
Enforcing More with Less:
Formalizing Target-aware Run-time Monitors

Yannis Mallios1, Lujo Bauer1, Dilsun Kaynar1, and Jay Ligatti2

1 Carnegie Mellon University, Pittsburgh, USA
{mallios,lbauer,dilsunk}@cmu.edu

2 University of South Florida, Tampa, USA
ligatti@cse.usf.edu

Abstract. Run-time monitors ensure that untrusted software and sys-
tem behavior adheres to a security policy. This paper defines an expres-
sive formal framework, based on I/O automata, for modeling systems,
policies, and run-time monitors in more detail than is typical. We explic-
itly model, for example, the environment, applications, and the interac-
tion between them and monitors. The fidelity afforded by this framework
allows us to explicitly formulate and study practical constraints on policy
enforcement that were often only implicit in previous models, providing
a more accurate view of what can be enforced by monitoring in practice.
We introduce two definitions of enforcement, target-specific and gener-
alized, that allow us to reason about practical monitoring scenarios. Fi-
nally, we provide some meta-theoretical comparison of these definitions
and we apply them to investigate policy enforcement in scenarios where
the monitor designer has knowledge of the target application and show
how this can be exploited to make more efficient design choices.

1 Introduction

Today’s computing climate is characterized by increasingly complex software
systems and networks, and inventive and determined attackers. Hence, one of
the major thrusts in the software industry and in computer security research has
become to devise ways to provably guarantee that software does not behave in
dangerous ways or, barring that, that such misbehavior is contained. Example
guarantees could be that programs: only access memory that is allocated to them
(memory safety); only jump to and execute valid code (control-flow integrity);
and never send secret data over the network (a type of information flow).

A common mechanism for enforcing security policies on untrusted software
is run-time monitoring. Run-time monitors observe the execution of untrusted
applications or systems and ensure that their behavior adheres to a security
policy. This type of enforcement mechanism is pervasive, and can be seen in
operating systems, web browsers, firewalls, intrusion detection systems, etc. A
common example of monitoring is system-call interposition (e.g., [12]): given an
untrusted application and a set of security-relevant system calls, a monitor inter-
cepts calls made by the application to the kernel, and enforces a security policy

2 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

by taking remedial action when a call violates the policy (Fig. 1). In practice,
several instantiations of monitors could be used in this scenario. Understanding
and formally reasoning about each is as important as understanding the general
concept, since it allows important details to be captured that might be lost at a
higher level of abstraction. Two dimensions along which instantiations can differ
are: (1) the monitored interface: monitors can mediate different parts of the com-
munication between the application and the kernel, e.g., an input-sanitization
monitor will mediate only inputs to the kernel (dashed lines in Fig. 1); and (2)
trace-modification capabilities: monitors may have a variety of enforcement ca-
pabilities, from just terminating the application (e.g., when it tries to write to
the password file), to being able to perform additional remedial actions (e.g.,
suppress a write system call and log the attempt).3

Untrusted
application

Original
kernel

kernel space

user space

Modified
kernel

Monitor

system
call

allowed
result

allowed
system
call

system
call

result

un-mediated
result

Fig. 1: System-call interposition:
dashed line shows an input-
mediating monitor; solid line an
input/output-mediating monitor.

Despite the ubiquity of run-time monitors,
their use has far outpaced theoretical work
that makes it possible to formally and rigor-
ously reason about monitors and the policies
they enforce. Such theoretical work is neces-
sary, however, if we are to have confidence that
enforcement mechanisms are successfully car-
rying out their intended functions.

Several proposed formal models (e.g., [23,
17]) make progress towards this goal. They
use formal frameworks to model monitors and
their enforcement capabilities, e.g., whether
the monitors can insert arbitrary actions into
the stream of actions that the target wants to
execute. These frameworks have been used to
analyze and characterize the policies that are
enforceable by the various types of monitors.

However, such models typically do not capture many details of the moni-
toring process, including the monitored interface, leaving us with practical sce-
narios that we cannot reason about in detail. In our system-call interposition
scenario, for example, without the ability to model the communication between
the untrusted application, the monitor, and the kernel, it may not be possible to
distinguish between and compare monitors that can mediate all security-relevant
communication between the application and the kernel (solid lines in Fig. 1) and
monitors that can mediate only some of it (dashed lines in Fig. 1).

Some recent models (e.g., [18, 13]) allow reasoning about bi-directional com-
munication between the monitor and its environment (e.g., application and ker-
nel), but do not explicitly reason about the application or system being mon-
itored. In practice, however, monitors can enforce policies beyond their opera-
tional enforcement capabilities by exploiting knowledge about the component
that they are monitoring. For example, a policy that requires that every file

3 In this paper we do not consider mechanisms that arbitrarily modify the target
application, such as by rewriting.

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 3

that is opened must be eventually closed cannot, in general, be enforced by any
monitor, because the monitor cannot know what the untrusted application will
do in the future. However, if the monitored application always closes files that
it opens, then this policy is no longer unenforceable for that particular applica-
tion. Such distinctions are often relevant in practice—e.g., when implementing a
patch for a specific type or version of an application—and, thus, there is a need
for formal frameworks that will aid in making informed and provably correct
design and implementation decisions.

In this paper, we propose a general framework, based on I/O automata, for
more detailed reasoning about policies, monitoring, and enforcement. The I/O
automaton model [19] is a labeled transition model for asynchronous concurrent
systems. We chose I/O automata because we wanted an automata-based formal-
ism, similarly to many previous models of run-time enforcement mechanisms,
but with enough expressive power and established meta-theory to model asyn-
chronous systems (e.g., communication between the application, the monitor,
and the kernel).Our framework provides abstractions for reasoning about many
practical details important for run-time enforcement, and, in general, yields a
richer view of monitors and applications than is typical in previous analyses of
run-time monitoring. For example, our framework supports modeling practical
systems with security-relevant actions that the monitor cannot mediate.

We make the following specific contributions:

– We show how I/O automata can be used to faithfully model target applica-
tions, monitors, and the environments in which monitored targets operate,
as well as various monitoring architectures (§3).

– We extend previous definitions of security policies and enforcement to sup-
port more fine-grained formal reasoning of policy enforcement (§4).

– We show that this more detailed model of monitoring forces explicit reason-
ing about concerns that are important for designing run-time monitors in
practice, but about which previous models often reasoned only informally
(§5.2). We formalize these results as a set of lower bounds on the policies
enforceable by any monitor in our framework.

– We demonstrate how to use our framework to exploit knowledge about the
target application to make design and implementation choices that may lead
to more efficient enforcement (§5.3). For example, we exhibit constraints un-
der which monitors with different monitoring interfaces (i.e., one can mediate
more actions than the other) can enforce the same class of policies.

Limitations. The goal of this paper is to introduce an expressive framework
for reasoning about run-time monitors, and illustrate how to use it for meta-
theoretical analysis of run-time enforcement. Due to space constraints, we omit
or abbreviate several important aspects of the discussion, including: (1) Real-
world examples: We provide simple examples to illustrate the use and advantages
of our framework (§3), but do not encode any complex real-world scenarios.
I/O automata-based modeling of complex applications requires mostly stand-
alone work (e.g., [15, 2]), and we defer to future work such examples for run-
time monitoring. (2) Translation of previous models: We omit translations of

4 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

previous models of monitors (e.g., edit automata [17]) or auxiliary notions for
defining enforcement (e.g., transparency [17]). Examples of modeling previously
studied monitors can be found in our technical report [20]; a discussion of why
transparency is non-essential in expressive frameworks, such as ours, can be
found in [18]. (3) Formal presentation: When the notational complexity needed
to formally define I/O automata and our framework obscures underlying insights,
our presentation is not fully formal; a more formal treatment can be found in
our technical report [20].

Roadmap. We first briefly review I/O automata (§2). We then informally show
how to model monitors and targets in our framework and discuss some benefits
of this approach (§3). Then, we formally define policies and enforcement (§4),
and show examples of meta-theoretical analysis enabled by our framework: (a)
lower bounds for enforceable policies (§5.2), and (b) constraints under which
seemingly different monitoring architectures enforce the same classes of policies
(§5.3).

2 I/O Automata

I/O automata are a labeled transition model for asynchronous concurrent sys-
tems [24, 19]. Here we informally review aspects of I/O automata that we build
on in the rest of the paper; please see our technical report [20] for a more formal
treatment. We encourage readers familiar with I/O automata to skip to §3.

I/O automata are typically used to describe the behavior of a system in-
teracting with its environment. The interface between an automaton A and its
environment is described by the action signature sig(A), a triple of disjoint
sets—input(A), output(A), and internal(A). We write acts(A) for input(A) ∪
output(A) ∪ internal(A), and call output and internal actions locally controlled.

Formally, an I/O automaton A consists of: (1) an action signature, sig(A);
(2) a (possibly infinite) set of states, states(A); (3) a nonempty set of start states,
start(A) ⊆ states(A); (4) a transition relation, trans(A) ⊆ states(A) × acts(A)
× states(A), such that for every state q and input action a there is a transition
(q , a, q ′) ∈ trans(A); and (5) an equivalence relation Tasks(A) partitioning the
set output(A) ∪ internal(A) into at most countably many equivalence classes.

If A has a transition (q , a, q ′) then we say that action a is enabled in state
q . Since every input action is enabled in every state, I/O automata are said to
be input-enabled. When only input actions are enabled in q , then q is called a
quiescent state. The set of all quiescent states of an automaton A is denoted
by quiescent(A). The equivalence relation Tasks(A) is used to define fairness,
which essentially says that the automaton will give fair turns to each of its tasks
while executing.

An execution e of A is a finite sequence, q0, a1, q1, . . . , ar, qr, or an infi-
nite sequence q0, a1, q1, . . . , ar, qr, . . ., of alternating states and actions such that
(qk, ak+1, qk+1) ∈ trans(A) for k ≥ 0, and q0 ∈ start(A). A schedule is an execu-
tion without states in the sequence, and a trace is a schedule that consists only
of input and output actions. An execution, trace, or schedule module describes

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 5

the behavior exhibited by an automaton. An execution module E consists of
a set states(E), an action signature sig(E), and a set execs(E) of executions.
Schedule and trace modules are similar, but do not include states. The sets of
executions, schedules, and traces of an I/O automaton (or module) X are de-
noted by execs(X), scheds(X), and traces(X). Given a sequence s and a set X,
s|X denotes the sequence resulting from removing from s all elements that do
not belong in X. Similarly, for a set of sequences S, S|X = {(s|X) | s ∈ S}.

The symbol ε denotes the empty sequence. We write σ1;σ2 for the concate-
nation of two schedules or traces, the first of which has finite length. When σ1 is
a finite prefix of σ2, we write σ1 � σ2, and, if a strict finite prefix, σ1 ≺ σ2. Σ?

denotes the set of finite sequences of actions and Σω the set of infinite sequences
of actions. The set of all finite and infinite sequences of actions is Σ∞ = Σ?∪Σω.

An automaton that models a complex system can be constructed by com-
posing automata that model the system’s components. A set of I/O automata
is compatible if their output actions are disjoint and the internal actions of each
automaton are disjoint with all actions of the other automata. The composition
A = A1× . . .×An of a set of compatible automata {Ai : i ∈ I} is the automaton
that has as states the Cartesian product of the states of the component automata
and as behaviors the interleavings of the behaviors of the component automata.
Composition of modules is defined similarly [24].

Unlike in models such as CCS [22], composing two automata that share ac-
tions (i.e., outputs of one are inputs to the other) causes those actions to become
output actions of the composition. Actions that are required to be internal need
to be explicitly classified as such using the hiding operation, which takes as input
a signature and a set of output actions to be hidden, and produces a signature
with those actions reclassfied as internal. Renaming, on the other hand, changes
the names of actions, but not their types, i.e., renaming is a total injective map-
ping between sets of actions.

3 Specifying Targets and Monitors

We model targets (the entities to be monitored) and monitors as I/O automata,
and denote them by metavariables T and M. Targets composed with monitors
are monitored targets; such an example is the modified kernel in Fig. 1. Monitored
targets may themselves be targets for other monitors.

Building on the system-call-interposition example (Fig. 1), we now show how
to model monitors and targets using I/O automata. Suppose the application’s
only actions are OpenFile, WriteFile, and CloseFile system calls; the kernel’s
actions are FD (to return a file descriptor) and the Kill system call. The appli-
cation can request to open a file fn, and the kernel keeps track of the requests as
part of its state. When a file descriptor fd is returned in response to a request
for fn, fn is removed from the set of requests. The application can then write
bytes number of bytes to, or close, fd. Finally, a Kill action terminates the ap-
plication and clears all requests. Such a formalization, where the target’s actions

6 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn) FD-Ker
Kill-Ker()

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(fd,fn)

(3)(4)

(1) (2)

(a) Input/output-mediating monitor

App Mon Kernel

FD
Kill()

OpenFile (fn)
CloseFile(fd)

WriteFile (fd,bytes)

(fd,fn)

OpenFile-Ker(fn)
CloseFile-Ker(fd)

WriteFile-Ker (fd,bytes)

(b) Input-mediating monitor

Fig. 2: I/O automata interface diagrams of kernel, application, and monitor

depend on results returned by the environment, was outside the scope of original
run-time-monitor models, as identified also by recent work (e.g., [18, 13]).

Fig. 2a shows I/O automata interface diagrams of the monitored system con-
sisting of the application and the monitored kernel.4 The application’s and the
kernel’s interfaces differ only in that the input actions of the kernel are out-
put actions of the application, and vice versa. This models the communication
between the application and the kernel when they are considered as a single
system. The kernel’s readiness to always accept file-open requests is modeled
naturally by the input-enabledness of the I/O automaton. Paths (2) and (3)
represent communication between the monitor and the kernel through the re-
named actions of the kernel (using the renaming operation of I/O automata),
e.g., OpenFile(x) becomes OpenFile-Ker(x), and thus irrelevant to a policy that
reasons about OpenFile actions. Renaming models changing the target’s inter-
face to allow the monitor to intercept the target’s actions. In practice, this is
often done by rewriting the target to inline a monitor. Finally, we also hide
the communication between the monitor and the kernel to keep it internal to
the monitored target (denoted by the dotted line around the monitored ker-
nel automaton). This models a monitoring process that is transparent to the
application (i.e., the application remains unaware that the kernel is monitored).

In our system-call interposition example we described some choices that a
monitor designer can make, such as choosing (1) the interface to be monitored,
e.g., mediate only input actions, and (2) the trace-modification capabilities of the
monitor. Choice (1) can be expressed in our model by appropriately restricting
the renaming function applied to the target. For example, in Fig. 2b, we renamed
only the input actions of the kernel (i.e., OpenFile, CloseFile, and WriteFile).
This models monitors that mediate inputs sent to the target and can prevent,
for example, SQL injections attacks. Similarly, renaming only the outputs of the
target models monitors that mediate only output actions (and can prevent, for
example, cross-site scripting attacks). Choice (2) is closely related to representing
previous models of monitors in our framework; please see our technical report for
more detail on this and on modeling different trace-modification capabilities [20].

4 The kernel’s I/O automaton definition is shown in our technical report [20].

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 7

4 Policy Enforcement

In this section we define security policies and two notions of enforcement: target-
specific and generalized enforcement.

4.1 Security Policies

A policy is a set of (execution, schedule, or trace5) modules. We let the metavari-
ables P and P̂ range over policies and their elements, i.e., modules, respectively.
The novelty of this definition of policy compared to previous ones (e.g., [23, 17])
is that each element of the policy is not a set of automaton runs, but, rather, a
pair of a set of runs (i.e., schedules or traces) and a signature, which is a triple
consisting of a set of inputs, a set of outputs, and a set of internal actions. The
signature describes explicitly which actions that do not appear in the set of runs
are relevant to a policy. This is useful in a number of ways. When enforcing a
policy on a system composed of several previously defined components, for ex-
ample, the signatures can clarify whether a policy that is being enforced on one
component also reasons about (e.g., prohibits or simply does not care about) the
actions of another component. For our running example, if the signature con-
tains only Open, FD, and Kill, then all other system calls are security irrelevant
and thus permitted; if the signature contains other system calls (SocketRead),
then any behaviors exhibiting those calls are prohibited.

Our definition of a policy as a set of modules resembles that of a hyperprop-
erty [8] and previous definition of policies (modulo the signature of each schedule
or trace module) and captures common types of policies such as access control,
noninterference, information flow, and availability.

I/O automata can have infinite states and produce possibly infinite com-
putations. We would like to avoid discussions of computability and complexity
issues, and so we make the assumption that all policies P that we discuss are
implementable [24], meaning that for each module P̂ in P, there exists an I/O
automaton A such that sig(A) = sig(P̂) and scheds(P̂) ⊆ scheds(A).

4.2 Enforcement

In §3 we showed how monitoring can be modeled by renaming a target T so
that its security-relevant actions can be observed by a monitorM and by hiding
actions that represent communication unobservable outside of the monitored
target. We now define enforcement formally as a relation between the behaviors
allowed by the policy and the behaviors exhibited by the monitored target.

Definition 1 (Target-specific enforcement) Given a policy P, a target T , and
a monitor M we say that P is specifically soundly enforceable on T by M
if and only if there exists a module P̂ ∈ P, a renaming function rename, and

5 Our analyses equally apply to execution modules, but, for brevity, we discuss only
schedule and trace modules.

8 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

a hiding function hide for some set of actions Φ such that (scheds(hideΦ(M×
rename(T)))|acts(P̂)) ⊆ scheds(P̂).

Here, hideΦ(M×rename(T)) is the monitored target: the target T is renamed
so that its security-relevant actions can be observed by the monitor M; hide is
applied to their composition to prevent communication between the monitor
and the target from leaking outside the composition.6 If a target does not need
renaming, rename can be the identity function; if we do not care about hiding all
communication, hide can apply to only some actions. For example, suppose the
monitored target from our running example (node with dotted lines in Fig. 2b)
is composed with an additional monitor that logs system-call requests and re-
sponses. We would then keep the actions for system-call requests and responses
visible to the logging monitor by not hiding them in the initial monitored target.

Def. 1 binds the enforcement of a policy by a monitor to a specific target.
We refer this type of enforcement as target-specific enforcement and to the cor-
responding monitor as a target-specific monitor. However, some monitors may
be able to enforce a property on any target. One such example is a system-
call-interposition mechanism that operates independently of the target kernel’s
version or type (e.g., a single monitor binary that can be installed in both Win-
dows and Linux). We call this type of enforcement generalized enforcement, and
the corresponding monitor a generalized monitor.7 More formally:

Definition 2 (Generalized enforcement) Given a policy P and a monitor M
we say that P is generally soundly enforceable by M if and only if for all
targets T there exists a module P̂ ∈P, a renaming function rename, such that
(scheds(M× rename(T))|acts(P̂)) ⊆ scheds(P̂).

Different versions of Def. 1 and 2 can be obtained by replacing schedules
with traces (trace enforcement), fair schedules, or fair traces (fair enforcement);
or by replacing the subset relation with other set relations (e.g., equality) for
comparing the behaviors of the monitored target to those of the policy [18, 5].
In this paper we focus on the subset and equality relations, and refer to the cor-
responding enforcement notions as sound (e.g., Def. 1) and precise enforcement.

No constraints are placed on the renaming and hiding functions in Def. 1
and 2, as this permits more enforcement scenarios to be encoded in our frame-
work. For example, by α-renaming a target, which in practice means that we are
ignoring it, and incorporating some of its functionality (if needed) in a monitor,
we can encode a technique similar to the one used to automate monitor synthe-
sis (e.g., [21]). Another reason for this choice, stemming from a meta-theoretical
analysis of the two distinct notions of enforcement, is discussed next, in §4.3.

6 Since Def. 1 reasons about schedules (i.e., internal actions as well as input and
output), hideΦ is redundant: hiding reclassifies some output actions as internal, but
does not remove them from schedules. We include it here to illustrate our framework’s
ability to expose that, in practice, the environment can be oblivious to the monitoring
of the target application. In the rest of the paper we will omit the hiding operator.

7 Monitors of previous models, such as [23] and [17], are generalized monitors.

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 9

4.3 Comparing Enforcement Definitions

As an example of meta-theoretic analysis in our framework, we compare Def. 1
and 2. More specifically, one might expect target-specific monitors to have an
advantage in enforcement, i.e., the class of target-specific monitors should enforce
a larger set of policies than the class of generalized monitors. Intuitively, this is
because if a policy describes a behavior that is correctable for specific targets,
but not for all targets, then there is no generalized monitor that can enforce that
policy, even if target-specific monitors exist.8

Proposition 1. Given a monitor M:

1. ∀P : P is generally soundly enforceable by M⇒
∀T : P is specifically soundly enforceable on T by M, and

2. ∃P∃T : (P is specifically soundly enforceable on T by M)∧
¬(P is generally soundly enforceable by M).

Prop. 1 compares the definitions of enforcement (Def. 1 and 2) with respect
to the same monitor, and shows that they capture the intuition that a monitor
that enforces a policy without being tailored for a specific target can enforce the
policy on any target, while the inverse does not hold in general.

However, we can get a deeper insight when trying to characterize the two
definitions of enforcement in general, i.e., independently of a specific monitor.
Surprisingly, in such a comparison the two definitions turn out to be equivalent.

Theorem 1. ∀P∀T :
∃M : P is specifically soundly enforceable on T by M ⇔
∃M′ : P is generally soundly enforceable by M′.

The right-to-left direction of the theorem is straightforward: any generalized
monitor can be used as a target-specific monitor. The other direction is more
interesting since it suggests, perhaps surprisingly, that a generalized monitor can
be constructed from a target-specific one. More specifically, given a monitor that
enforces a policy on a specific target, we can use this monitored target as the basis
for a monitor for any other target. In that case, security-relevant behaviors of
the system would be exhibited only by the monitor (formally, all target actions
would be renamed to become security irrelevant). For example, suppose that
different versions of an application are installed on each of our machines. If we
find a patch (i.e., monitor) for one version, then Thm. 1 implies that instead
of finding patches for all other versions, we can distribute the patched version
(i.e., monitored target) to all machines and modify the existing applications on
those machines so that their behavior is ignored. This approach may apply if
installing the patched version of the application on top of other versions is more
cost-efficient than finding patches for all other versions.

Thm. 1 holds because Def. 1 and 2 place no restrictions on renaming functions
(i.e., on how a monitor is integrated with a target). In practice, this interaction
may be constrained. Thus, one might argue that it would be more natural for the

8 Due to space constraints, proofs are given in our companion technical report [20].

10 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

only-if direction of the theorem to fail, since it erases the distinction between
target-specific and generalized enforcement. The following theorem shows the
effect of introducing such a constraint.

Theorem 2. ∃P∃T :(
∃M: P is specifically soundly enforceable on T by M

)
and

¬
(
∃M′: P is conditionally generally soundly enforceable by M′, i.e.,

for all targets T ′ there exists a module P̂ ∈P, and a renaming function
rename, such that if :

(C1) acts(P̂) ∩ acts(T ′) 6= ∅, and
(C2) range(rename) ⊆ acts(M′)

then (scheds(M′ × rename(T ′))|acts(P̂)) ⊆ scheds(P̂))
)

.

The first condition (C1) prohibits using an element of the policy that is
irrelevant to the target that we are trying to monitor. For example, if a policy
consists of one module that contains networking events (i.e., the signature of the
module contains only network-related actions) and another that contains file-
related events (e.g., a signature similar to the one of our system-call interposition
example), then if we want to enforce that policy on a network card (i.e., a target
that exhibits network actions but no file actions), we must use the former module.

The second condition (C2) ensures that the only way that we rename the
target is to match the monitors interface. In other words, we may not arbitrarily
rename the target so that nobody can “listen” to its actions.

Thm. 2 lists some conditions under which generalized and target-specific
enforcement are not equivalent. More satisfying would be to identify a single
constraint under which the equivalence would not hold for any policy or target;
however, given the wide variety of enforcement scenarios in practice, we conjec-
ture that no single constraint allows Thm. 2 to be universally quantified over
all policies and targets, as Thm. 1 is. Since our goal is to introduce a frame-
work general enough to accommodate as many practical scenarios as possible,
we rely on the monitor designer to impose appropriate restrictions on renaming
or monitors that accurately reflect the specific practical scenarios under scrutiny.

5 Bounds on Enforceable Policies

This section describes several meta-theoretic results, facilitated by the abstrac-
tions described thus far, that further our understanding of the general limitations
of practical monitors that fit this model.

5.1 Auxiliary Definitions

I/O automata are input enabled—all input actions are enabled at all states.
Several arguments can be made in favor of or against input-enabledness. For
example, one can argue that input-enabledness leads to better design of systems

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 11

because one has to consider all possible inputs [19]. On the other hand, this
constraint may be too restrictive for practical systems [1].

In our context, we believe input-enabledness is a useful characteristic, since
run-time monitors are by nature input-enabled systems: a monitor may receive
input at any time both from the target and from the environment (e.g., keyboard
or network). However, a monitor modeled as an input-enabled automaton can
enforce only those policies that allow the arrival of inputs at any point during
execution. This is reasonable: a policy that prohibits certain inputs cannot be
enforced by a monitor that cannot control those inputs. We later combine this
and other constraints to describe the lower bound of enforceability in our setting.

We say that a module (or policy) is input forgiving (respectively, internal
and output forgiving) if and only if it allows the empty sequence and allows
each valid sequence to be extended to another valid sequence by appending any
(possibly infinite) sequence of inputs.

Definition 3 A schedule module P̂ is input forgiving if and only if:
(1) ε ∈ scheds(P̂); and
(2) ∀s1 ∈ scheds(P̂) : ∀s2 � s1 : ∀s3 ∈ (input(P̂))∞ : (s2; s3) ∈ scheds(P̂).

I/O automata’s definition of executions allows computation to stop at any
point. Thus, the behavior of an I/O automaton is prefix-closed : any prefix of an
execution exhibited by an automaton is also an execution of that automaton.

Definition 4 A schedule module P̂ is prefix closed if and only if:

∀s1 ∈ Σ∞ :
(

s1 ∈ scheds(P̂)⇒ ∀s2 ∈ Σ? : s2 � s1 : s2 ∈ scheds(P̂)
)

.

These two characteristics are unsurprising from the standpoint of models
for distributed computation, but describe practically relevant details typically
absent from models of run-time enforcement. Our model, instead of making
assumptions that may not hold in practice, e.g., that all actions can be mediated,
takes a more nuanced view, which admits that some aspects of enforcement are
outside the monitor’s control, such as scheduling strategies for security-relevant
actions that cannot be mediated. The above definitions help explicate these
assumptions when reasoning about enforceable policies, as we see next.

5.2 Lower Bounds of Enforceable Policies

Another constraint that affects enforceability and is specific to monitoring is
that, in practice, a monitor cannot always ignore all behavior of the target
application. Some real monitors decide what input actions the application sees,
but otherwise do not interfere with the application’s behavior—firewalls belong
to this class of monitors. In such cases, a monitor can soundly enforce a policy
only if the policy allows all behaviors that the target can exhibit when it receives
no input. We call such policies, and their modules, quiescent forgiving (recall
the definition of a quiescent state from §2). This captures a limitation that was
understood to be present in run-time monitoring, but that typically was not
formally expressed. More formally:

12 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

Definition 5 A schedule module P̂ is quiescent forgiving for some T if and
only if:
∀e ∈ execs(T) such that e = q0, a1, . . . , qn :(

qn ∈ quiescent(T) ∧
(
∀i ∈ N : 0 ≤ i < n : qi /∈ quiescent(T)

))
⇒(

sched(e)|acts(P̂)
)
∈ scheds(P̂) ∧ (∀i ∈ N : 0 ≤ i < n : (sched(q0, . . . , qi) |

acts(P̂)) ∈ scheds(P̂)).

The following theorem formalizes a lower bound: a policy that is not quiescent
forgiving, input forgiving, and prefix closed cannot be (precisely) enforced.

Theorem 3. ∀P : ∀P̂ ∈P : ∀T : ∀rename :
∃M : (scheds(M× rename(T))|acts(P̂)) = scheds(P̂) ⇒

P̂ is input forgiving, prefix closed, and quiescent forgiving for rename(T).

Thm. 3 reveals that monitors, regardless of their editing power, can enforce
only prefix-closed properties (e.g., safety). In our context, even the equivalent of
an edit monitor cannot enforce renewal properties (unlike in [17]), since, when
constrained by prefix closure, renewal properties collapse to safety. This is be-
cause our model of executions allows computation to stop at any point, high-
lighting that the system may stop executing for reasons beyond our control, e.g.,
a power outage. In contrast, previous models assumed that a monitor’s enabled
actions would always be performed (e.g., [17]). In our framework, such guar-
antees are not built in, but can be explicitly added through fairness and other
similar constraints on I/O automata [16]. This is another instance of our frame-
work making explicit practical assumptions and constraints that affect enforce-
ment. Earlier results about the enforcement powers of different types of monitors
(e.g., that truncation monitors enforce safety and edit monitors enforce renewal
policies) are also provable in our framework when we restrict reasoning to fair
schedules and traces.

In practice, monitors typically reproduce at most a subset of a target’s func-
tionality. If a monitor composed with an application is to exhibit the same range
of behaviors as the unmonitored application, it typically consults the target to
generate these behaviors. In the system-call interposition example, for instance,
the monitor cannot return correct file descriptors without consulting the kernel.
Such monitors, which regularly consult an application, cannot precisely enforce
(with respect to schedules) arbitrary policies even if they are quiescent forgiving,
input forgiving, and prefix-closed. This is because input the monitor forwards to
an application may cause the application to execute internal or output actions
(e.g., a buffer overflow) forbiden by the policy, but which the monitor cannot
prevent, since these are outside the interface between the monitor and the target.

On the other hand, in practice it is also common for the monitor (or system
designer) to have some knowledge about the target. This knowledge can be ex-
ploited to use simpler-than-expected monitors to enforce (seemingly) complex
policies. Although similar observations have been made before (e.g., program
re-writing [14], non-uniformity [17], use of static analysis [7]), our approach for-
malizes them within a single framework, which allows new results that were
beyond the scope of previous work, as we demonstrate in the following section.

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 13

5.3 Policies Enforceable by Target-specific Monitors

As discussed in §3, our framework allows defining monitors that mediate different
parts of the communication of a target with its environment, e.g., mediating a
target’s inputs and outputs or just its outputs. For brevity, rather than analyzing
the policies enforceable by specific monitors, as done previously [23, 17, 18, 14],
we show an instance in which our framework enables formal results useful to
designers of run-time monitors who have knowledge about the target application.
This is a novel analysis of how some knowledge of the target can compensate (in
terms of enforceability) for a narrower monitoring interface.9

In §3 we described two monitoring architectures: one where the monitor me-
diates the inputs and the outputs of the target, and another where it mediates
just the inputs. Intuitively, an input/output-mediating monitor should be able to
enforce a larger class of policies than an input-mediating one, since the former is
able to control (potentially) more security-relevant actions than the latter (i.e.,
the outputs of the target). In other words, some policies should be enforceable
by input/output mediating monitors, but not by input mediating ones:10

Theorem 4. ∃P :
(P is generally precisely enforceable by some input/output-mediating M1)∧
¬(P is generally precisely enforceable by some input-mediating M2).

For the proof we pick a policy whose elements (i.e., modules) disallow all
output actions (excluding the ones used for target-monitor communication) and
a target that performs only output actions. An input-mediating monitor cannot
enforce that policy on that target since it does not mediate its output, and thus
it cannot generally enforce the policy. However, an input/output-mediating mon-
itor will be able to enforce the policy, since whenever it receives any (renamed)
actions from the target, it will just suppress them.

Thm. 4 establishes that some policies are generally enforceable by input/output-
mediating monitors but not by input-mediating monitors. However, for some
targets the two architectures are equivalent in enforcement power:

Theorem 5. ∀P : ∀T :
P is specifically precisely enforceable on T by some input/output-mediating M1

iff P is specifically precisely enforceable on T by some input-mediating M2

given that:
(C1) P does not reason about the communication between the monitor

and the target,
(C2) ∀P̂ ∈P : scheds(P̂) is quiescent forgiving for T ,
(C3) ∀P̂ ∈P : scheds(P̂) ⊆ scheds(T), i.e., the policy does not allow schedu-

les that cannot be exhibited by the target, and

9 Another instance that focuses on the trace-modification capabilities of monitors
and shows how arguments that were difficult to formalize in less expressive frame-
works (e.g., [17]) can be naturally discussed in our model, can be found in [20].

10 For brevity, we state theorems informally, omitting details necessary for the proofs.
See our technical report [20] for detailed versions of the theorems and the proofs.

14 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

(C4) ∀P̂ ∈P: ∀s ∈ scheds(T) :
(
s /∈ scheds(P̂)⇒ ∃s′ � s :

(
(s′ ∈ scheds(P̂))

∧ (s′ = s′′; a) ∧ (a ∈ input(T))

∧ (∀t � s′: t ∈ scheds(T) ⇒ t /∈ scheds(P̂))
))

.

Constraint C2 ensures that a target’s outputs at the beginning of its execution,
until it blocks for input, obey the policy. C3 ensures that an input/output-medi-
ating monitor does not have an “unfair” advantage over an input-mediating one
due to policies that require actions that a target cannot exhibit. C4 ensures that
if a target receives input (from the monitor), then no behavior that it exhibits
(until it blocks to wait for more input) will violate the policy; or, if it does, then
that behavior can be suppressed without affecting the target’s future behavior.

Thm. 5 shows how our framework can help to make sound decisions for
designing monitors in practice. For example, consider a Unix kernel and the
policy that a secret file cannot be (a) deleted or (b) displayed to guest users. To
precisely enforce that policy, a monitor designer cannot in general use an input-
mediating monitor: although it can enforce (a) by not forwarding commands like
“rm secret-file”, it cannot enforce (b), since it does not know whether the kernel
can, for example, correctly identify guest users. However, if the designer knows
that the specific kernel meets the constraints of Thm. 5, e.g., the kernel does
not display secret files while booting (i.e., C2) and implements correct access-
control for guest users (i.e., C4), then an input-mediating monitor suffices. The
correctness of such design choices is not always obvious, and the above example
shows how our framework can aid in making more informed decisions. Moreover,
such decisions can benefit both efficiency (by not monitoring the kernel’s output
at run time) and security (since the monitor’s TCB is smaller).

6 Related Work

The first model of run-time monitors, security automata, was based on Büchi
Automata [23]. Since then, several similar models have extended or refined the
class of enforceable policies based on the enforcement and computational powers
of monitors (e.g., [17, 11, 10, 4]). Unlike these works, we focus on modeling not
just monitors, but also the target and the environment that monitors commu-
nicate with; this allows us to extend previous analyses of enforceable policies in
ways that were out of the scope for previous frameworks [18].

Hamlen et al. described a model based on Turing Machines [14], and com-
pared the policies enforceable by several types of enforcement mechanisms, in-
cluding static analysis and inlined monitors. The main differences between this
model and ours is that we explicitly model communication between the monitor,
the target, and the environment, and we do not consider rewriting the target.

Recent work has revised these models or adopted alternate ones, such as the
Calculus of Communicating Systems (CCS) [22] and Communicating Sequential
Processes (CSP) [6], to more conveniently reason about applications, the inter-
action between applications and monitors, and enforcement in distributed sys-
tems. An example of a revised model are Mandatory Results Automata (MRA),

Enforcing More with Less: Formalizing Target-aware Run-time Monitors 15

which model the (synchronous) communication between the monitor and the tar-
get [18]. MRA’s, however, do not model the target explicitly, making it difficult
to derive results about enforceable policies in target-specific environments.

Among the works building on CCS or CSP is Martinelli and Matteucci’s
model of run-time monitors based on CCS [21]. Like ours, their model captures
the communication between the monitor and the target, but their main focus
is on synthesizing run-time monitors from policies. In contrast, we focus on a
meta-theoretical analysis of enforcement in a more expressive framework.

Basin et al. proposed a practical language, based on CSP and Object-Z (OZ),
for specifying security automata [3]. They focus on the synchronization between
a single monitor and target application, although the language can capture many
other enforcement scenarios. Our work is similar, but focuses on showing how to
use such an expressive framework to derive meta-theoretical results on enforce-
able policies in different scenarios, instead of on the (complementary aspect) of
showing how to faithfully translate and model practical scenarios.

Gay et al. introduced service automata, a framework based on CSP for en-
forcing security requirements in distributed systems [13]. Although CSP provides
the abstractions for reasoning about specific targets and communication with the
monitor, such investigation and analysis is not the focus of that work.

7 Conclusion

Formal models of run-time monitors have improved our understanding of the
powers and limitations of enforcement mechanisms [23, 17], and aided in their
design and implementation [9]. However, these models often fail to capture de-
tails relevant to real-world monitors, such as how monitors integrate with targets,
and the extent to which monitors can control targets and their environment.

In this paper, we propose a general framework, based on I/O automata, for
reasoning about policies, monitoring, and enforcement. This framework provides
abstractions for reasoning about many practically relevant details important for
run-time enforcement, and, in general, yields a richer view of monitors and ap-
plications than is typical in previous analyses. We also show how this framework
can be used for meta-theoretic analysis of enforceable security policies. For ex-
ample, we derive lower bounds on enforceable policies that are independent of
the choice of monitor (Thm. 3). We also identify constraints under which moni-
tors with different monitoring capabilities (e.g., monitors that see only a subset
of the target’s actions) can enforce the same classes of policies (Thm. 5).

Acknowledgements This work was supported in part by NSF grants CNS-
0716343, CNS-0742736, and CCF-0917047; and by Carnegie Mellon CyLab under
Army Research Office grant DAAD19-02-1-0389.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. European Software
Engineering Conference (2001)

16 Yannis Mallios, Lujo Bauer, Dilsun Kaynar, and Jay Ligatti

2. Araragi, T., Attie, P.C., Keidar, I., Kogure, K., Luchangco, V., Lynch, N.A., Mano,
K.: On formal modeling of agent computations. In: Proc. 1st International Work-
shop on Formal Approaches to Agent-Based Systems–Revised Papers (2001)

3. Basin, D., Olderog, E.R., Sevinc, P.E.: Specifying and analyzing security automata
using CSP-OZ. In: Proc. ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2007)

4. Basin, D.A., Jugé, V., Klaedtke, F., Zalinescu, E.: Enforceable security policies
revisited. In: Proc. Principles of Security and Trust (POST) (2012)

5. Bishop, M.: Computer Security: Art and Science. Addison-Wesley Professional
(2002)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31, 560–599 (June 1984)

7. Chabot, H., Khoury, R., Tawbi, N.: Extending the enforcement power of truncation
monitors using static analysis. Computers and Security 30(4), 194–207 (2011)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proc. IEEE Computer Se-
curity Foundations Symposium (2008)

9. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proc. Workshop on New Security Paradigms (2000)

10. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at run-
time? Intl. Jrnl. Software Tools for Tech. Transfer (STTT) 14(3), 349–382 (2011)

11. Fong, P.W.L.: Access control by tracking shallow execution history. In: Proc. IEEE
Symposium on Security and Privacy (2004)

12. Garfinkel, T.: Traps and pitfalls: Practical problems in system call interposition
based security tools. In: Proc. Network and Distributed Systems Security Sympo-
sium (2003)

13. Gay, R., Mantel, H., Sprick, B.: Service automata. In: Proc. International Workshop
on Formal Aspects of Security and Trust (2011)

14. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Computability classes for enforce-
ment mechanisms. ACM Trans. Program. Lang. Syst. 28(1), 175–205 (2006)

15. Hickey, J., Lynch, N.A., Renesse, R.v.: Specifications and proofs for ensemble lay-
ers. In: Proc. International Conference on Tools and Algorithms for Construction
and Analysis of Systems (1999)

16. Kwiatkowska, M.Z.: Survey of fairness notions. Information and Software Technol-
ogy 31(7), 371–386 (1989)

17. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Transactions on Information and System Security 12(3) (2009)

18. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Proc.
European Symposium on Research in Computer Security (ESORICS) (2010)

19. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
20. Mallios, Y., Bauer, L., Kaynar, D., Ligatti, J.: Enforcing more with less: For-

malizing target-aware run-time monitors. Tech. Rep. CMU-CyLab-12-009, CyLab,
Carnegie Mellon University (2012)

21. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
Electron. Notes Theor. Comput. Sci. 179, 31–46 (2007)

22. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag (1982)
23. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),

30–50 (2000)
24. Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms. Master’s

thesis, Dept. of Electrical Engineering and Computer Science, MIT (1987)

