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  About This Talk 

!!Statistics for nanoscale  ckts 

!!The new challenge 

!!Monte Carlo analysis 

!!How we do statistical analysis 

!!Mathematics of money+risk 

!!Surprising source for very 

sophisticated Monte Carlo tools 
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New Challenge:   Statistical Variation 

!!At nanoscale, nothing is 

deterministic anymore 

!!Everything is statistical 

Line Edge Roughness 

A. Brown et al., IEEE Trans. Nanotechnology, p. 195, 2002 

Random Dopant Fluctuations 

Gate Oxide Variation 

Momose et al, IEEE Trans. Electron Devices, 45(3), 1998 

K. Shepard, U. Columbia 
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 Statistical Variability:  Two Flavors 

!!Systematic variation 

!!Ex:  Lithography  

!!Optics, chemistry to print 
small mask shapes 

!!Not really random 

!!Physics is understood, 
expensive to compute 

!!Random variation 

!!Ex:  Dopant fluctuation  

!!How many individual 
dopant atoms; where? 

!!Really (really) random 

!!Physics is fundamentally 
random for these effects 
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End Result for Us Design/CAD Folks 

Welcome to design in  

the nanoscale regime 
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VT1= 

VT2= 

VT3= 

VT4= 

VTS= 

To Evaluate Circuit Impact:  Monte Carlo 

!!Sample each 
statistical variable 

!!Parameterize one 
circuit, simulate it 

!!Repeat--n samples 

simulate 
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Monte Carlo Math:  Just A Big Integral 

Est = !  !! fckt (x) p(x)dx ... 

Stat space 

[      ] 

[      ] 

[      ] 

" (1/n)  F (u)     # 

0        1  

1  Can transform to sample 

uniformly from s-dim unit cube  

s statistical vars 

s-dimensional prob 
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Evaluate Circuit Impact:  Monte Carlo 

!!PRO:     Accurate, flexible, general 

!!CON:   Slow, slow, s l o w… 

0        1  

1  

Uniform  

random 

s-dim  
sample 

n samples 

" (1/n)  F (u)     # 
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Why is Monte Carlo Painful? 

!!High-dim problems:   s is big (100-1000) 

!!Profoundly nonlinear:  Nanoscale physics 

!!Accuracy matters:    ~1-5% error 

!!Speed matters:   Many samples 

!!Samples expensive:  Simulate each circuit 
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Question: Who Else Has This Problem? 

Computational finance 

!!Valuing complex financial 

instruments, derivatives 

!!High-dimensional, nonlinear, 

statistical integrals 

!!Speed+accuracy matters here, 

e.g., ~real-time decision-making 
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A Brief Aside:   About the “F” Word… 

!!These recruiting 

signs common in 

my building at 

CMU… 

!!…last year 
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A Brief Aside:  About the “F” Word… 

!!~1 year ago… 

!!“Wow, analyzing 

yield is like pricing a 

bond?  Cool!” 

!!~ 1 month ago… 

!!“Wow, you’re using 

the same stuff that 

killed Wall Street?!” 

^DJI 
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A Brief Aside:  About the “F” Word… 

 “The people who ran the financial 

firms chose to program their risk-

management systems with overly 

optimistic assumptions and to feed 

them oversimplified data. … 

… Wall Street executives had lots 

of incentives to make sure their 

risk systems didn’t see much risk.”  
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!!Moral of story: If you start with honest physics 

as your input, you can get great results… 

From Finance to Physics… 

RDF 0% down! 

0% APR! 
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!!Classical Monte Carlo sampling 

!!Uses uniform pseudo-random pts (i.e, rand( ) )  

!!Surprise: Not very uniform   (clumps, holes, etc) 

!!Turns out this is inefficient – we can do better 

Monte Carlo Revisited:  Uniform Sampling 

2-D example:  unit cube is [0,1]2 

Independent, uniform  

random samples  

(x,y) in 2-D cube 
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Better == Low  Discrepancy 
High-discrepancy samples 

Mathematically:  the discrepancy 

is a measure of “uniformity” 

Fraction of  

points in J 

Fraction of volume  

occupied by J 

Low-discrepancy samples 

How well does sampled nJ / n 

approximate relative volume of box? 

For low-discrepancy sequences, 

answer is:  always very well. 

nJ points 

J 

Box “J” 
n points 
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Doing Better:  Quasi Monte Carlo (QMC)  

!! Classical Monte Carlo 

!! Uniform pseudo-random pts  

!! Problem: not very uniform 

!! Error for n samples 

!! Quasi Monte Carlo 

!! “Low-discrepancy” seq’s 

!! Deterministic samples 

!! Error for n samples  

O(1 / $n) O(1 / n) 
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Computational Finance Example 

!!Eval 5-year discount price for a bond 

!!From [Ninomiya,Tezuka, App Math Finance 1996] 

# Samples 

Ideal ~1/$n 

Monte Carlo 

QMC 

Error (log scale) 

1439 dimensions 

150x faster 
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2 dims from 500-D Sobol’ pts 

2 dims from 500-D Faure pts 

Engineering Detail:  Pattern Artifacts 

!! Problem: Low Discrep Seq’s 

show patterns in high dim’s 

!! Need too many points for 
good uniformity 

!! Solution:  Since earlier 

dimensions less affected… 

!! Calculate statistical 

sensitivity of all vars 

!! Put sensitive vars first 

!! Ex:  in f(x1,x2) if x1 more 
important than x2 
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Does QMC Work for Circuits?    
!!Yes! 

!!See:  [Singhee, Rutenbar, ISQED 2007] 

!!Example:   Complete SRAM column @ 90nm 

QMC 

403 dimensions 

64b 90nm SRAM col 

Pr(write < tW) =0.9 
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Very Promising Speedups 

!!Same 403-dimensional, 64b SRAM column 

~9x faster 

for 1% error 

[Singhee, Rutenbar, ISQED 2007] 
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Isn’t This Just Latin Hypercube Sampling? 

!!No 

!!LHS sample set actually a randomized low-discrep seq 

!!Considered “advanced” in EDA, but inferior to QMC  

!! (Nobody prices bonds with LHS – it’s all QMC)  

Bandgap SRAM Column 

Plots:  Error  (est. variance across 10 runs) vs #samples n 
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 Good Behavior on Other Circuits 

!!MC vs QMC variance,  with #samples, n 

!!10 MC runs to compute MC variance 

!!1 QMC run + 9 scrambled QMC runs for variance 

!!General result:  See speedups of 2X – 50X 

MSFF yield Bandgap yield SRAM Col 90th pctile 
Master-Slave FF +Scan 
45nm, 31 parameters 

64b SRAM Column 
90nm, 403 parameters 

0.6V Bandgap Ref 
90nm, 122 parameters 

10 MC runs 10 MC runs 

10 MC runs Master-Slave FF +Scan 
45nm, 31 parameters 

0.6V Bandgap Ref 
90nm, 122 parameters 

64b SRAM Column 
90nm, 403 parameters 
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!!Lots of ideas to exploit in this space 

  Are We Done Yet?   (Nope…) 

Money… …Risk 
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Another Aside:  About the “F” Word… 

“In fact, most Wall Street 

computer models radically 

underestimated the risk of the 

complex mortgage securities …  

partly because the level of financial 

distress is ‘the equivalent of the 

100-year flood’…” 
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!!SRAM reliability is all about far tails of stats 

!!Why?   High replication (~108 bits) of core circuits  

!!3! doesn’t cut it for 100M cells;  need 6!, 7!, 8!… 

!!Problem:   Intractable Monte Carlo runs 

!!1M Monte Carlo sims predicts (unreliably) to ~4.5! 

!   " 

Distribution of 

SRAM circuit 

performance 

SRAM cell 

Next Problem:  “Rare Event” Statistics 
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What Do We Need To Solve This…? 

!!Ultra fast sampling of rare events 

!!Put Monte Carlo samples out in far tails -- directly 

!!Accurate analytical pdf models of rare tails 

!!Using these samples, model lets us predict farther 

Circuit 

Performance 

Distribution  

“Rare event” 

 tail  
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Efficiently Sampling Just the Tail 

!!Note:  Generating   MC samples is cheap,  

 Simulating    these samples is costly 

!! Idea: 
1.!Generate regular MC samples… 

2.!…but block points that are “very probably” not in tail 

3.!Simulate the rest – i.e., the points we do not block 

SPICE    
Gen MC 

Samples      

Can build this classifier 

filter very efficiently 
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We Call the Idea:   Statistical Blockade 

Simulate starting set 

(few points, fast) 

Sample 

points 

Circuit 

pdf 
Tail 

t (99%) 

Build classifier (fast) 
(uses ideas from data-mining;  

we use a Support Vector Machine) 

Set the 

classification 
threshold with 

some safety 
margin 

tc(97%) 

Generate MC samples (fast) 

Classify sample points (fast) 
Block nontail points (fast) 

Simulate the rest (slow) 

tc t 

[Singhee, Rutenbar  DATE 2007] 
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Modeling Statistics of Rare Events…? 
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EVT:  Modeling the PDF in the Tail 

!!Recall Central Limit Theorem:  "(i.i.d. samples) ! Gaussian 

!!Question:  Is there a similar result for these tails of “extreme” results ...? 

!!Answer:   YES – Extreme Value Theory (EVT) 

On each of N wafers, identify  

cells slower than threshold t. 
What is their distrib? EVT tells us! 

{ X1,  X2,  X3, ... XN } 

!! EVT gives simple analytical form for conditional tail distrib 
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Result:   Complete 64b SRAM Column 

!!90nm 64b SRAM column with write 

driver and column mux 

!!~ 400 devices; model Write-time CDF 

!!Speedup:   ~16X 

Std Monte Carlo: 100,000 sims 

Statistical Blockade: 6,314 sims 

    1000 sims to build classifier 

     100,000 points ! 5314 sims 
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Result:   Validating Model Out to 8%&

Statistical Blockade 

UVa DRV model 

CMU EVT model 

Normal approx 

Our analytical EVT 

model matches DRV 

model to 8! 

[Singhee at al,  

 2008 Conf on VLSI Design] 

!!Recently validated novel analytical DRV model 
!! Model of Data Retention Voltage, [Calhoun et al. UVa, ESSCIRC’07] 

!! Validated to 6!, via billion element Monte Carlo run… 

!! …but only did 41,721 SPICE sims – recursive extension of Blockade 

!! Speedup ~23,000X  
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!!At nanoscale, nothing is deterministic… 

!!Brute-force Monte Carlo hurts (a lot) 

!!We can do much better with smart methods 
!! (Many of which involve $$$ + risk…) 
!! CMU results:  10x – 10,000x speedups 

Summarizing 
Today, Tomorrow Yesterday 
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Thank You! 
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