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Abstract
The extent to which society benefits from an upgrade to a telecommunications network infrastructure depends on
when that upgrade occurs. This paper discusses a proactive pricing approach in which the regulator defines a
pricing policy to induce a profit-seeking monopoly carrier to upgrade the infrastructure at the socially desirable time.
We discuss how the regulator can determine the optimal time to upgrade the infrastructure, and specify a proactive
pricing policy to induce that timing. We also demonstrate a tradeoff between promoting social efficiency and

protecting consumer interests in applying that approach.
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Section 1
Introduction

The rapid progress of today’s communication technology provides opportunities for a local telephone
company to provide a variety of new features. These features either improve the quality of existing services, or
provide consumers with new capabilities. In both cases, the new features can be provided in two phases. In the
first phase, the company supplements existing network infrastructure as needed with extra equipment for those
customers who are willing to pay for the new feature. This often results in a high cost per customer, and limits the
accessibility of the feature to customers who are willing to pay a high price for it. In the second phase, the
company makes a large investment to upgrade network infrastructure with advanced technology, so that everyone is
able to enjoy the new feature as a part of basic service at a lower cost per customer.

For example, a local telephone company can provide automatic rerouting service to enhance the reliability
of its basic service. In phase 1, the company leases redundant transmission terminals to individual subscribers as
backup. These redundant terminals are connected through a secondary path that is disjoint from the one in use. If
there is a cable cut, or an equipment failure in the central office, subscribers who leased the redundant systems can
resume their communications along the backup route (Wrobel, 1990). Obviously, this arrangement is not affordable
to most people. However, the automatic rerouting service can become available to everyone if the company moves
into phase 2 by upgrading the existing network infrastructure to a Synchronous Optical Network (SONET) Ring. In
this case, current transmission systems are replaced by high capacity SONET Add and Drop Multiplexers and
telephone central offices are connected into a ring topology. Offices can communicate with one another along both
clockwise and counter-clockwise directions on the ring. Consequently, any single failure in transmission systems
can be circumvented and no one will be affected (Wu, 1992). This two-phased process can also be found in the
provision of Integrated Services Digital Network (ISDN) service. In phase 1, the service can be offered through
Centrex stations, which is not an option for most consumers. By replacing analog lines and switches with digital
ones, a phone company can move into phase 2, and make the service available to everyone on the network in a cost-
effective way. Similar cases are likely in the future provision of broadband services, in which beginning phase 2 of
the infrastructure upgrade means migrating from a copper network to an all-fiber network, or replacing circuit
switching with Asynchronous Transfer Mode (ATM) cell switching.

In all of these cases, one must determine whether to move from phase 1 to phase 2, and if so, when. The

two principal factors in this decision are demand and cost. We consider those cases where demand for the new
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service is increasing over time. In addition, since the technology for phase 2 is relatively new, we assume that its
cost is generally decreasing, as opposed to the time-invariant cost of using more mature technology in phase 1.
Given these trends, when should the infrastructure be upgraded? Obviously, when demand grows sufficiently high,
and the cost of beginning phase 2 is low, then phase 2 is preferable. Delaying the infrastructure upgrade will be
inefficient to satisfy consumer needs. However, upgrading too early is also detrimental to society because capital is
tied up for a longer period of time without generating much social benefit, and future cost reductions cannot be
exploited. Thus, the timing of beginning phase 2 should be controlled to maximize the value of the new service to
society. From a regulator’s perspective, the benefit to society can be measured by multiple criteria (Mitchell and
Vogelsang, 1992). Social efficiency and consumer benefit are two important measures we address in this paper. If
the regulator is only interested in the former, she should try to maximize social welfare, which is defined as profit
plus consumer surplus. If she is only concerned about the latter, then she should try to maximize consumer
surplus. Most regulators will set their goals in the broad spectrum between these two extremes. Therefore we use
weighted social welfare as the regulator's objective in this paper, which is defined as:

weighted social welfare = consumer surplus + o * profit ; O=sa=<l

A large a indicates emphasis on social welfare while a small o indicates emphasis on consumer surplus.

Although the telephone company decides when to upgrade the infrastructure, the regulator can use price
regulation to influence the company's timing. In this paper, we will consider a proactive approach in which the
regulator periodically gathers demand and cost information, estimates the optimal upgrade time, and declares in
advance the rate increase that the company would be allowed after it improves its basic service by moving from
phase 1 to phase 2. With such advance planning, the company can better manage the upgrade process. Moreover,
we will show that by using this proactive pricing approach, the regulator can motivate a profit-seeking monopoly to
upgrade its infrastructure at the optimal time. This is not generally possible with the commonly used price
regulations: rate of return and price cap. Under rate of return regulation, a company is guaranteed a given rate of
return on its capital investment, and under price cap regulation, the regulator imposes an overall weighted ceiling on
a basket of services and adjusts this ceiling periodically to make it roughly equal to cost (Johnson, 1989; Noll,
1989). Neither approach relates the company’s profit with when the infrastructure is upgraded, so neither can induce
an optimal timing decision.

We will show how the regulator can determine the upgrade time that maximizes weighted social welfare,

and develop proactive pricing policy to induce that timing. In the next section, we formulate the regulator's



decision as an optimization problem. In section 3, we present general properties of the optimal timing for the
company to upgrade the infrastructure, and in section 4, we discuss proactive pricing policies for inducing that

timing. We present our conclusions in section 5.

Section 2
Problem Formulation
In this section, we formulate a mathematical model to characterize the regulator's problem of inducing the

optimal timing. In §2.1, we define demand and cost parameters, and in §2.2 we formulate the mathematical model.

§ 2.1 Demand and Cost Parameters
The demand for the new feature can be characterized by two functions: the demand function, which
describes consumers' willingness to pay for the service, and the diffusion function, which depicts the speed of
adopting the new feature by potential buyers. The two functions are characterized as follows:

The demand function D(¢,f) is defined as the total number of consumers who are willing to pay at least ¢

per unit of time for the new feature at time ¢.

d D(¢,t . . .
%s 0 for any ¢, i.e. a higher price leads to reduced sales. We

=0 forany ¢ =0 to reflect the increasing demand for the new feature. We define = 0 as the

d D(¢,1)
assume —————
ot

time when the regulator specifies her pricing policy. D(¢,f) represents past demand if # < 0, and represents future

demand if t>0. O0<¢ <+ and - <t <+, D(p,—)=0.

However, there could be a delay from the time when a consumer considers the new feature to be worthwhile
(i.e. the consumer's willingness to pay exceeds the price) to the time when she actually buys that feature (Bass,
1969). This delay is caused by factors other than the price, such as the hassle cost, or the learning cost. The
duration of this delay varies among consumers, ranging from 0 (meaning the subscription is made as soon as
willingness to pay exceeds price) to +o (meaning the subscription is never made). The delay can be described by a
random variable with a Cumulative Distribution Function (7). In marketing literature, F(7) is defined as the
diffusion function (Bass, 1969), which stands for the probability that a consumer will delay no more than  units of
time to subscribe to the new feature.

Let X(¢,f) be the number of adopters at time ¢, given price ¢. In phase 1, the provision of the new feature
is separated from the provision of the basic service, so that the number of consumers who want to subscribe to the

new feature equals D(¢, 1), i.e. the number of consumers whose willingness to pay is no less than the price. In the
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presence of the diffusion effect, not all of these consumers will subscribe to the new feature immediately. The value

of X(¢,?) is determined from the demand function D(¢,?) and the diffusion function F(7) as follows:

X(¢9t)= f

-

[ 9 D(p, ) F(t - u)du (1)
Ju

which is the number of consumers who decide to buy the new feature during the period [u,u+du) and delayed no
more than #-u units of time to make the purchases, accumulated over all u before ¢.

In phase 2, the new feature is bundled with the basic service. Therefore a consumer either adopts the new
feature or has to give up the basic service. Since demand for basic service is highly inelastic, we assume no one
will choose the second option, so X(¢,) = D(0,?).

The cost of providing the new feature differs from phase 1 to phase 2. In phase 1, the new feature is
offered by providing individuals with dedicated facilities, so the cost incurred at any given time is proportional to
the number of users. Since phase 1 technology is mature, the cost per customer is likely to be stable over time, and
we define it as the marginal cost of providing the new feature, noted by a constant k. In phase 2, by changing the
infrastructure, the new feature is made available to every consumer. The major cost is the capital investment to
upgrade the infrastructure, which is not sensitive to the number of users. Considering that the on-going research

efforts and standardization will reduce required investment over time, we define this fixed cost investment as a

dc(t)

function of the upgrade time, noted as C(f), and assume . < 0. Itis generally true for a new technology that
t

the initial advancement is great, and then the pace of progress slows as further improvements become harder to

dc () 0
arr

make, i.e.



§2.2 The Mathematical Model
As mentioned earlier, we consider cases in which the company controls the time to upgrade the
infrastructure. The regulator cannot make the timing decision, but controls both the subscription fee of using the
new feature in phase 1, and the allowed rate increase in phase 2. These pricing decisions can be made to induce the
company to upgrade the infrastructure at the socially desirable time, subject to the constraint that the company
should at least break-even in each phase.

Let p be the subscription fee specified in phase 1 by the regulator. It is a well established result that to
maximize social welfare, or to maximize consumer surplus subject to a break-even constraint, the subscription fee
should be set at the marginal cost, i.e. p=k;.

The regulator gives the company a rate increase after it upgrades infrastructure so that the company can
recover the investment cost, and be given an incentive to begin phase 2 at the time that benefits the society the
most. Define r(¢,T) to be the increase in total revenue per unit of time resulting from the rate increase in phase 2,

where T is the socially desirable upgrade time, and ¢ is the actual upgrade time. The company's profit from

upgrading the infrastructure at time ¢ will be [ (¢, T)e™""dt - C(He ™' = [M— C(t)]e™°", which is the Net
o
t

Present Value (NPV) of total revenue increase minus the NPV of the investment cost. To induce the company to
begin phase 2 at the socially desirable time (i.e. to let /=T, r(¢,T) should satisfy the following two conditions.

1) the company should be able to at least break-even if it upgrades the infrastructure at T
HED_cmgeeT =0 @)
o
2) the company's profit is maximized if it choose to upgrade the network at 7:

[_r(z,n ~C(D)e T > [@- Co)le™" forany ¢ =T ®)

For any 7(z,7) that satisfies both Equations 2 and 3, define R(7) = #(7,T). R(T) is the total revenue
increase the company gets per unit of time if it upgrades the infrastructure at the regulator’s desired time. R(7) is a
function of 7, which means the company’s profit depends on when the regulator wants the infrastructure to be
upgraded.

Given the demand and cost parameters and constraints defined above, how is the socially desirable time to
upgrade the network infrastructure decided? How should the regulator determine a pricing policy to induce the

optimal timing? What tradeoffs are there in choosing different proactive pricing policies? In the following, we
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develop a mathematical model to address these issues.
We assume the regulator wants to maximize the NPV of weighted social welfare, which is the sum of the
NPV of consumer surplus accumulated in both phases and the total profit multiplied by the regulator’s preference

parameter a. Consumer surplus equals the total willingness to pay of all users minus the total payment to the

+00 +00
company. In phase 1, itis [X(¢,7)d ¢, and in phase 2, itis [D(§,7)d¢ - R. The total profit is the same as that
k] 0

given in Equation 2. The mathematical expression for the regulator’s objective function is then:

T +oo +00 400 +00

(7) ={[X(¢,t)d¢ e-‘”dme[{D(fp, £)dg— R(T)]e™ 'dt + a[fTR(T)e-mdt- C(Te=°T] @)

where the definition of variables and their constraints can be found in Table 1. In Equation 4, 7=0 means the
infrastructure should be upgraded immediately, and 7 = +o means the infrastructure should never be upgraded. In
the following analysis, we will ignore these two trivial cases.

[Insert Table 1 here]

Section 3
Discussions on the Optimal Timing
Based on the mathematical model developed above, in this section, we study the optimal timing to
upgrade the network infrastructure. In §3.1, we derive the necessary condition for achieving the optimal timing and

explain its intuition. In §3.2 we discuss the impact of input parameters.

§3.1 The Necessary Condition for the Optimal Timing
Theorem 1 (see Appendix for proof):

The optimal timing for upgrading the infrastructure, 7%, must satisfy the following condition:

R(T"

(o4

)

{D(¢,T*)d¢—kfX((P,T*)d(P=Ot[UC(T*)—C'(T*)]+(1—Ot)[R(T*)— ] ®)

The intuition behind Equation 5 can be explained as follows. At the optimal time to begin phase 2, the
incremental benefit equals the incremental cost. The incremental benefit is the total value of the new feature to all
subscribers if phase 2 begins minus the total value of the new feature to existing users if phase 1 continues. Since
the value of the new feature is expressed in the form of consumer willingness to pay, and marginal cost pricing is

used in the first phase, the NPV of this incremental benefit can then be expressed as
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+0 +00

[fD(qb, T*)d¢ —fX(qb, T )d¢]e""T* . As for the incremental cost, if phase 2 begins at time I™ instead of being
0 &

delayed further, there will be two additional costs in the investment. First, the investment has to be made at 7"
instead of at a later time, so the amortized investment cost will be increased by o C(T")e T ' because of the time
value of money. Second, the potential savings in infrastructure investment can no longer be exploited, which yields
aloss of C'(T")e™® r _ Since the company pays for upgrading the infrastructure, the significance of this cost to
the regulator is proportional to the weight o that the regulator places on maximizing the company’s profit relative
to maximizing consumer benefits. The incremental investment is a[o C(T" )+ C (T" )]e""T* .

To let the company break-even and to induce it to upgrade the network at 7%, the regulator has to let the

*

A . R(T :
company get a revenue of f R(T )e °'dt = %‘”T per unit of time after phase 2 begins. If a < 1, asking
7
R(TY)

e 9T decreases the total value of the regulator’s objective

consumers to pay the company an amount of

£

)

e 9T * . If the upgrade is delayed from time 7*, this cost can be

function (weighted social welfare) by (1-a)

R(T
o
-0 T*

changed for two reasons: 1) consumers can pay the company later, which yields a marginal savings of R(T")e

due to the time-value of money; 2) as the timing changes, the regulator may give the company a different rate

R(T*)eoT
increase, which yields a marginal change in the company's revenue of — . The necessary condition in
o

Equation 5 can then be derived by letting total incremental benefit equal total incremental cost.

§3.2 The Impact of Input Parameters
In this section, we consider how the optimal pricing policy and timing decision are affected by other
parameters. Such characterizations are helpful to regulators in making qualitative judgments in deciding prices.
Results of our analysis are summarized in Theorem 2 below, followed by some explanations of conclusions.
Theorem 2 (see appendix for proof):
Given the optimization problem formulated by Equation 4

a) If the marginal cost of the infrastructure upgrade is smaller, then the optimal time to upgrade the



infrastructure occurs earlier, i.e. let 7, , 7, be the optimal upgrade time when C() =Cy(f) and C(f) =Cx(?),
respectively. If 0 C,(¢) -C,(1)so C, (t)-C,(¢) forall ¢, then 7" < T, .
b) If the demand for the new feature increases faster, then the optimal time to upgrade the infrastructure

occurs earlier, i.e. let 7, 7, be the optimal upgrade time when D(¢,t) =D;(¢,¢) and D(¢,r) =D1(,1), respectively.

I

¢ (9D1(¢,7,‘)2 aD,(¢,1)
t

g forallt, ¢, then T," < T, .
t

¢) If the diffusion for the new feature is faster, then the optimal time to upgrade the infrastructure occurs

later, i.e. let 7, , 7, be the optimal upgrade time when F(t) =F)(7) and F(7) =F,(7), respectively. If

F(t)z F,(7) forall 7, ¢, then 7" = 7, .

As a general explanation of Theorem 2, at the optimal upgrade time, 7%, the incremental benefit of having
the new infrastructure begins to surpass the incremental cost. When a change in input parameters leads to a decrease
in the incremental cost and/or an increase in incremental benefit, the benefit exceeds the cost earlier, and the optimal
upgrade time will also occur earlier.

Theorem 2(a) shows the influence of the investment cost on the optimal timing. One might expect that the
optimal upgrade time would occur earlier when the investment cost is lower. The theorem shows this intuition is
not always true. As we have discussed in 3.1, the incremental cost of upgrading the new infrastructure includes

both the amortized investment cost oC(¢) and the lost cost savings -C). Only when the sum of these two costs

becomes smaller should the optimal timing occur earlier. It is perfectly possible that when C;(f) >Cy(¢), - C 1 (?) is

smaller than — Cé (t),s0 oC,(¥) - Cl' (H=o0C,(t)- Cé (t). Consequently, the upgrade should take place later
when the investment cost is C,(¢) because possible savings in the investment cost from delaying the upgrade is

larger.

As for Theorem 2(b), when demand grows faster, the benefit from upgrading the infrastructure increases.
This occurs for several reasons. First, for those who want the new feature but can't afford it in phase 1, the value of
providing them with the new feature will be greater. Second, the number of adopters of the new feature in phase 1
will increase, which means more customers will experience a reduction in cost when the network is upgraded.
Finally, given the same diffusion function, at any given time in phase 1, there will also be more people whose
willingness to pay exceeds the price, but have not yet made the purchase. Moving into phase 2 makes the new

feature available to them immediately, thus avoiding their potential loss from the delay in subscribing to the new
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feature.

Finally, as shown in Theorem 2(c), when diffusion is slower, there will be more people whose willingness
to pay exceeds the phase 1 price, but have not yet made the purchase. Since the phase 2 infrastructure brings the
new feature to them immediately, it results in a greater benefit.

It is interesting to note that both faster growth of demand and more rapid diffusion will result in more
sales of the new feature in phase 1. However, they lead to an opposite effect on the optimal timing of the upgrade,
and therefore on pricing. In other words, sales data alone does not provide sufficient information to make a correct

qualitative judgment.

Section 4
The Static Pricing Policy

There are a variety proactive pricing approaches that the regulator could adopt to induce the company to
upgrade the infrastructure at the socially desirable time. Each approach has its advantages and disadvantages. For
example, the regulator could adopt the negligible profit policy under which the company is allowed a revenue
increase equal to investment cost plus a small excess profit if it upgrades the infrastructure at the socially desirable
time. The company gets no revenue increase at all for other upgrade times. This approach has the advantage of
promoting consumer benefit since the company is given very little profit, but will cause the regulator to completely
lose control over the timing decision with the slightest underestimate of the investment cost. There are other
approaches that offer different tradeoffs, which should be carefully studied. In this paper, we will focus on the
discussion of the static pricing policy, which is probably the simplest to implement.

Under the static pricing policy, the regulator allows the company a fixed price increase regardless of when
the infrastructure is upgraded. Since the cost of the upgrade does not stay constant, the profit the company gets
depends on the upgrade time. The regulator can set the price increase such that the company maximizes profit by
upgrading at the socially desirable time. Given demand and cost, this price increase, R*, can be determined from
the following theorem:

Theorem 3 (see Appendix for the proof):

Under the static pricing policy, the company will be induced to upgrade the infrastructure at the optimal
time, 7%, if after the upgrade, the regulator gives the company an additional revenue per unit of time, R*, which

equals:
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R* =0C(T*) - C(T), (6)

where T"is determined by

*

c'(r
(o)

)

{D(¢,T*)d¢—kfX(¢,T*)d¢=OC(T*)—C'(T*)+(1—0!)[ - C(T7)] ™)

Equation 6 shows that the regulator has complete control over the company's timing decision as long as
the revenue increase is set correctly. The revenue increase per unit of time needed to induce that timing has two
components. The first component oC(T") is for recovering the investment cost of upgrading the network, and the
second component -C (T%) is an excess profit the company gets, which equals the cost savings the company gives up
by investing at the optimal time 7" instead of 7"+dt. Upgrading at time 7" instead of 7*+d¢ reduces the company’s
revenue by Rdt, while decreasing the cost by -C'(7%)dt, and incurring that cost later, which saves oC(T*)dr. R is
constant, and oC(f) -C(¢)is always decreasing over time, so there will be only one time, 7%, when R* =0C(T*) -
C(T*). Consequently, the company will always choose to upgrade at the instant 7*, when oC(¢) - C({) falls to R.
As a special case of Theorem 1, Equation 7 specifies the necessary condition for determining the optimal upgrade
time under the optimal static pricing policy.

Since the static pricing policy allows the company a revenue increase that exceeds the upgrade cost,
yielding a positive profit, a certain amount of wealth will be transferred from consumers to the company.
Consequently, maximizing social welfare under the static pricing policy can be beneficial or detrimental to
consumers. To prove this point, we first demonstrate there is a potential conflict between maximizing social
welfare and maximizing consumer surplus through the example of deploying fiberoptics in the local loop. We then
discuss how the optimal timing can be influenced by the regulator's preferences, a, towards consumer benefit.

An Example

Because of the rapid market penetration of home computers and on-line services, an increasing number of
customers want to use telephone lines for both data communications and voice service simultaneously. Under the
current system, a customer can order a second phone line that connects her computer to the outside world (phase 1).
However, the phone company can also upgrade the local loop so all homes in a neighborhood will have the
capability to use both phone and data services through a single connection (phase 2). A variety of technical
alternatives for upgrading the local loop and their costs have been studied (Reed and Sirbu, 1989; Sirbu et al.,
1989). We will use some existing results in our example to demonstrate that the static pricing policy can cause a

potential conflict between maximizing social welfare and protecting consumer interests.
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We assume the local loop is going to be upgraded to a triple star network and every household will get
144k bps on their phone line for both voice and data communications. As has been estimated (Sirbu et al., 1989),

for a 1,024 home neighborhood over a 10-20 year time span, the investment cost will drop from $1934/home to

$947/home, or from approximately $2,000,000 to $1,000,000 in total. The rate - C'(¢) at which the cost drops is

decreasing over time. We approximate this cost by a continuous function:

C(1)=1,000,000* (¢ > + 1)

As for consumer demand, we assume that one half of the households (512) are willing to pay $400 per year
for the new service, and the other half are willing to pay $50. The diffusion function is:

F(f)=1-¢709%

Suppose a regulated company is now in phase 1 and has the potential to deploy the fiberoptics in the local
loop. We consider the case where the regulator adopts the static pricing policy in Equation 6 to induce her desired
time for upgrading the infrastructure. Let the interest rate beyond inflation 0=0.1. Figures 1 and 2 show social
welfare and consumer surplus as functions of deployment time.

[Insert Figure 1]
[Insert Figure 2]

As figure 1 shows, the NPV of social welfare first increases and then decreases over the upgrade time.
Therefore, to maximize social welfare, the regulator should choose four years from now as the time to deploy the
fiberoptics. At this point, the static pricing policy would allow the company to raise the subscription fee for each
household by: [0C(4)-C (4)1/1024=8$177 per year, or $14 per month, which is a very substantial rate increase. For
some users, such an increase almost doubles their monthly subscription fees. This pricing policy allows the
company to accumulate about $1,800,000 of total revenue, while its investment cost is around $1,150,000. In
other words, the excess profit the company gets from the upgrade is around 50%-60% of the investment cost.

Figure 2 shows the NPV of consumer surplus, which is increasing over the optimal upgrade time. The
dashed line on top of the figure is consumer surplus if the network is never upgraded. Clearly, if the local loop is
upgraded at the time that maximizes social welfare, the resulting consumer surplus would be smaller than if the
upgrade is never made. Even if the fiberoptics has to be deployed, consumer benefit will be larger if the company
deploys at a later date than the time that maximizes social welfare.

This example demonstrates that under certain circumstances, maximizing social welfare can be detrimental

to consumer surplus. Therefore, given the same demand and cost parameters, regulators with a different preference
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towards consumer benefits will set price differently. In the introduction to this paper, we formulated the regulator's
preference by a weight . When « is smaller, the regulator puts less weight on the company’s profit in her
objective function. As the following corollary will show, a lower weight on the company’s profit (and thus a

higher weight on consumer surplus) results in a later upgrade to the infrastructure:
Corollary 1:

Assume (RT , T,) is the optimal solution to the problem defined in Equation 4 when o = a1, and (R; , T,) is the

optimal solution when a= a,. If a, = a, and everything else is kept the same, then:

T"=T, and R, s R,.

Section 5
Conclusions

In this paper, we consider a regulator's problem of using price controls to induce a desirable time for a
profit-maximizing monopoly to upgrade network infrastructure. The upgrade will extend a feature that is currently
available to a few subscribers at high cost, and make that feature available to all subscribers as part of basic service.

Existing price regulations, such as rate of return and price cap, cannot give the regulator full control over
the timing of the upgrade. Consequently, we investigate proactive pricing policies in which the regulator specifies
in advance the additional revenue that a company will be allowed after the upgrade. We derived the necessary
condition for determining the optimal timing. We also explored the impact of input parameters. We found that
neither a rapid increase in the number of users of the new service nor a lower investment cost will always lead to an
earlier optimal upgrade time; other factors must be considered. Furthermore, the optimal upgrade time can occur
later in cases when diffusion is faster, or in cases when the investment cost falls rapidly.

There are a variety of proactive pricing approaches that a regulator could use for inducing the optimal
timing. In this paper, we focus our discussion on the static pricing policy. We demonstrate that because this
pricing policy gives an excess profit to the regulated company, it creates a conflict between social welfare and
consumer surplus. We also discuss the influence of the regulator’s preference for maximizing social welfare versus
maximizing consumer surplus on the optimal timing, and demonstrate that when the regulator is more focused on
the consumer benefits, the optimal timing should be delayed.

Of course, there are other possible proactive pricing schemes. Since the disadvantages of the static pricing

policy come primarily from the excess profit that all effective proactive schemes will have, the tradeoffs described
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above are illustrations of the problems to be addressed. Further work is needed to explore other proactive pricing
policies that balance the conflicting objectives, such as social welfare maximization, consumer surplus

maximization, simplicity, and robustness in the face of cost and demand uncertainty.
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Appendix
Proof of Theorem 1:

Take the first-order derivative of I1(7) (see Equation 4) with respect to T:

ﬂ_ﬁx —0T_+Oo -oT
= [ X (9, Ddpe { D(p, Tdpe

+(1—a)[@— R(Me™ T +alo C(T)- C (N]e°T

Since at the optimal timing 7", :ZﬂT =0

+00 +00 v(

* * * ' * * R
{D(¢,T )d¢—kfX(¢,T ¢ =alo C(T") -C (T )]+ - R(T ) -

Proof of Theorem 2 and Corollary 1:
Theorem 2(a), (b),(c), and Corollary 1 can be proven by the same approach. In the following, we

demonstrate that approach by proving Theorem 2(a):

Proof Let T{* be the optimal timing and II, (7, 1*) be the resulting weighted social welfare when C(#)=C,(f). Let
T, be the optimal timing and I, (T 2* ) be the resulting weighted social welfare when C(£)=C,(?).

By assumption, IT, (Tl*) =TI, (Tz*) and II, (Tz*) =11, (Tl*) , which lead to:

Tl*+°° T]*+oo
[ [X(p.t)dpe ™ dt~ [ [D(,t)dp e " dt
Tz*kl T; 0

—U- )R (T = Ry(T3)e ™ 1= alC /(T e T =C (T3 )e %120
and

. .
Ty 4 Tj 400

[ [ X(p.t)dpe™ di~ [ [D(¢,0)dp e dt
o

#*

Lk

(=) Ry (1)e™ T = Ry (1) ™ 1= oy (7)™ = Cy (1) " ] 50
If the regulator adopts the same pricing policy, the excess profit to induce the company to upgrade the
infrastructure at time Tl* and time Tz*, J'C(Tl*) and 7 (T. 2* ), should be the same for both the case when
C(H)=C(¢) and the case when C()=C,(¢), i.e.:

R(T)) =0 C(T)+a(T), Ry(T]) =0 Cy(T7) +a(T;)
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and R(Ty)=0C(T,)+n(T, ), R,(Ty)=0Cy(T)) +m(Ty)
Therefore

T} 4o T 400

[ [X(pt)dpe™ dt— [ [D(p,0)dpe " dt
k 7, 0

#*

Lk

(=) a(TYe T =Ty e % 1-[C(T)e ™ - G (T3 )e " 120

Tr+°° T]‘+oo
[ [X(p.t)dpe ™ dt~ [ [D($t)dpe " dt
an T, k, 7, 0
—(- )T )e N (T3 )e % 1= [Co (T )™ = Cy (T3 )e™ "2 10
which lead to:

[C ()T =y (T)e ™ 12 [C (T )e T —Cy(Ty)e " ]

Since

{loC\(1)=Ci (D] -[0 C,(1)- Cy(O)]}e"dt

SL—

—[G ()T = T3 B -G - € (B )e 120
and [0 C,(H) -C ()] s[o C, (1) - Cy (1],

L'<T Q. E.D.
Proof of Theorem 3:

a) The company’s profit function is:

I(T) = +fCRe ~Oldt —-C(Te T
T

2
A oand L cpat 7T iff R=0C(T")-C(T")
dT dr?

Therefore, the company’s profit is maximized at when T = T", so the company will be induced to upgrade

the infrastructure at that time, iff R = 0 C(T"*)- C (T")

b) Plug R =0 C(T")- C (T") into the necessary condition of Equation 5. Q. E. D.
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Table 1

Variables Used in the Mathematical Model

Symbols

Definitions

Properties and Constraints

Decision Variables

r(,T)

Subscription fee per unit of time for using
the new feature in phase 1

Additional revenue per unit of time the
company gets after it upgrades the
infrastructure at time ¢, assuming the
regulator expects the upgrade takes place at
T.

Regulator desired time to upgrade the
infrastructure

p=h

R(D)=r(T.T)

0<sT< +

if T =+, then Phase 1 lasts forever.

Demand

D(¢,)

)

X(.0)

Number of subscribers who are willing to
pay at least ¢, at time ¢, for the new
feature.

Diffusion function.

Number of subscribers who would
subscribe to the new feature at time ¢ in
phase 1, if price is ¢ .

0D _ ) 3D _

D) =0, YT

F(t)=0 M20, F(+) =1
> dt

3D
X - (2B

)

(t- wdu

0

Cost

(1)

Fixed cost of upgrading the infrastructure
at time 7.

Cost per customer per unit of time of
providing the new feature in phase 1.

) _ d*C(

= ,dTZDZO,C(T)ZO

Discount rate.

ag>0
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Figure 2
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