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Speech Recognition Today:  Software 

  Quality = OK    Vocabulary = large 

  Quality = poor    Vocab = small 
  The Toshiba UT103, 4 languages, 

~3000 phrases, 35 hours on 2AA batteries, 
runs on 75MHz Toshiba processor 

  No way… 
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Today’s Best Software Speech Recognizers 

  Best-quality recognition is computationally hard 
  For speaker-independent, large-vocabulary, continuous speech 

  1-10-100-1000 rule 
  For  ~1X     real-time recognition rate 
  For  ~10%  word error rate  (90% accuracy) 
 Need   ~100 MB  memory footprint 
 Need  ~100 W  power 
 Need  ~1000 MHz   CPU 

  But, this is ~1000X away from what we need 
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About This Talk 

  Some philosophy 
  Why silicon?   Why now?   Why us (CMU)? 

  A quick tour:  How speech recognition works 
  What happens in a recognizer 

  A silicon architecture 
  Stripping away all CPU stuff we don’t need, focus on essentials 

  Results  
  Silicon version:    Simulation results 
  FPGA version:   Live, running hardware-based recognizer 
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Compelling Next-Generation Applications… 

  …want to go fast.   Very fast.  Faster than realtime. 

Terminator 2 

Example:  Audio Mining 

Fast forward your DVD 
FIND: “Hasta la vista, baby!” 
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Compelling Next-Generation Applications… 

  …could use speechtext 
@ 100X -1000X realtime 

  (Texttext translation 
also exists—diff problem) 

  Could we triage these 
huge media streams to 
allocate scarce human 
intel assets?  

 3 years after 9/11, FBI  
still had 123,000 hrs of 
untranslated foreign audio 
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Compelling Next-Gen Applications… 

  Want low power 
  Very low 

 Cell phone has 3W 
total power budget 

 You get ~300mW 
for a new feature 

  1st- gen solns 
still software… “frustrating…” 

“flunked even [the] 
easy test…” 
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Doesn’t Moore’s Law Just Save Us (Eventually)? 

  Yes  (sort of…): Transistors keep getting smaller 
  No (uh oh…):   Moore’s Law is running out of gas 

Uniprocessor  
performance 
by year 

[Courtesy Mark Horowitz, Stanford] 

Power! 
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Problems with Moore’s Law Scaling 

  Limits on device size 
  Already at atomistic dimensions 
  Can’t scale forever when devices 

are already  ~100 atoms wide 

  Limits on device speed 
  Small devices leak (switches draw 

a little current when off) 
  Power dissipation α clk frequency 
 Can’t get more performance by 

just upping GHz on next chip 

  Emphasis now on design 
  More parallel architectures… 
  …with clocks running slower 
  …to get performance, but not melt 
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Still:  Lots of Software-Based Next-Gen Work 

  Video indexing   Speech on cellphone 
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The Carnegie Mellon In Silico Vox Project 

  Our thesis:  It’s time to liberate speech recognition 
from the current limitations of software, because 
we can always do it better in custom silicon 

  Our solution:  Speech recognition in silicon 
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Aside:  About the Name  “In Silico Vox” 

  In Vivo 
  Latin:   an experiment done in a living organism 

  In Vitro 
  Latin:  an experiment done in an artificial lab environment 

  In Silico 
  (Not real Latin):  an experiment done via computation only 

  Vox 
  Latin:   voice, or word 
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Why Silicon?   Why Now? 

Why?   Two reasons: 

  History 
 We have some successful historical examples of this migration 

  Performance 
 Compelling apps need 100X – 1000X more performance, now 
 Silicon always better than software on speed/power 
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History:    Graphics Engines 

  Nobody paints pixels in software anymore! 
  Too limiting in max performance.   Too inefficient in power. 

http://www.nvidia.com 

http://www.mtekvision.com 

True on the desktop (& laptop) …and on your cellphone too 
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Silicon Solution:  Speed and Power Wins 

  A famous graph from Prof. Bob Brodersen of Berkeley 
 Study looked at 20 designs published at ISSCC, from 1997-2002 
  In slightly older technologies, relative to today:  180nm – 250nm 
 Dedicated designs up to 10,000X better energy efficiency (MOPS/mW) 
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Silicon Speed/Power Win:   Why? 

  Programmability (flexibility) is not free 
  Lots of extra overhead for hardware you don’t need for every app 
 Baggage to fetch, decode, run instructions, one (or a few) at a time 

  Functional units not well customized to your app 
  If you can use, say, 75 floating point units, or 36 FFT units – too bad 
 You still get 8 arithmetic units… 

  MHz/GHz to deliver speed to all users not optimal 
 Microprocessors run fast clocks so all apps see good performance 
 Your app may be able to run a much slower clock  much less power 
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Recent Example: Parallel Radio Baseband DSP 

  90nm CMOS: adaptive DSP for multipath MIMO channel 
 Power efficiency = 2.1GOPS/mW 
 Area efficiency = 20GOPS/mm2 

(Source:  Prof. Dejan Markovitz, UCLA) 

Data rate up to 250Mbps over 16 sub-carriers 
Measured 34mW @ VDD=385mV 
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Why Us...? 

  1 site (Carnegie Mellon), 3 areas of deep expertise 
  Impossible to do projects like this without cross-area linkages 

Computer Science  
SPHINX Speech recognition group 

Electrical & Computer Engineering 
Silicon system implementation group 

Electrical & Computer Engineering 
Media / DSP group 

Carnegie Mellon Campus 
www.cmu.edu 
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Us:  the CMU In Silico Vox Team 

  From left:  Kai Yu, Rob Rutenbar, Edward Lin,  
  Richard Stern, Tsuhan Chen, Patrick Bourke 
  (not shown: Jeff Johnston) 
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How Speech Recognition Works 
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(1) Acoustic Frontend 
The frontend is all DSP.  A discrete Fourier 
transform (DFT) gives us the spectra. We 
combine and logarithmically transform spectra 
in ways motivated by physiology of human ears. 

time 

Frame 

Combine these with  
estimates of 1st and 2nd 

time derivatives 

Color is “how much energy”.  
in transformed spectra. 
Green = low, red = high. 

This pic is across a  
few sec of speech.  
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(2) The Scoring Stage 

  Problem with using distance 
  Space “occupied” by each atomic 

sound not well modeled as a point 

  We need to model the shape of the 
region that defines each sound 

  Feature vec is a point in  
high-dimensional space 
  Assume each atomic sound we can 

recognize is also characterized as one a 
“perfect” point in high-dim (n=39) space 

  We used to do this using normalized 
distance as the metric for “likelihood” 
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  Each feature still a point in high-dimensional space 
 But each “atomic sound” is a region of this space 
 Score each atomic sound with Probability(sound matches feature) 

  Note: (sounds) X (dimensions) X (Gaussians) = BIG 

(2) Scoring Stage 
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(3) Search: Speech Models are Layered Models 

YES 

NO 

/Y/ /EH/ /S/ 

/N/ /OW/ 

Language   X             Words             X            Acoustic                 Layered Search 

words “acoustic 
  units” 

1 frame of 
sampled sound 

“sub-acoustic 
 units” 

Classical methods 
(HMMs, Viterbi) 

and idiosyncracies 
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Context Matters:    At Bottom -- Triphones 

  English has ~50 atomic sounds (phones) but we 
recognize ~50x50x50 context-dependent triphones 
 Because “I” sound in “five” is different than the “I” in “nine” 

Five              F( -, I )cross-word   I( F, V )word-internal  V( I, - )cross-word  

Nine                   N( -, I )cross-word   I( N, N )word-internal  N( I, - )cross-word 

“I” in “five”  ≠  “I” in  “nine” 
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Also Context at Top:  N-gram Language Model 

Unigram  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termination


Lets us calculate 
likelihood of  
word W3  
 after W2 
   after W1 

Suppose we have vocabulary  
{ W1, W2, W3, W4, …} 

“W1” “W1 W2” 

“W1 W2 W3” 
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  Good Speech Models are BIG 

  This is ~64K word “Broadcast News” task 
  Unfortunately, many idiosyncratic  

details in how layers of model traversed 

for each 10 ms time frame 

5156 
Scores 

111,593 
Triphones 

64,001 
Unigrams 

9,382,014 
Bigrams 

13,459,879  
Trigrams 

. . . 
. . . . . . 

. . . 

. . . 
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  Where Does Software Spend its Time? 
  CPU time for CMU Sphinx 3.0 

 Prior studies targeted less capable 
versions (v1, v2) 

  Tools:  SimpleScalar & Intel Vtune 
  64K-word “Broadcast News” benchmark 

  So: It’s all backend 
~0% of time! 
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Memory Usage?  SPHINX 3.0 vs Spec CPU2000 

  Cache sizes 
  L1: 64 KB, direct mapped 
  DL1: 64 KB, direct mapped 
  UL2: 512 KB, 4-way set assoc 

  So… 
  Terrible locality  (no surprise, 

graph search + huge datasets) 
  Load dominated (no surprise, 

reads a lot, computes a little) 
  Not an insignificant footprint 

SPHINX 
3.0 Gcc Gzip Equake 

Cycles 53 B 55B 15 B 23 B 

IPC 0.69 0.29 1.05 0.7 

Instruction Mixes 
Loads 0.27 0.25 0.2 0.27 

Stores 0.05 0.15 0.09 0.08 

Branch’s 0.14 0.2 0.17 0.12 

Branch Misprediction Rates 

0.025 0.07 0.08 0.02 

Cache Miss Rates 
DL1 0.04  0.02 0.02 0.03 

L2 0.48 0.06 0.03 0.30 

Memory Footprint 

64 MB 24 MB 186 MB 42 MB 
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This Talk:   How to Get to Fast… 

Audio-mining 
  Very fast recognizers – 

much faster than realtime 
  App:  search large media 

streams (DVD) quickly 

Hands-free appliances 
  Very portable recognizers – 

high quality result on << 1 watt 
  App:  interfaces to small 

devices, cellphone dictation 

Terminator 2 

FIND: “Hasta la vista, baby!” 

“send email  
to arnold –  
let’s do lunch…” 
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Speech:  Complex Task to do in Silicon 
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A Silicon Architecture:   Breakdowns 

Acoustic 
Frontend 

Gaussian 
Scoring 

Backend 
Search 

KB KB 
MBs SRAM 

(active recog) SRAM 
(constants) 

SRAM 
(communic) 

10-100MB  
DRAM 

(constants) 

10-100MB  
DRAM 

(models & 
active recog) 

Computations (Ops) Low High Medium 
SRAM (size) Small Small Large 
DRAM (size) -- Medium/Large Large 
DRAM (bandwidth) -- High High    
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Essential Implementation Ideas 

  Custom precision, everywhere 
 Every bit counts, no extras, no floating point – all fixed point 

  (Almost) no caching 
  Like graphics chips:  fetch from SDRAM, do careful data placement 
  (Little bit of caching for bandwidth filtering on big language models) 

  Aggressive pipelining 
  If we can possibly overlap computations – we try to do so 

  Algorithm transformation 
 Some software computations are just bad news for hardware 
 Substitute some “deep computation” with hardware-friendly versions 
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Example:   Aggressive Pipelining 

time Fetch HMM/ 
Viterbi 

Transition/ 
Prune/Writeback Fetch Word 

Fetch HMM/ 
Viterbi 

Transition/ 
Prune/Writeback Language Model 

Fetch HMM/ 
Viterbi 
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Language Model 

Fetch Word Language Model 
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Transition/ 
Prune/Writeback Fetch Word 

Fetch HMM/ 
Viterbi 

Transition/ 
Prune/Writeback Fetch Word 

Fetch HMM/ 
Viterbi 

Transition/ 
Prune/Writeback 

  Pipelined Get-HMM/Viterbi and Transition stages 

  Pipelined Get-Word and Get-HMM stages 

  Pipelined non-LanguageModel and LanguageModel stages 

Word #1 
Word #2 
HMM #1 
HMM #2 

HMM #3 
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Example:  Algorithmic Changes 
  Acoustic-level pruning threshold 

 Software:  Use best score of current frame (after Viterbi on Active HMMs)  
 Silicon:  Use best score of previous frame (nixes big temporal bottleneck)  

  Tradeoffs 
  Less memory bandwidth,  can pipeline, little pessimistic on scores 

Sphinx 3.0 Software Silicon 
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Design Flow:  C++ Cycle Simulator  Verilog 
  Our benchmark:  5K-word “Wall Street Journal” task 
  Cycle sim results:    

 No accuracy loss;   not quite 2X @ 125MHz ASIC clock 
 Backend search needs:  ~1.5MB SRAM, ~30MB DRAM 

Recognizer Engine  Word Error 
Rate (%) 

Clock 
(GHz) 

Speedup Over 
Real Time 

(bigger is better) 

Software: Sphinx 3.3 (fast decoder) 7.32% 1 GHz 0.74X 

Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X 

Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X 

Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X 

Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X 
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Aside:   Bit-Level Verification Hurts  (A Lot) 

  Common source of designer headache for silicon 
designs that handle large media streams 
 Generating these sort of tradeoff curves:  CPU days  weeks 

Speedup vs Software (over 330 WSJ utterances) 

Time (10ms frames) 

All SRAM 

1.5MB SRAM + 30MB DRAM 

SPHINX 3.0 software 

ALL DRAM 
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Aside:  Pieces of Design = Great Class Projects 
  CMU student team:  Patrick Chiu, David Fu, Mark McCartney, 

Ajay Panagariya, Chris Thomas 

Floorplan Final Layout 

Final Stats 
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A Complete Live Recognizer:  FPGA Demo 

  In any “system design” research,  
you reach a point where you just  
want to see it work – for real 

  Goal: Full recognizer 1 FPGA + 1 DRAM 

  A benchmark that fits on chip 
  1000-word “Resource Mgt” task  
  Slightly simplified:  no tri-grams 
  Slower:  not real time, ~2.3X slower 
  Resource limited:  slices, mem bandwidth 

Xilinx XC2VP30 FPGA  
[13969 slices / 2448 Kb] 

Utiliz:  99% of slices  
45% of Block RAM 
~3MB DDR DRAM 

50MHz clk;  ~200Mb/s IO 
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System Block Diagram 
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FPGA Experimental Results 
  Aside:   as far as we know, this is the most complex recognizer 

architecture ever fully mapped into a running hardware-only form  
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Performance 

  Benchmark:  1K-word “Resource Management” task 
  Results:    

  No accuracy loss 
   ~ 2x slower than real-time, but ~30X slower clock frequency 
  Limited by DRAM access time and available FPGA resources. 

Recognizer 
Engine  

Word Error 
Rate (%) 

Clock 
(GHz) 

Speedup Over 
Real Time 

(bigger is better) 

Efficiency 
(Speedup/GHz) 

Software:  
CMU Sphinx 3.0 

(single CPU) 
10.88% 2.8 GHz 3.7X 1.32 

Hardware:  
Our FPGA 
Recognizer 

10.9% 0.05 GHz 0.5X 10 
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Aside:  How To Tell You’re Doing Something Cool… 
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Summary 
 Software is too constraining for speech recognition 

 Evolution of graphics chips suggests alternative:   Do it in silicon 
 Compelling performance and power reasons for silicon speech recog 

 Several “in silico vox” architectures in design 
 Custom silicon and FPGA versions 
 ~10X realtime and low-power mobile architectures in progress at CMU 

 Reflections 
 Some of the most interesting experiences happen when you get people 

from very different backgrounds – silicon + speech – on same team 
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