
© R.A. Rutenbar 2007

Wayne State University
Dept of Electrical & Computer Engineering
Brammer Lecture Series, 3 Oct. 2007

Towards Speech Recognition in Silicon:
 The Carnegie Mellon In Silico Vox Project

Rob A. Rutenbar
Professor, Electrical & Computer Engineering
rutenbar@ece.cmu.edu

© Rob A. Rutenbar 2007 Slide 2

Carnegie Mellon!

Speech Recognition Today: Software

  Quality = OK Vocabulary = large

  Quality = poor Vocab = small
  The Toshiba UT103, 4 languages,

~3000 phrases, 35 hours on 2AA batteries,
runs on 75MHz Toshiba processor

  No way…

© Rob A. Rutenbar 2007 Slide 3

Carnegie Mellon!

Today’s Best Software Speech Recognizers

  Best-quality recognition is computationally hard
  For speaker-independent, large-vocabulary, continuous speech

  1-10-100-1000 rule
  For ~1X real-time recognition rate
  For ~10% word error rate (90% accuracy)
 Need ~100 MB memory footprint
 Need ~100 W power
 Need ~1000 MHz CPU

  But, this is ~1000X away from what we need

© Rob A. Rutenbar 2007 Slide 4

Carnegie Mellon!

About This Talk

  Some philosophy
  Why silicon? Why now? Why us (CMU)?

  A quick tour: How speech recognition works
  What happens in a recognizer

  A silicon architecture
  Stripping away all CPU stuff we don’t need, focus on essentials

  Results
  Silicon version: Simulation results
  FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007 Slide 5

Carnegie Mellon!

About This Talk

  Some philosophy
  Why silicon? Why now? Why us (CMU)?

  A quick tour: How speech recognition works
  What happens in a recognizer

  A silicon architecture
  Stripping away all CPU stuff we don’t need, focus on essentials

  Results
  Silicon version: Simulation results
  FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007 Slide 6

Carnegie Mellon!

Compelling Next-Generation Applications…

  …want to go fast. Very fast. Faster than realtime.

Terminator 2

Example: Audio Mining

Fast forward your DVD
FIND: “Hasta la vista, baby!”

© Rob A. Rutenbar 2007 Slide 7

Carnegie Mellon!

Compelling Next-Generation Applications…

  …could use speechtext
@ 100X -1000X realtime

  (Texttext translation
also exists—diff problem)

  Could we triage these
huge media streams to
allocate scarce human
intel assets?

 3 years after 9/11, FBI
still had 123,000 hrs of
untranslated foreign audio

© Rob A. Rutenbar 2007 Slide 8

Carnegie Mellon!

Compelling Next-Gen Applications…

  Want low power
  Very low

 Cell phone has 3W
total power budget

 You get ~300mW
for a new feature

  1st- gen solns
still software… “frustrating…”

“flunked even [the]
easy test…”

© Rob A. Rutenbar 2007 Slide 9

Carnegie Mellon!

Doesn’t Moore’s Law Just Save Us (Eventually)?

  Yes (sort of…): Transistors keep getting smaller
  No (uh oh…): Moore’s Law is running out of gas

Uniprocessor
performance
by year

[Courtesy Mark Horowitz, Stanford]

Power!

© Rob A. Rutenbar 2007 Slide 10

Carnegie Mellon!

Problems with Moore’s Law Scaling

  Limits on device size
  Already at atomistic dimensions
  Can’t scale forever when devices

are already ~100 atoms wide

  Limits on device speed
  Small devices leak (switches draw

a little current when off)
  Power dissipation α clk frequency
 Can’t get more performance by

just upping GHz on next chip

  Emphasis now on design
  More parallel architectures…
  …with clocks running slower
  …to get performance, but not melt

© Rob A. Rutenbar 2007 Slide 11

Carnegie Mellon!

Still: Lots of Software-Based Next-Gen Work

  Video indexing   Speech on cellphone

© Rob A. Rutenbar 2007 Slide 12

Carnegie Mellon!

The Carnegie Mellon In Silico Vox Project

  Our thesis: It’s time to liberate speech recognition
from the current limitations of software, because
we can always do it better in custom silicon

  Our solution: Speech recognition in silicon

© Rob A. Rutenbar 2007 Slide 13

Carnegie Mellon!

Aside: About the Name “In Silico Vox”

  In Vivo
  Latin: an experiment done in a living organism

  In Vitro
  Latin: an experiment done in an artificial lab environment

  In Silico
  (Not real Latin): an experiment done via computation only

  Vox
  Latin: voice, or word

© Rob A. Rutenbar 2007 Slide 14

Carnegie Mellon!

Why Silicon? Why Now?

Why? Two reasons:

  History
 We have some successful historical examples of this migration

  Performance
 Compelling apps need 100X – 1000X more performance, now
 Silicon always better than software on speed/power

© Rob A. Rutenbar 2007 Slide 15

Carnegie Mellon!

History: Graphics Engines

  Nobody paints pixels in software anymore!
  Too limiting in max performance. Too inefficient in power.

http://www.nvidia.com

http://www.mtekvision.com

True on the desktop (& laptop) …and on your cellphone too

© Rob A. Rutenbar 2007 Slide 16

Carnegie Mellon!

Silicon Solution: Speed and Power Wins

  A famous graph from Prof. Bob Brodersen of Berkeley
 Study looked at 20 designs published at ISSCC, from 1997-2002
  In slightly older technologies, relative to today: 180nm – 250nm
 Dedicated designs up to 10,000X better energy efficiency (MOPS/mW)

© Rob A. Rutenbar 2007 Slide 17

Carnegie Mellon!

Silicon Speed/Power Win: Why?

  Programmability (flexibility) is not free
  Lots of extra overhead for hardware you don’t need for every app
 Baggage to fetch, decode, run instructions, one (or a few) at a time

  Functional units not well customized to your app
  If you can use, say, 75 floating point units, or 36 FFT units – too bad
 You still get 8 arithmetic units…

  MHz/GHz to deliver speed to all users not optimal
 Microprocessors run fast clocks so all apps see good performance
 Your app may be able to run a much slower clock  much less power

© Rob A. Rutenbar 2007 Slide 18

Carnegie Mellon!

Recent Example: Parallel Radio Baseband DSP

  90nm CMOS: adaptive DSP for multipath MIMO channel
 Power efficiency = 2.1GOPS/mW
 Area efficiency = 20GOPS/mm2

(Source: Prof. Dejan Markovitz, UCLA)

Data rate up to 250Mbps over 16 sub-carriers
Measured 34mW @ VDD=385mV

© Rob A. Rutenbar 2007 Slide 19

Carnegie Mellon!

Why Us...?

  1 site (Carnegie Mellon), 3 areas of deep expertise
  Impossible to do projects like this without cross-area linkages

Computer Science
SPHINX Speech recognition group

Electrical & Computer Engineering
Silicon system implementation group

Electrical & Computer Engineering
Media / DSP group

Carnegie Mellon Campus
www.cmu.edu

© Rob A. Rutenbar 2007 Slide 20

Carnegie Mellon!

Us: the CMU In Silico Vox Team

 From left: Kai Yu, Rob Rutenbar, Edward Lin,
 Richard Stern, Tsuhan Chen, Patrick Bourke
 (not shown: Jeff Johnston)

© Rob A. Rutenbar 2007 Slide 21

Carnegie Mellon!

About This Talk

  Some philosophy
  Why silicon? Why now? Why us (CMU)?

  A quick tour: How speech recognition works
  What happens in a recognizer

  A silicon architecture
  Stripping away all CPU stuff we don’t need, focus on essentials

  Results
  Silicon version: Simulation results
  FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007 Slide 22

Carnegie Mellon!

How Speech Recognition Works

ADC ADC
Filter1
Filter2
Filter3
FilterN

.

.

.

Filter1
Filter2
Filter3
FilterN

.

.

.

x 1
x 2
x 3
.
.
.
x n

x 1
x 2
x 3
.
.
.
x n Sampling

Feature
extraction

Feature
vector

DSP
ω ω

1 a 11
a 12

b 1 (.)
2 a 22

a 23
b 2 (.)

3 a 33
a 34

b 3 (.)
1 a 11

a 12
b 1 (.)

1 a 11
a 12

b 1 (.)
2 a 22

a 23
b 2 (.)

2 a 22
a 23

b 2 (.)
3 a 33

a 34
b 3 (.)

3 a 33
a 34

b 3 (.)

Acoustic

“Rob”

Adaptation

HMM
Search

Word
...
Rob R AO B
Bob B AO B
...

Language
Rob  says

Adaptation

Acoustic units  Words  Language

Adaptation to
environment/speaker

“ao”

Feature
Scoring

Acoustic
Frontend

Scoring Backend
Search

HMM / Viterbi Search
Language Model Search

© Rob A. Rutenbar 2007 Slide 23

Carnegie Mellon!

(1) Acoustic Frontend
The frontend is all DSP. A discrete Fourier
transform (DFT) gives us the spectra. We
combine and logarithmically transform spectra
in ways motivated by physiology of human ears.

time

Frame

Combine these with
estimates of 1st and 2nd

time derivatives

Color is “how much energy”.
in transformed spectra.
Green = low, red = high.

This pic is across a
few sec of speech.

ADC ADC
Filter1
Filter2
Filter3
FilterN

.

.

.

Filter1
Filter2
Filter3
FilterN

.

.

.

x 1
x 2
x 3
.
.
.
x n

x 1
x 2
x 3
.
.
.
x n Sampling

Extraction Feature
vector

DSP
ω ω

Adaptation Adaptation

Feature

© Rob A. Rutenbar 2007 Slide 24

Carnegie Mellon!

(2) The Scoring Stage

  Problem with using distance
  Space “occupied” by each atomic

sound not well modeled as a point

  We need to model the shape of the
region that defines each sound

  Feature vec is a point in
high-dimensional space
  Assume each atomic sound we can

recognize is also characterized as one a
“perfect” point in high-dim (n=39) space

  We used to do this using normalized
distance as the metric for “likelihood”

© Rob A. Rutenbar 2007 Slide 25

Carnegie Mellon!

  Each feature still a point in high-dimensional space
 But each “atomic sound” is a region of this space
 Score each atomic sound with Probability(sound matches feature)

  Note: (sounds) X (dimensions) X (Gaussians) = BIG

(2) Scoring Stage

Feature

Each sound is a
Gaussian Mixture

Feature Vector
X=(x1, x2, …, xn)

2
1) (7

0
2) (

2 ,
2

,
2

,
i

x

i i s s e w x SCORE i s i s
=

- -
= ∑

πΛ
σ µ 39

1 j = ∑ j
1) (7

0
2) (

2 ,
2

,
2

,
i

x

i i s s e w x SCORE i s i s
=

- -
= ∑

πΛ
σ µ 39

1 j = ∑ j

Each sound approximated as a set
of high-dim Gaussian densities

© Rob A. Rutenbar 2007 Slide 26

Carnegie Mellon!

(3) Search: Speech Models are Layered Models

YES

NO

/Y/ /EH/ /S/

/N/ /OW/

Language X Words X Acoustic  Layered Search

words “acoustic
 units”

1 frame of
sampled sound

“sub-acoustic
 units”

Classical methods
(HMMs, Viterbi)

and idiosyncracies

© Rob A. Rutenbar 2007 Slide 27

Carnegie Mellon!

Context Matters: At Bottom -- Triphones

  English has ~50 atomic sounds (phones) but we
recognize ~50x50x50 context-dependent triphones
 Because “I” sound in “five” is different than the “I” in “nine”

Five F(-, I)cross-word I(F, V)word-internal V(I, -)cross-word

Nine N(-, I)cross-word I(N, N)word-internal N(I, -)cross-word

“I” in “five” ≠ “I” in “nine”

© Rob A. Rutenbar 2007 Slide 28

Carnegie Mellon!

Also Context at Top: N-gram Language Model

Unigram  

Trigram 

Bigram  

W13
W123
…

W122

W111

W112

W113

W114

W121

…

W11

W12

W13

W14

W1

W2

W3

W4

termination

Lets us calculate
likelihood of
word W3
 after W2
 after W1

Suppose we have vocabulary
{ W1, W2, W3, W4, …}

“W1” “W1 W2”

“W1 W2 W3”

© Rob A. Rutenbar 2007 Slide 29

Carnegie Mellon!

 Good Speech Models are BIG

  This is ~64K word “Broadcast News” task
  Unfortunately, many idiosyncratic

details in how layers of model traversed

for each 10 ms time frame

5156
Scores

111,593
Triphones

64,001
Unigrams

9,382,014
Bigrams

13,459,879
Trigrams

. . .
.

. . .

. . .

© Rob A. Rutenbar 2007 Slide 30

Carnegie Mellon!

 Where Does Software Spend its Time?
  CPU time for CMU Sphinx 3.0

 Prior studies targeted less capable
versions (v1, v2)

  Tools: SimpleScalar & Intel Vtune
  64K-word “Broadcast News” benchmark

  So: It’s all backend
~0% of time!

© Rob A. Rutenbar 2007 Slide 31

Carnegie Mellon!

Memory Usage? SPHINX 3.0 vs Spec CPU2000

  Cache sizes
  L1: 64 KB, direct mapped
  DL1: 64 KB, direct mapped
  UL2: 512 KB, 4-way set assoc

  So…
  Terrible locality (no surprise,

graph search + huge datasets)
  Load dominated (no surprise,

reads a lot, computes a little)
  Not an insignificant footprint

SPHINX
3.0 Gcc Gzip Equake

Cycles 53 B 55B 15 B 23 B

IPC 0.69 0.29 1.05 0.7

Instruction Mixes
Loads 0.27 0.25 0.2 0.27

Stores 0.05 0.15 0.09 0.08

Branch’s 0.14 0.2 0.17 0.12

Branch Misprediction Rates

0.025 0.07 0.08 0.02

Cache Miss Rates
DL1 0.04 0.02 0.02 0.03

L2 0.48 0.06 0.03 0.30

Memory Footprint

64 MB 24 MB 186 MB 42 MB

© Rob A. Rutenbar 2007 Slide 32

Carnegie Mellon!

About This Talk

  Some philosophy
  Why silicon? Why now? Why us (CMU)?

  A quick tour: How speech recognition works
  What happens in a recognizer

  A silicon architecture
  Stripping away all CPU stuff we don’t need, focus on essentials

  Results
  Silicon version: Simulation results
  FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007 Slide 33

Carnegie Mellon!

This Talk: How to Get to Fast…

Audio-mining
  Very fast recognizers –

much faster than realtime
  App: search large media

streams (DVD) quickly

Hands-free appliances
  Very portable recognizers –

high quality result on << 1 watt
  App: interfaces to small

devices, cellphone dictation

Terminator 2

FIND: “Hasta la vista, baby!”

“send email
to arnold –
let’s do lunch…”

© Rob A. Rutenbar 2007 Slide 34

Carnegie Mellon!

Speech: Complex Task to do in Silicon

© Rob A. Rutenbar 2007 Slide 35

Carnegie Mellon!

A Silicon Architecture: Breakdowns

Acoustic
Frontend

Gaussian
Scoring

Backend
Search

KB KB
MBs SRAM

(active recog) SRAM
(constants)

SRAM
(communic)

10-100MB
DRAM

(constants)

10-100MB
DRAM

(models &
active recog)

Computations (Ops) Low High Medium
SRAM (size) Small Small Large
DRAM (size) -- Medium/Large Large
DRAM (bandwidth) -- High High

© Rob A. Rutenbar 2007 Slide 36

Carnegie Mellon!

Essential Implementation Ideas

  Custom precision, everywhere
 Every bit counts, no extras, no floating point – all fixed point

  (Almost) no caching
  Like graphics chips: fetch from SDRAM, do careful data placement
  (Little bit of caching for bandwidth filtering on big language models)

  Aggressive pipelining
  If we can possibly overlap computations – we try to do so

  Algorithm transformation
 Some software computations are just bad news for hardware
 Substitute some “deep computation” with hardware-friendly versions

© Rob A. Rutenbar 2007 Slide 37

Carnegie Mellon!

Example: Aggressive Pipelining

time Fetch HMM/
Viterbi

Transition/
Prune/Writeback Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback Language Model

Fetch HMM/
Viterbi

Transition/
Prune/Writeback Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

Language Model

Fetch Word Language Model

Fetch HMM/
Viterbi

Transition/
Prune/Writeback Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback Fetch Word

Fetch HMM/
Viterbi

Transition/
Prune/Writeback

 Pipelined Get-HMM/Viterbi and Transition stages

 Pipelined Get-Word and Get-HMM stages

 Pipelined non-LanguageModel and LanguageModel stages

Word #1
Word #2
HMM #1
HMM #2

HMM #3

© Rob A. Rutenbar 2007 Slide 38

Carnegie Mellon!

Example: Algorithmic Changes
  Acoustic-level pruning threshold

 Software: Use best score of current frame (after Viterbi on Active HMMs)
 Silicon: Use best score of previous frame (nixes big temporal bottleneck)

  Tradeoffs
  Less memory bandwidth, can pipeline, little pessimistic on scores

Sphinx 3.0 Software Silicon

© Rob A. Rutenbar 2007 Slide 39

Carnegie Mellon!

About This Talk

  Some philosophy
  Why silicon? Why now? Why us (CMU)?

  A quick tour: How speech recognition works
  What happens in a recognizer

  A silicon architecture
  Stripping away all CPU stuff we don’t need, focus on essentials

  Results
  Silicon version: Simulation results
  FPGA version: Live, running hardware-based recognizer

© Rob A. Rutenbar 2007 Slide 40

Carnegie Mellon!

Design Flow: C++ Cycle Simulator  Verilog
  Our benchmark: 5K-word “Wall Street Journal” task
  Cycle sim results:

 No accuracy loss; not quite 2X @ 125MHz ASIC clock
 Backend search needs: ~1.5MB SRAM, ~30MB DRAM

Recognizer Engine Word Error
Rate (%)

Clock
(GHz)

Speedup Over
Real Time

(bigger is better)

Software: Sphinx 3.3 (fast decoder) 7.32% 1 GHz 0.74X

Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X

Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X

Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X

Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X

© Rob A. Rutenbar 2007 Slide 41

Carnegie Mellon!

Aside: Bit-Level Verification Hurts (A Lot)

  Common source of designer headache for silicon
designs that handle large media streams
 Generating these sort of tradeoff curves: CPU days  weeks

Speedup vs Software (over 330 WSJ utterances)

Time (10ms frames)

All SRAM

1.5MB SRAM + 30MB DRAM

SPHINX 3.0 software

ALL DRAM

© Rob A. Rutenbar 2007 Slide 42

Carnegie Mellon!

Aside: Pieces of Design = Great Class Projects
  CMU student team: Patrick Chiu, David Fu, Mark McCartney,

Ajay Panagariya, Chris Thomas

Floorplan Final Layout

Final Stats

© Rob A. Rutenbar 2007 Slide 43

Carnegie Mellon!

A Complete Live Recognizer: FPGA Demo

  In any “system design” research,
you reach a point where you just
want to see it work – for real

  Goal: Full recognizer 1 FPGA + 1 DRAM

  A benchmark that fits on chip
  1000-word “Resource Mgt” task
  Slightly simplified: no tri-grams
  Slower: not real time, ~2.3X slower
  Resource limited: slices, mem bandwidth

Xilinx XC2VP30 FPGA
[13969 slices / 2448 Kb]

Utiliz: 99% of slices
45% of Block RAM
~3MB DDR DRAM

50MHz clk; ~200Mb/s IO

© Rob A. Rutenbar 2007 Slide 44

Carnegie Mellon!

System Block Diagram

Front End
&

Scoring

Search

IPIF
D

R
A

M
 In

te
rf

ac
e 64

IPIF

D
D

R

C
on

tr
ol

le
r

DDR
SDRAM

PLB

Speech Peripheral

Audio
Ctrl

Vi
de

o
C

tr
l

AC 97
CODEC

Button
Ctrl

Microphone

VGA
Monitor

Push
Button

Clock Speeds
100 MHz

50 MHz

66 MHz
Built-in
Audio Clock

© Rob A. Rutenbar 2007 Slide 45

Carnegie Mellon!

FPGA Experimental Results
  Aside: as far as we know, this is the most complex recognizer

architecture ever fully mapped into a running hardware-only form

© Rob A. Rutenbar 2007 Slide 46

Carnegie Mellon!

Performance

  Benchmark: 1K-word “Resource Management” task
  Results:

  No accuracy loss
  ~ 2x slower than real-time, but ~30X slower clock frequency
  Limited by DRAM access time and available FPGA resources.

Recognizer
Engine

Word Error
Rate (%)

Clock
(GHz)

Speedup Over
Real Time

(bigger is better)

Efficiency
(Speedup/GHz)

Software:
CMU Sphinx 3.0

(single CPU)
10.88% 2.8 GHz 3.7X 1.32

Hardware:
Our FPGA
Recognizer

10.9% 0.05 GHz 0.5X 10

© Rob A. Rutenbar 2007 Slide 47

Carnegie Mellon!

Aside: How To Tell You’re Doing Something Cool…

© Rob A. Rutenbar 2007 Slide 48

Carnegie Mellon!

Summary
 Software is too constraining for speech recognition

 Evolution of graphics chips suggests alternative: Do it in silicon
 Compelling performance and power reasons for silicon speech recog

 Several “in silico vox” architectures in design
 Custom silicon and FPGA versions
 ~10X realtime and low-power mobile architectures in progress at CMU

 Reflections
 Some of the most interesting experiences happen when you get people

from very different backgrounds – silicon + speech – on same team

© Rob A. Rutenbar 2007 Slide 49

Carnegie Mellon!

Acknowledgements

  Work supported by
 US National Science Foundation (www.nsf.gov)
 Semiconductor Research Corporation (www.src.org)
  FCRP Focus Research Center for Circuit & System Solutions

(www.fcrp.org, www.c2s2.org), one of five centers supported by the
FCRP, an SRC program.

  We are grateful for the advice and speech
recognition expertise shared with us by
 Richard M. Stern, CMU
 Arthur Chan, CMU
 Mosur K. Ravishankar, CMU

