.01 -
S $ &S S LSl s sSSP
FOF &S §FFEFLS S LTS E&STEET
T &Ly L SV ITESLSSTEEITEG
& g8 9 SESFFHE S 9 S 8
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Recent Example: Parallel Radio Baseband DSP

m 90nm CMOS: adaptive DSP for multipath MIMO channel
~ Power efficiency = 2.1GOPS/mW
~ Area efficiency = 20GOPS/mm?

( SnssnnERTSRRRRR AR |

| _Technology | 90nm CMOS
_ Core area 1.9 x 1.9 mm

- Die area 2.3x2.3mm TXx

" Pad count 120

- 10/core Vpp | 1V /0.4V

1 Cell count 420,304

- Frequency 100 MHz

- P (act/leak) | 30mW /4mwW

| _Efficiency | 2.1GOPS/mW

2nd path,
a,=056

1<

Data rate up to 250Mbps over 16 sub-carriers
Measured 34mW @ VDD=385mV

- i=
8 oy TUTEY 5,
(Source: Prof. Dejan Markovitz, UCLA)
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m 1 site (Carnegie Mellon), 3 sets of world-class experts
~ Impossible to do projects like this without cross-area linkages

(Czirnggiz Sl S us Computer Science
: WL e sey SPHINX Speech recognition group

Electrical & Computer Engineering
Silicon system implementation group

Electrical & Computer Engineering
Media / DSP group

CarnegieMellon

Us the CMU In Slllco Vox Team

From left: Kai Yu, Rob Rutenbar, Ed r@Lin,
Richard Stern, Tsuhan Chen, Patrick Batirke
(not shown: Jeff Johnston)

Rob A. Rutenbar
Carnegie Mellon University
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m A quick tour: How speech recognition works
N What happens in a recognizer

CarnegieMellon

How Speech Recognition Works

o0

DsP

= n

Adaptation to
environment/speaker

[l

(" Acoustic Word Language
DL Ll LB | Rob R A0B
. Bob B AOB Rob = says :
s XS SR .

ao

HMM / Viterbi Search

Language Model Search ‘Rob”

Sampling
Feature
Feature  Feature i uni
extraction  Vector Scoring Acoustic units = Words = Language
“ AN J _
Y Y v
Acoustic Scoring Backend
Frontend Search

Rob A. Rutenbar
Carnegie Mellon University
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(1) Acoustic Frontend
4-.

o5

Extraction Feature
vector

The frontend is all DSP. A discrete Fourier
transform (DFT) gives us the spectra. We
combine and logarithmically transform spectra
in ways motivated by physiology of human ears.

Sampling
Framew

Calor is “how much energy’.
in transformed spectra.
| . Green = low, red = high.

|
Fed tuledO ° This pic is across a

N \ few sec of speech.

Combine these with | ° m 1 1] |

estimates of 1t and 2" N\ N . W0 u B e
time derivatives 1

CarnegieMellon

(2) Scoring Stage

m Each feature is a point in high-dimensional space
~ But each “atomic sound” is a region of this space
~ Score each atomic sound with Probability(sound matches feature)

ach sound is a d SCORE (9 = v, L e2M
Gaussian Mixtur / = JomA
1 | Each sound approximated as a set
J& & V| of high-dim Gaussian densities
Fegture Featlure Vector &
X= , X2, ..., Xn)

m Note: (sounds) X (dimensions) X (Gaussians) = BIG

Rob A. Rutenbar
Carnegie Mellon University
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(3) Search: Speech Models are Layered Models

Language X Words X Acoustic - Layered Search
A A A A

r 7 hYd N [ N

YES

i -Jes-1s]
Tiio? 8088

words “acoustic “sub-acoustic
units” units”

Power . fe

Spectrum

Classical methods
(HMMs, Viterbi)
and idiosyncracies

Waveform

s .d
e
1= d

Pitch

1 frame of
sampled sound

CarnegieMellon

Context Matters: At Bottom -- Triphones

m English has ~50 atomic sounds (phones) but we
recognize ~50x50x50 context-dependent triphones
~ Because “I" sound in “five” is different than the “I” in “nine”

Five F( = | )cross-word I F, V )word-internal V( |, - )cross-word

Nine N( = | )cross-word I( N, N )word-imernal N( |, - )cross-word

“I” in “five” # “I” in “nine”

Carnegie Mellon University
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Similar for Other Languages, like Japanese

m ...but different basic building blocks (different phones)
F o B B BN T R
7 v ST S-S A U 7
P ., ¥ 0 F Lo AN P 7
1 ¥, v, 0y A B L Vo
v, 7. A2, v ® _E, BT
V. 7. AL T, v e B
Town . L F 7. Y. 7T .
A owwe 3, Y R 7 ., 3, .1:|: .
7J- ° j 0 ‘)‘ : ~ he 3 vo Modifier i ve
) N. 3, 7 .
Source: Microsoft Speech API 5.3 - ~ e
Japanese Phonemes N T,
http://msdn2.microsoft.com/en-us/library/ms720568.aspx < Teraiion - .
cea e &

CarnegieMellon
Example of Different Phone Building Blocks

m Let’s use my name as an example

m English: Irl 100/ It/ In/ /bl lar/
m Japanese: /LI [—I 17 1> 1IN =]

m Aside:

N Japanese has some reputation as being an “easier” language for
automatic recognition

N Mapping from basic sounds (mora) to words is simpler than English

Carnegie Mellon University
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Also Context at Top: N-gram Language Model

Suppose we have vocabulary
{W1, W2, W3, W4, ..}

Trigram

. termination
Unigram

O

Lets us calculate
likelihood of
word W3
after W2

after W1

CarnegieMellon
Good Speech Models are BIG

O 0003 [0 (- -

T G, [ o =

BAL SPEE \: /\/@ SEd=

N || | @@ =NE

. o\ Yo

Power, il ﬁ 85156 gf \/ (] D) D)

ectrum g Cores L} o O O

-~ % IR | el | S\ IS

Waveform [—==e :0-—‘—— M 64,001 ~© g

pen | £ 111593  Unigrams - =

Triphones : .

for each 10 ms time frame ) .

9,382,014 -

m This is ~64K word “Broadcast News” task Bigrams <=2
m Unfortunately, many idiosyncratic 13’459’879
details in how layers of model traversed Trigrams

Carnegie Mellon University
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Where Does Software Spend its Time?

m CPU time for CMU Sphinx 3.0

~ Prior studies targeted less capable
versions (v1, v2)

~ Tools: SimpleScalar & Intel Vtune
N 64K-word “Broadcast News” benchmark

m So: It’s all backend

~0% of time!

Adaptation to

environment/speaker
41

W) (A ta0”
o B ~@0 (VM / Viterbi Search
: gy € Language Model Search ‘Rob”

Sampling
Feature
eiteraalt(l:triin If/ee%tllérre Scoring Acoustic units - Words -> Language

. Rob R AOB
} g Bob B AOB Rob Psays

CarnegieMellon

Memory Usage? SPHINX 3.0 vs Spec CPU2000

m Cache sizes SP;g)NX Gee Gzip Equake
~ L1: 64 KB, direct mapped
] Cycles 53B 558 158 23B
~ DL1: 64 KB, direct mapped PC 069 | oz 0 =
N UL2: 512 KB, 4-way set assoc Instruction Mixes
Loads 0.27 0.25 0.2 0.27
= So... Stores 0.05 0.15 0.09 0.08
Branch’s | 0.14 0.2 0.17 0.12

~ Terrible locality (no surprise,
graph search + huge datasets)

~ Load dominated (no surprise,
reads a lot, computes a little) Cache Miss Rates

T . DL1 0.04 0.02 0.02 0.03
~ Not an insignificant footprint

Branch Misprediction Rates

0.025 0.07 0.08 0.02

L2 0.48 0.06 0.03 0.30

Memory Footprint

64 MB 24 MB 186 MB 42 MB

Rob A. Rutenbar
Carnegie Mellon University
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About This Talk

m An SoC architecture
N Stripping away all CPU stuff we don’t need, focus on essentials

CarnegieMellon

This Talk: How to Get to Fast...

Audio-mining
m Very fast recognizers —
much faster than realtime

m App: search large media
streams (DVD) quickly

FIND: “"Hasta la vista, baby!”

Rob A. Rutenbar
Carnegie Mellon University
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Speech: Complex Task to do in Silicon

: ("Acoustic Word Language )
H (e (e B
Adaptation : A@’*@‘%‘ B b hon | | robosys |
ﬁ (0 o w0 " :

LaOH

X #@O- HMM / Viterbi Search
. __
: ¢ 7 Language Model Search “Rob”
Xn A
Feature
Feature : P
; Acoustic units - Words - Language
extraction Scoring guag
~ J 7 7
——
I 10-100MB
10-100MB DRAM
DRAM (models &
(constants) active recog)
v

Frontend Scoring Backend

‘ Ops: Low Ops: High Ops: Mediu
MBs SRAM

?c%ﬁsl\{lants) (active recog)

CarnegieMellon

A Silicon Architecture: Breakdowns

10-100MB
10-100MB DRAM
DRAM (models &
(constants) active recog)
Acoustic Gaussian Backend
‘ Frontend ‘ Scoring - Search
SRAM — MBs SRAM
(constants) (communic) (active recog)
Computations (Ops) Low High Medium
SRAM (size) Small Small Large
DRAM (size) - Medium/Large Large
DRAM (bandwidth) - High High

Rob A. Rutenbar
Carnegie Mellon University
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Essential Implementation Ideas

m Custom precision, everywhere

~ Every bit counts, no extras, no floating point — all fixed point

m (Almost) no caching
N Like graphics chips: fetch from SDRAM, do careful data placement
~ (Little bit of caching for bandwidth filtering on big language models)

m Aggressive pipelining
~ If we can possibly overlap computations — we try to do so

m Algorithm transformation
~ Some software computations are just bad news for hardware

CarnegieMellon

N Substitute some “deep computation” with hardware-friendly versions

CarnegieMellon

Example: Aggressive Pipelining

Pipelined Get-HMM/Viterbi and Transition stages

| Fetch Word |

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

time

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

| Language Model

Pipelined Get-Word and Get-HMM stages

| Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

| Language Model |

Pipelined non-LanguageModel and LanguageModel stages

[ Word #1
[J word #2
O HMM #1
O HMM #2
0 HMM #3

| Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

Language Model

Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

Rob A. Rutenbar

Carnegie Mellon University
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Example: Algorithmic Changes

m Acoustic-level pruning threshold
~ Software: Use best score of current frame (after Viterbi on Active HMMs)
~ Silicon: Use best score of previous frame (nixes big temporal bottleneck)
m Tradeoffs
N Less memory bandwidth, can pipeline, little pessimistic on scores

v ~  Done

Initialize Frame
\ Start Frame
Fetch Active Word Done 4\ l

Initialize Frame
Fetch Active HMM Done all Active HMM D/__

Language

! ~— Fetch Active Word+—————— L
Viterbi Fetch Active Word+—  Language Model l \ I
' b t Fetch Active HMM Transiti
Writeback HMM Fetch Active HMM—>Transition/Prune/Writebacl /
\» Viterbi
Done all Active HMM
Sphinx 3.0 Software Silicon

CarnegieMellon

About This Talk

m Results
~ ASIC version:  Simulation results
~ FPGA version: Live, running hardware-based recognizer

Carnegie Mellon University
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Design Flow: C++ Cycle Simulator - Verilog

m 2006 benchmark: 5K-word “Wall Street Journal” task
m Cycle sim results:
~ No accuracy loss; not quite 2X @ 125MHz ASIC clock
~ Backend search needs: ~1.5MB SRAM, ~30MB DRAM

Speedup Over

Recognizer Engine V\éo;‘geE(‘;c))r Real Time
(bigger is better)
Software: Sphinx 3.3 (fast decoder) 7.32% 1 GHz 0.74X
Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X
Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X
Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X
Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X

CarnegieMellon

Aside: Bit-Level Verification Hurts (A Lot)

m We have newfound sympathy for others doing
silicon designs that handle large media streams

~ Generating these sort of tradeoff curves: CPU days > weeks

Speedup vs Software (over 330 WSJ utterances)

7

6 All SRAM
s i | / 1.5MB SRAM + 30MB DRAM
R
8:;_ 3 | %SPHINX 3.0 software
? 21 /_AALLDRAM

l .

0 T T

0 500 1000 1500

Time (10ms frames)

Rob A. Rutenbar
Carnegie Mellon University
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Aside: Pieces of Design = Great Class Projects

m CMU student team: Patrick Chiu, David Fu, Mark McCartney,
Ajay Panagariya, Chris Thomas
Area 1106 mem?® core § 16.0% mm® chip
Effective Utilization 53.32%
Cell Rows 657
Cells 6735
Pins 225158
Senone score output 10 Pias 4
3 g Ngl. i 79382
£ e -cmphosis| g Avg. PinuNet R4
: ks = Nets
FFT Input Data g (Imtemmal) ™
2 s (External) ™
i1 s Connections.
FFT [FFT Z Cep § :ﬂ?:«:;?? 146621
Calc E} External) 188
OUt e E Tulnl‘nc:';:ngth 6,00 m
g h] Xy 2359 m
E | Twiddle] E‘: ¥} | 340 m
Po Supply 198 Y
Cep = r\\:':::c ;\T:r 198 mW
B é {switching) 1178 mw
i e
Mel Calc a i) 036
i Cra o Power by chck domain
- " Frontend 2018 mW
H Gaussl, 14.28 mW
Floorplan Final Layout DRA 1
Unchocked 096 mW
Power by cell category
Core 19.5 mW
Block 029 mW
10 0 mW
Worst IR drop [TTFAY
Final Stats

CarnegieMellon

A Complete Live Recognizer: FPGA Demo

In any “system design” research,
you reach a point where you just
want to see it work — for real

Goal: Full recognizer 1 FPGA + 1 DRAM

A benchmark that fits on chip
~ 1000-word “Resource Mgt" task
~ Slightly simplified: no tri-grams
~ Slower: not real time, ~2.3X slower
~ Resource limited: slices, mem bandwidth

Rob A. Rutenbar
Carnegie Mellon University
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FPGA Experimental Results

m Aside: as far as we know, this is the most complex recognizer
architecture ever fully mapped into a running, hardware-only form

|06 2 isv_reampd

CarnegieMellon

Summary

m Software is too constraining for speech recognition
N Evolution of graphics chips suggests alternative: Do it in silicon
~ Compelling performance and power reasons for silicon speech recog

mSeveral “in silico vox” architectures in design
N SoC and FPGA versions
N ~10X realtime speedup architecture in progress at CMU

m Reflections

~ Some of the most interesting experiences happen when you get people
from very different backgrounds - silicon + speech — on same team

Rob A. Rutenbar
Carnegie Mellon University
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