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Carnegie Mellon!

Speech Recognition Today:  Software 

  Quality = OK    Vocabulary = large 

  Quality = poor    Vocab = small 
  The Toshiba UT103, 4 languages, 

~3000 phrases, 35 hours on 2AA batteries, 
runs on 75MHz Toshiba processor 

  No way… 
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Today’s Best Software Speech Recognizers 

  Best-quality recognition is computationally hard 
  For speaker-independent, large-vocabulary, continuous speech 

  1-10-100-1000 rule 
  For  ~1X     real-time recognition rate 
  For  ~10%  word error rate  (90% accuracy) 
 Need   ~100 MB  memory footprint 
 Need  ~100 W  power 
 Need  ~1000 MHz   CPU 

  But, this is ~1000X away from what we need 
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About This Talk 

  Some philosophy 
  Why silicon?   Why now?   Why us (CMU)? 

  A quick tour:  How speech recognition works 
  What happens in a recognizer 

  A silicon architecture 
  Stripping away all CPU stuff we don’t need, focus on essentials 

  Results  
  Silicon version:    Simulation results 
  FPGA version:   Live, running hardware-based recognizer 
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Compelling Next-Generation Applications… 

  …want to go fast.   Very fast.  Faster than realtime. 

Terminator 2 

Example:  Audio Mining 

Fast forward your DVD 
FIND: “Hasta la vista, baby!” 
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Compelling Next-Generation Applications… 

  …could use speechtext 
@ 100X -1000X realtime 

  (Texttext translation 
also exists—diff problem) 

  Could we triage these 
huge media streams to 
allocate scarce human 
intel assets?  

 3 years after 9/11, FBI  
still had 123,000 hrs of 
untranslated foreign audio 
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Compelling Next-Gen Applications… 

  Want low power 
  Very low 

 Cell phone has 3W 
total power budget 

 You get ~300mW 
for a new feature 

  1st- gen solns 
still software… “frustrating…” 

“flunked even [the] 
easy test…” 
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Doesn’t Moore’s Law Just Save Us (Eventually)? 

  Yes  (sort of…): Transistors keep getting smaller 
  No (uh oh…):   Moore’s Law is running out of gas 

Uniprocessor  
performance 
by year 

[Courtesy Mark Horowitz, Stanford] 

Power! 
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Problems with Moore’s Law Scaling 

  Limits on device size 
  Already at atomistic dimensions 
  Can’t scale forever when devices 

are already  ~100 atoms wide 

  Limits on device speed 
  Small devices leak (switches draw 

a little current when off) 
  Power dissipation α clk frequency 
 Can’t get more performance by 

just upping GHz on next chip 

  Emphasis now on design 
  More parallel architectures… 
  …with clocks running slower 
  …to get performance, but not melt 
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Still:  Lots of Software-Based Next-Gen Work 

  Video indexing   Speech on cellphone 



© Rob A. Rutenbar 2007 Slide 12 

Carnegie Mellon!

The Carnegie Mellon In Silico Vox Project 

  Our thesis:  It’s time to liberate speech recognition 
from the current limitations of software, because 
we can always do it better in custom silicon 

  Our solution:  Speech recognition in silicon 
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Aside:  About the Name  “In Silico Vox” 

  In Vivo 
  Latin:   an experiment done in a living organism 

  In Vitro 
  Latin:  an experiment done in an artificial lab environment 

  In Silico 
  (Not real Latin):  an experiment done via computation only 

  Vox 
  Latin:   voice, or word 
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Why Silicon?   Why Now? 

Why?   Two reasons: 

  History 
 We have some successful historical examples of this migration 

  Performance 
 Compelling apps need 100X – 1000X more performance, now 
 Silicon always better than software on speed/power 
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History:    Graphics Engines 

  Nobody paints pixels in software anymore! 
  Too limiting in max performance.   Too inefficient in power. 

http://www.nvidia.com 

http://www.mtekvision.com 

True on the desktop (& laptop) …and on your cellphone too 
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Silicon Solution:  Speed and Power Wins 

  A famous graph from Prof. Bob Brodersen of Berkeley 
 Study looked at 20 designs published at ISSCC, from 1997-2002 
  In slightly older technologies, relative to today:  180nm – 250nm 
 Dedicated designs up to 10,000X better energy efficiency (MOPS/mW) 
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Silicon Speed/Power Win:   Why? 

  Programmability (flexibility) is not free 
  Lots of extra overhead for hardware you don’t need for every app 
 Baggage to fetch, decode, run instructions, one (or a few) at a time 

  Functional units not well customized to your app 
  If you can use, say, 75 floating point units, or 36 FFT units – too bad 
 You still get 8 arithmetic units… 

  MHz/GHz to deliver speed to all users not optimal 
 Microprocessors run fast clocks so all apps see good performance 
 Your app may be able to run a much slower clock  much less power 
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Recent Example: Parallel Radio Baseband DSP 

  90nm CMOS: adaptive DSP for multipath MIMO channel 
 Power efficiency = 2.1GOPS/mW 
 Area efficiency = 20GOPS/mm2 

(Source:  Prof. Dejan Markovitz, UCLA) 

Data rate up to 250Mbps over 16 sub-carriers 
Measured 34mW @ VDD=385mV 
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Why Us...? 

  1 site (Carnegie Mellon), 3 areas of deep expertise 
  Impossible to do projects like this without cross-area linkages 

Computer Science  
SPHINX Speech recognition group 

Electrical & Computer Engineering 
Silicon system implementation group 

Electrical & Computer Engineering 
Media / DSP group 

Carnegie Mellon Campus 
www.cmu.edu 
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Us:  the CMU In Silico Vox Team 

  From left:  Kai Yu, Rob Rutenbar, Edward Lin,  
  Richard Stern, Tsuhan Chen, Patrick Bourke 
  (not shown: Jeff Johnston) 
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How Speech Recognition Works 
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(1) Acoustic Frontend 
The frontend is all DSP.  A discrete Fourier 
transform (DFT) gives us the spectra. We 
combine and logarithmically transform spectra 
in ways motivated by physiology of human ears. 

time 

Frame 

Combine these with  
estimates of 1st and 2nd 

time derivatives 

Color is “how much energy”.  
in transformed spectra. 
Green = low, red = high. 

This pic is across a  
few sec of speech.  
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(2) The Scoring Stage 

  Problem with using distance 
  Space “occupied” by each atomic 

sound not well modeled as a point 

  We need to model the shape of the 
region that defines each sound 

  Feature vec is a point in  
high-dimensional space 
  Assume each atomic sound we can 

recognize is also characterized as one a 
“perfect” point in high-dim (n=39) space 

  We used to do this using normalized 
distance as the metric for “likelihood” 
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  Each feature still a point in high-dimensional space 
 But each “atomic sound” is a region of this space 
 Score each atomic sound with Probability(sound matches feature) 

  Note: (sounds) X (dimensions) X (Gaussians) = BIG 

(2) Scoring Stage 
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(3) Search: Speech Models are Layered Models 

YES 

NO 

/Y/ /EH/ /S/ 

/N/ /OW/ 

Language   X             Words             X            Acoustic                 Layered Search 

words “acoustic 
  units” 

1 frame of 
sampled sound 

“sub-acoustic 
 units” 

Classical methods 
(HMMs, Viterbi) 

and idiosyncracies 
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Context Matters:    At Bottom -- Triphones 

  English has ~50 atomic sounds (phones) but we 
recognize ~50x50x50 context-dependent triphones 
 Because “I” sound in “five” is different than the “I” in “nine” 

Five              F( -, I )cross-word   I( F, V )word-internal  V( I, - )cross-word  

Nine                   N( -, I )cross-word   I( N, N )word-internal  N( I, - )cross-word 

“I” in “five”  ≠  “I” in  “nine” 
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Also Context at Top:  N-gram Language Model 
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termination

Lets us calculate 
likelihood of  
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 after W2 
   after W1 

Suppose we have vocabulary  
{ W1, W2, W3, W4, …} 

“W1” “W1 W2” 

“W1 W2 W3” 
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  Good Speech Models are BIG 

  This is ~64K word “Broadcast News” task 
  Unfortunately, many idiosyncratic  

details in how layers of model traversed 

for each 10 ms time frame 

5156 
Scores 

111,593 
Triphones 

64,001 
Unigrams 

9,382,014 
Bigrams 

13,459,879  
Trigrams 

. . . 
. . . . . . 

. . . 

. . . 
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  Where Does Software Spend its Time? 
  CPU time for CMU Sphinx 3.0 

 Prior studies targeted less capable 
versions (v1, v2) 

  Tools:  SimpleScalar & Intel Vtune 
  64K-word “Broadcast News” benchmark 

  So: It’s all backend 
~0% of time! 
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Memory Usage?  SPHINX 3.0 vs Spec CPU2000 

  Cache sizes 
  L1: 64 KB, direct mapped 
  DL1: 64 KB, direct mapped 
  UL2: 512 KB, 4-way set assoc 

  So… 
  Terrible locality  (no surprise, 

graph search + huge datasets) 
  Load dominated (no surprise, 

reads a lot, computes a little) 
  Not an insignificant footprint 

SPHINX 
3.0 Gcc Gzip Equake 

Cycles 53 B 55B 15 B 23 B 

IPC 0.69 0.29 1.05 0.7 

Instruction Mixes 
Loads 0.27 0.25 0.2 0.27 

Stores 0.05 0.15 0.09 0.08 

Branch’s 0.14 0.2 0.17 0.12 

Branch Misprediction Rates 

0.025 0.07 0.08 0.02 

Cache Miss Rates 
DL1 0.04  0.02 0.02 0.03 

L2 0.48 0.06 0.03 0.30 

Memory Footprint 

64 MB 24 MB 186 MB 42 MB 
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This Talk:   How to Get to Fast… 

Audio-mining 
  Very fast recognizers – 

much faster than realtime 
  App:  search large media 

streams (DVD) quickly 

Hands-free appliances 
  Very portable recognizers – 

high quality result on << 1 watt 
  App:  interfaces to small 

devices, cellphone dictation 

Terminator 2 

FIND: “Hasta la vista, baby!” 

“send email  
to arnold –  
let’s do lunch…” 
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Speech:  Complex Task to do in Silicon 
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A Silicon Architecture:   Breakdowns 

Acoustic 
Frontend 

Gaussian 
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Backend 
Search 

KB KB 
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(constants) 

SRAM 
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10-100MB  
DRAM 
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DRAM 

(models & 
active recog) 

Computations (Ops) Low High Medium 
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DRAM (size) -- Medium/Large Large 
DRAM (bandwidth) -- High High    
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Essential Implementation Ideas 

  Custom precision, everywhere 
 Every bit counts, no extras, no floating point – all fixed point 

  (Almost) no caching 
  Like graphics chips:  fetch from SDRAM, do careful data placement 
  (Little bit of caching for bandwidth filtering on big language models) 

  Aggressive pipelining 
  If we can possibly overlap computations – we try to do so 

  Algorithm transformation 
 Some software computations are just bad news for hardware 
 Substitute some “deep computation” with hardware-friendly versions 
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Example:   Aggressive Pipelining 
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Example:  Algorithmic Changes 
  Acoustic-level pruning threshold 

 Software:  Use best score of current frame (after Viterbi on Active HMMs)  
 Silicon:  Use best score of previous frame (nixes big temporal bottleneck)  

  Tradeoffs 
  Less memory bandwidth,  can pipeline, little pessimistic on scores 

Sphinx 3.0 Software Silicon 
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Design Flow:  C++ Cycle Simulator  Verilog 
  Our benchmark:  5K-word “Wall Street Journal” task 
  Cycle sim results:    

 No accuracy loss;   not quite 2X @ 125MHz ASIC clock 
 Backend search needs:  ~1.5MB SRAM, ~30MB DRAM 

Recognizer Engine  Word Error 
Rate (%) 

Clock 
(GHz) 

Speedup Over 
Real Time 

(bigger is better) 

Software: Sphinx 3.3 (fast decoder) 7.32% 1 GHz 0.74X 

Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X 

Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X 

Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X 

Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X 
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Aside:   Bit-Level Verification Hurts  (A Lot) 

  Common source of designer headache for silicon 
designs that handle large media streams 
 Generating these sort of tradeoff curves:  CPU days  weeks 

Speedup vs Software (over 330 WSJ utterances) 

Time (10ms frames) 

All SRAM 

1.5MB SRAM + 30MB DRAM 

SPHINX 3.0 software 

ALL DRAM 
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Aside:  Pieces of Design = Great Class Projects 
  CMU student team:  Patrick Chiu, David Fu, Mark McCartney, 

Ajay Panagariya, Chris Thomas 

Floorplan Final Layout 

Final Stats 
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A Complete Live Recognizer:  FPGA Demo 

  In any “system design” research,  
you reach a point where you just  
want to see it work – for real 

  Goal: Full recognizer 1 FPGA + 1 DRAM 

  A benchmark that fits on chip 
  1000-word “Resource Mgt” task  
  Slightly simplified:  no tri-grams 
  Slower:  not real time, ~2.3X slower 
  Resource limited:  slices, mem bandwidth 

Xilinx XC2VP30 FPGA  
[13969 slices / 2448 Kb] 

Utiliz:  99% of slices  
45% of Block RAM 
~3MB DDR DRAM 

50MHz clk;  ~200Mb/s IO 
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System Block Diagram 
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FPGA Experimental Results 
  Aside:   as far as we know, this is the most complex recognizer 

architecture ever fully mapped into a running hardware-only form  
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Performance 

  Benchmark:  1K-word “Resource Management” task 
  Results:    

  No accuracy loss 
   ~ 2x slower than real-time, but ~30X slower clock frequency 
  Limited by DRAM access time and available FPGA resources. 

Recognizer 
Engine  

Word Error 
Rate (%) 

Clock 
(GHz) 

Speedup Over 
Real Time 

(bigger is better) 

Efficiency 
(Speedup/GHz) 

Software:  
CMU Sphinx 3.0 

(single CPU) 
10.88% 2.8 GHz 3.7X 1.32 

Hardware:  
Our FPGA 
Recognizer 

10.9% 0.05 GHz 0.5X 10 
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Aside:  How To Tell You’re Doing Something Cool… 
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Summary 
 Software is too constraining for speech recognition 

 Evolution of graphics chips suggests alternative:   Do it in silicon 
 Compelling performance and power reasons for silicon speech recog 

 Several “in silico vox” architectures in design 
 Custom silicon and FPGA versions 
 ~10X realtime and low-power mobile architectures in progress at CMU 

 Reflections 
 Some of the most interesting experiences happen when you get people 

from very different backgrounds – silicon + speech – on same team 
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