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Speech Recognition Today: Software

m Quality = OK Vocabulary = large

m Quality = poor Vocab = small

N The Toshiba UT103, 4 languages,
~3000 phrases, 35 hours on 2AA batteries,
THE FIRST runs on 75MHz Toshiba processor

SPEECH-TO-SPEECH TRANSLATOR
IN THE WORLD
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Today’s Best Software Speech Recognizers

m Best-quality recognition is computationally hard
N For speaker-independent, large-vocabulary, continuous speech

m 1-10-100-1000 rule
< For ~1X real-time recognition rate
< For ~10% word error rate (90% accuracy)
< Need ~100 MB memory footprint
< Need ~100 W power
< Need ~1000 MHz CPU

m But, this is ~1000X away from what we need
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About This Talk

m Some philosophy
< Why silicon? Why now? Why us (CMU)?

m A quick tour: How speech recognition works
~  What happens in a recognizer

m A silicon architecture
~ Stripping away all CPU stuff we don't need, focus on essentials

m Results
~ Silicon version:  Simulation results
N FPGA version: Live, running hardware-based recognizer
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About This Talk

m Some philosophy
N Why silicon? Why now? Why us (CMU)?



Carnegie Mellon

Compelling Next-Generation Applications...

m ...want to go fast. Very fast. Faster than realtime.

Example: Audio Mining

3

FIND: "Hasta la vista, baby!”
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Compelling Next-Generation Applications...

B|B[CRNAYS

About the versions | Low Graphics | Help | Contact ud
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B8 E-mail this to a friend & Printable

Backlog of terror tapes dogs FBI

News Front Page
WOrId

Afrlca

The FBI has a backlog of
hundreds of thousands of
hours of untranslated audio
recordings from possible
terror suspects, a federal
audit has found.

Americas
Asia-Pacific

Eurcpe
Middle East
South Asia

From Our Own
Correspondent more than 123,000 hours of

UK audio intercepts that it has not ;|

Three years after the 11
September attacks, the FBI has

England translated, the report said.
Northern Ireland . . . )
Scotland The reportis an edited summary of a classified audit

Wales completed in July for the Justice Department.

Business
Politics
Health

The FBI is recruiting more linguists for Arabic, Farsi, Urdu and
Pashto.

3 years after 9/11, FBI
still had 123,000 hrs of
untranslated foreign audio

m ...could use speech—>text

@ 100X -1000X realtime

m (Text—>text translation
also exists—diff problem)

m Could we triage these

huge media streams to
allocate scarce human

intel assets?
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Co (
mpelling Next-Gen Applications
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Doesn’t Moore’s Law Just Save Us (Eventually)?

m Yes (sort of...): Transistors keep getting smaller
m No (uhoh...): Moore’s Law is running out of gas

10000.00
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=+ intel pentium 4
= intel itanium by yea r ] "
== Alpha 21064 .— L -
@ Alpha 21164 &

4

B Alpha 21264 ._E ‘-
, &

100.00 gESEs

X SuperSparc
X Sparc64

® Mips §.
+ HP PA
== Power PC )/ i

10.00 @ AMD K6 A
B AMD K7
O AMD x86-64

1.00
85 87 89 91 93 95 97 99 01 03 05 07

[Courtesy Mark Horowitz, Stanford]
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Problems with Moore’s Law Scaling

m Limits on device size
N Already at atomistic dimensions

w Can't scale forever when devices
are already ~100 atoms wide

é%@m ”

m Limits on device speed

N Small devices leak (switches draw
a little current when off)

~ Power dissipation a. clk frequency

-> Can't get more performance by
just upping GHz on next chip

m Emphasis now on design
N More parallel architectures...

~ ...with clocks running slower
N ...to get performance, but not melt

- World's first quad-core processors
for desktop and
mainstream servers
ntel)

Extr

Intel® Quad-Core. Now
available.
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Still: Lots of Software-Based Next-Gen Work

m Video indexing

€he New Nork Times

m Speech on cellphone

& R
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Video Demos ‘ e |
News Partners Articles

VTunes Aug 24,2007 - Nuance Closes

Enable

N— Trade S ropriation Case A viceSignal Dis

[“New Mobile Phones Supporting Voice and Speech Recognition Technology

@ mororora <™ NOKIA

2z BlackBerry.

f \

i

@ Treo

e
| ]

Portal Solution Stud

VoiceXML Solutions

How DId A Large Cable Company Reduce

Proven VXML Platforms & Systems Reguest

StreetInsider.com

if you're not inside... you're outside

=1

FAQ

Transfers? Read How Here!

Contact Us

More Information Online Now

Ads by Google

p———

Sun, Sep 30,2007 1222PM  Entera Stock Symbol [N 55

Basic Content

Nuance Communications (NUAN) Acquires VoiceSignal

Technologies for $293 Million; Updates Outlook
05-15-2007 07:45:19 AM

@ Login to Your Account

Font Size: @ Bigger g Smallr 53 Senc to.a Friond




Carnegie Mellon

The Carnegie Mellon In Silico Vox Project

m Our thesis: It’s time to liberate speech recognition
from the current limitations of software, because
we can always do it better in custom silicon

m Our solution: Speech recognition in silicon
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Aside: About the Name “In Silico Vox”

m In Vivo
N Latin: an experiment done in a living organismm -«««-«+«-«ss-ee--: 1

m In Vitro -
N Latin: an experiment done in an artificial lab environment: ---- E5&

m /n Silico
N (Not real Latin): an experiment done via computation only----

m Vox
~ Latin: voice, or word
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Why Silicon? Why Now?

Why? Two reasons:

m History
N We have some successful historical examples of this migration

m Performance
N Compelling apps need 100X — 1000X more performance, now
~ Silicon always better than software on speed/power



Carnegie Mellon

History: Graphics Engines

m Nobody paints pixels in software anymore!
~ Too limiting in max performance. Too inefficient in power.

True on the desktop (& laptop) ...and on your cellphone too

NVIDIA® GeForce® 7950 GX2
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Silicon Solution: Speed and Power Wins

m A famous graph from Prof. Bob Brodersen of Berkeley
~ Study looked at 20 designs published at ISSCC, from 1997-2002
~ In slightly older technologies, relative to today: 180nm — 250nm
N Dedicated designs up to 10,000X better energy efficiency (MOPS/mW)

1000 -Million Ops (MOPS) / milliWatt (mW)

Microprocessors General Dedicated : *
100 Purpose
10 DSP

AN AN S S
L LT LTI I TEISTFSSIsssPSTses
FS § 88 & &S F g P s Qg @@ g o
§ & § § 2 §99 8 8 & P & & F &K & &N
Ty & £y &£ ST IFTFT S FLEFETEQ
Q R & K S & g § § S
N N TS E
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Silicon Speed/Power Win: Why?

m Programmability (flexibility) is not free
N Lots of extra overhead for hardware you don’t need for every app
~ Baggage to fetch, decode, run instructions, one (or a few) at a time

m Functional units not well customized to your app
~ If you can use, say, 75 floating point units, or 36 FFT units — too bad
~ You still get 8 arithmetic units...

m MHz/GHz to deliver speed to all users not optimal

~ Microprocessors run fast clocks so all apps see good performance
~ Your app may be able to run a much slower clock = much less power
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Recent Example: Parallel Radio Baseband DSP

m 90nm CMOS: adaptive DSP for multipath MIMO channel
~ Power efficiency = 2.1GOPS/mW
~ Area efficiency = 20GOPS/mm?

Rx
array

Data rate up to 250Mbps over 16 sub-carriers
Measured 34dmW @ VDD=385mV
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Why Us...?

m 1 site (Carnegie Mellon), 3 areas of deep expertise
~ Impossible to do projects like this without cross-area linkages

Carnzagiz Nilsllon S ols Computer Science
VIOL eI ] SPHINX Speech recognition group

"~

Electrical & Computer Engineering
Silicon system implementation group

Electrical & Computer Engineering
Media / DSP group
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Us the CMU In SIIICO Vox Team

Richard Stern Tsuhan Chen, Patrlck m

(not shown: Jeff Johnston)
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About This Talk

m A quick tour: How speech recognition works
~ What happens in a recognizer
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How Speech Recognition Works

Acoustic Word Language
Adaptatlon to e e Qe R AOE
environment/speaker : Bob B AOB Rob > says
r Adaptation ﬂ .

N
X1 '

N 5 HMM / Viterbi Search
? Language Model Search Rob”

| Filter1 |

wo »

Sampling

DSP

X
\ ")

Feature  Feature Feature

extraction vector Scoring Acoustic units > Words - Language

(G J \ J )
v~ Y "

Acoustic Scoring Backend
Frontend Search




(1) Acoustic Frontend
pE=iey

L_Filter1 | X1

.9)
g -

Sampling Zl) %

Extraction Feature
vector

Featu

Combine these with
estimates of 15t and 2nd
time derivatives

Carnegie Mellon

The frontend is all DSP. A discrete Fourier
transform (DFT) gives us the spectra. We
combine and logarithmically transform spectra

Framex

in transformed spectra.
Green = low, red = high.

This pic is across a
few sec of speech.

Color is “how much energy'.

I N i . BN |
0 0.6 08 1 12

0.2 04

in ways motivated by physiology of human ears.

time

- —
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(2) The Scoring Stage

m Feature vec is a point in m Problem with using distance
high-dimensional space ~ Space “occupied” by each atomic
~ Assume each atomic sound we can sound not well modeled as a point

recognize is also characterized as one a
“perfect” point in high-dim (n=39) space

Recognized
Recognized sounds to
sounds to match

jléucn HJZ
New 5. -------- © New da ............ 'O

featyre® O feature®,
) / >
~ We used to do this using normalized N We need to model the shape of the

distance as the metric for “likelihood” region that defines each sound



(2) Scoring Stage

Carnegie Mellon

m Each feature still a point in high-dimensional space
~ But each “atomic sound” is a region of this space
~ Score each atomic sound with Probability(sound matches feature)

Fea

ach sound is a
Gaussian Mixtur

&

Featilure Vector

7,{1, X2, ..., XN)

§ RELAE
1 j=1 20 2

e
27A [

SCORE ()= $w,,

Each sound approximated as a set
of high-dim Gaussian densities

m Note: (sounds) X (dimensions) X (Gaussians) = BIG
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(3) Search: Speech Models are Layered Models

Language X Words X Acoustic —> Layered Search

YES 0 () 0 () 3”
|
3|
NO INI|—1/OW/ ¢y e
y ..“J‘."‘J'
/ 3 [
‘@ . y i . _...?" _.-"I.’ .-‘.” .-l‘v
words ac?uitlc su.b 3coustlcpowe& H| oA A AT
units units S = = v
Spectrum | \/\J

Waveform " * CIaSS|CaI methOdS
Piteh | | 4T3~ (HMMs, Viterbi)
et and idiosyncracies

1 fra.r.n.é of
sampled sound
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Context Matters: At Bottom -- Triphones

m English has ~50 atomic sounds (phones) but we
recognize ~50x50x50 context-dependent triphones

~ Because “I" sound in “five” is different than the “I” in “nine”

Five F( "y I )cross-word I F, V )word-internal V( I, - )cross-word
Nine N( =y I )cross-word I( N y N )word-internal N( I, - )cross-word

“I” in “five” # “I” in “nine!!
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Also Context at Top: N-gram Language Model

Suppose we have vocabulary
{W1, W2, W3, W4, ...}

Trigram W11,

. termination

Unigram (W1) W11 ~Wi18>,
( O
(W3> W13 Wizv
w4 / _Lets us calculate
W W1 WO w123y likelihood of
word W3
we w3”  after W2

after W1
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Good Speech Models are BIG

N i’i&
\1s

M (;)gfék\,

rd
= BB EEER

£
T 60066555860
= 700000 oégboo

Power =8 5156
pectrum Scores Nﬁ“
Waveform 64,001
Pitch 111,593  Unigrams
Triphones
for each 10 ms time frame
9,382,014 | =
m This is ~64K word “Broadcast News” task Bigrams =
-y . 13,459,879
m Unfortunately, many idiosyncratic Tri
rigrams

details in how layers of model traversed
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Where Does Software Spend its Time?

m CPU time for CMU Sphinx 3.0

~ Prior studies targeted less capable
versions (v1, v2) 6% 159

~ Tools: SimpleScalar & Intel Vtune
< 64K-word “Broadcast News” benchmark

27%
m So: It’s all backend

~0% of time!
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Memory Usage? SPHINX 3.0 vs Spec CPU2000
m Cache sizes

3.0
N L1: 64 KB, direct mapped

Cycles 53 B 55B 15B 23 B
~ DL1: 64 KB, direct mapped IPC 0.69 0.29 105 07

~ UL2: 512 KB, 4-way set assoc Instruction Mixes
Loads 0.27 0.25 0.2 0.27
B SO. . Stores 0.05 0.15 0.09 0.08
Branch’s 0.14 0.2 0.17 0.12

N Terrible locality (no surprise,
graph search + huge datasets)

N Load dominated (no surprise,
reads a lot, computes a little) Cache Miss Rates

e g . DL1 0.04 0.02 0.02 0.03
~ Not an insignificant footprint
L2 0.48 0.06 0.03 0.30

Branch Misprediction Rates

0.025 0.07 0.08 0.02

Memory Footprint

64 MB 24 MB 186 MB 42 MB
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About This Talk

m A silicon architecture
~ Stripping away all CPU stuff we don’t need, focus on essentials
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This Talk: How to Get to Fast...

Audio-mining
m Very fast recognizers —
much faster than realtime

m App: search large media
streams (DVD) quickly

FIND: "Hasta la vista, baby!”

<
.
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Speech: Complex Task to do in Silicon

Adaptation

Feature
extraction

‘ Ops: Low

Frontend

SRAM
(constants)

Feature
Scoring

10-100MB
DRAM
(constants)

i

Scoring

: (Acoustic

Word Language ) :
Rob R AOB .
Bob B AOB Rob > says

HMM / Viterbi Search

Language Model Search “Rob”

Acoustic units > Words - Language

) —

10-100MB
DRAM
(models &
active recog)

=
Backend

‘ Ops: High -Ops: Mediu
S MBs SRAM

(active recog)
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A Silicon Architecture: Breakdowns

10-100MB
10-100MB DRAM
DRAM (models &
(constants) active recoq)
Acoustic Gaussian Backend
B Frontend IR Scoring )
SRAM B MBs SRAM
m (constants) m (communic) (active recog)
Computations (Ops) Low High Medium
SRAM (size) Small Small Large
DRAM (size) - Medium/Large Large

DRAM (bandwidth) - High High
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Essential Implementation Ideas

m Custom precision, everywhere
~ Every bit counts, no extras, no floating point — all fixed point

m (Almost) no caching
~ Like graphics chips: fetch from SDRAM, do careful data placement
~ (Little bit of caching for bandwidth filtering on big language models)

m Aggressive pipelining
~ If we can possibly overlap computations — we try to do so

m Algorithm transformation
N Some software computations are just bad news for hardware
N Substitute some “deep computation” with hardware-friendly versions



Example: Aggressive Pipelining

Pipelined Get-HMM/Viterbi and Transition stages

Carnegie Mellon

Fetch HVIM/ T— time
FEEWRE Viterbi Prune/Writeback
Fetch HMM/ Transition/ Language Model
Viterbi Prune/Writeback guag

Pipelined Get-Word and Get-HMM stages

Fetch HMM/ Transition/
FE R Viterbi Prune/Writeback
Fetch HMM/ Transition/
IR Viterbi Prune/Writeback e T ]

v

Pipelined non-LanguageModel and LanguageModel stages

0 Word #1
] Word #2
0 HMM #1
0 HVMM #2

] HMM #3

Fetch HMM/ Transition/
flchter Viterbi Prune/Writeback Liouadeiodal
Fetch HMM/ Transition/
AT Viterbi Prune/Writeback
Fetch HMM/ Transition/
Viterbi Prune/Writeback
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Example: Algorithmic Changes

m Acoustic-level pruning threshold
~ Software: Use best score of current frame (after Viterbi on Active HMMs)
~ Silicon: Use best score of previous frame (nixes big temporal bottleneck)

m Tradeoffs
N Less memory bandwidth, can pipeline, little pessimistic on scores

* ~ Done

Initialize Frame
Start Frame
Fetch Active Word Done 4\ l

Initialize Frame
Fetch Active HMM Done all Active HMM /——

Language

l i\ Fetch Active Word < Model
Viterhl Fetch Active Word«— Language Model l \
l * ‘\ ? Fetch Active HMM <——  Transition/Prune/Writeback
Writeback HMM Fetch Active HMM—>Transition/Prune/Writebac

\ Viterbi /

Sphinx 3.0 Software Silicon

Done all Active HMM
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About This Talk

m Results
w Silicon version: Simulation results
~ FPGA version: Live, running hardware-based recognizer
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Design Flow: C++ Cycle Simulator = Verilog

m Our benchmark: 5K-word “Wall Street Journal” task

m Cycle sim results:
~ No accuracy loss; not quite 2X @ 125MHz ASIC clock
~ Backend search needs: ~1.5MB SRAM, ~30MB DRAM

g

™ ALl o

s @ ‘STAZZVT /0{
N E“

Software: Sphinx 3.3 (fast decoder) 7.32% 1 GHz 0.74X
Software: Sphinx 4 (single CPU) 6.97% 1 GHz 0.82X
Software: Sphinx 4 (dual CPU) 6.97% 1 GHz 1.05X
Software: Sphinx 3.0 (single CPU) 6.707% 2.8 GHz 0.59X

Hardware: Our Proposed Recognizer 6.725% 0.125 GHz 1.67X
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Aside: Bit-Level Verification Hurts (A Lot)

m Common source of designer headache for silicon
designs that handle large media streams

N Generating these sort of tradeoff curves: CPU days = weeks

‘Speedup vs Software (over 330 WSJ utterances)

I

6 1 All SRAM
S i | / 1.5MB SRAM + 30MB DRAM
©
E‘;‘ 3 A Safteaing e ¥/ »SPHINX 3.0 software

2| & i/ _ALLDRAM

0 \ \ \

0 500 1000 1500
Time (10ms frames)
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Aside: Pieces of Design = Great Class Projects

m CMU student team: Patrick Chiu, David Fu, Mark McCartney,
Ajay Panagariya, Chris Thomas

Area 11.16 mm= core / 16.09 mm- chip
Effective Utilization 53.32%
Cell Rows 657
Cells 67354
Pins 225358
Senone score output 10 Pins 2
Nets
E Pre-emphasis Senone g Avg.\PX’ins/Net 2.84
: Nets
FFT Input Data ) § (Internal) 77977
I B;{r 5 . (External) 94
= + B3 Connections
B Frer FFT 2 Cep O B (Internal) 146621
Calc 3 Buf (External) 188
| Out = A B, ‘LI._ ? Total net length 6.00 m
2 .Log;‘.zinaa o X) 2.59 m
] S LTwiddie BEES o (Y) 340 m
______ 5 & < Power Supply 1.98 V
Cep < 2 P Average Power 19.8 mW
el (Log LUT -] « 3 § (switching) 11.78 mW
=) (internal) 7.98 mW
(leakage) 0.036 mw
Power by clock domain
Frontend 2.018 mW
: Gaussian 14.25 mW
Floorplan Final Layout
Unclocked 0.96 mW
Power by cell category
Core 19.5 mW
Block 029 mW
10 | 0 mW
Worst IR drop 0012V

Final Stats



Carnegie Mellon

A Complete Live Recognizer: FPGA Demo

w@ k)| e m In any “system design” research,
b o you reach a point where you just
i want to see it work — for real
Y

Goal: Full recognizer 1 FPGA + 1 DRAM

A benchmark that fits on chip
~ 1000-word “Resource Mgt” task
N Slightly simplified: no tri-grams
~ Slower: not real time, ~2.3X slower
N Resource limited: slices, mem bandwidth
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System Block Diagram
. | AC 97 | [ Push
Microphone CODEC Bul:tson
Audi

Front End
&
Scoring

VGA
Monitor

Video Ctrl
DRAM Interface

Speech Peripheral

64

Clock Speeds
100 MHz

[ ] 50 MHz

66 MHz

[ ] Built-in
Audio Clock

DDR
SDRAM

DDR
ContIroIIer
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FPGA Experimental Results

m Aside: as far as we know, this is the most complex recognizer
architecture ever fully mapped into a running hardware-only form

QO
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Performance

m Benchmark: 1K-word “Resource Management” task
m Results:
~ No accuracy loss
N~ 2x slower than real-time, but ~30X slower clock frequency
~ Limited by DRAM access time and available FPGA resources.

Software:
CMU Sphinx 3.0 10.88% 2.8 GHz 3.7X 1.32
(single CPU)
Hardware:
Our FPGA 10.9% 0.05 GHz 0.5X 10

Recognizer




Carnegie Mellon

Aside: How To Tell You’re Doing Something Cool.
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Summary

m Software is too constraining for speech recognition
~ Evolution of graphics chips suggests alternative: Do it in silicon
~ Compelling performance and power reasons for silicon speech recog

mSeveral “in silico vox” architectures in design
N Custom silicon and FPGA versions
“~10X realtime and low-power mobile architectures in progress at CMU

m Reflections

~ Some of the most interesting experiences happen when you get people
from very different backgrounds — silicon + speech — on same team
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