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Abstract

We present a distributed algorithm for assembling a
proof that a request satisfies an access-control policy ex-
pressed in a formal logic, in the tradition of Lampson et
al. [16]. We show analytically that our distributed proof-
generation algorithm succeeds in assembling a proof
whenever a centralized prover utilizing remote certificate
retrieval would do so. In addition, we show empirically
that our algorithm outperforms centralized approaches in
various measures of performance and usability, notably
the number of remote requests and the number of user
interruptions. We show that when combined with addi-
tional optimizations including caching and automatic tac-
tic generation, which we introduce here, our algorithm
retains its advantage, while achieving practical perfor-
mance. Finally, we briefly describe the utilization of these
algorithms as the basis for an access-control framework
being deployed for use at our institution.

1. Introduction

In order to permit a requested operation, a reference
monitor must verify evidence that the request should be
granted. In classical approaches to access control, this ev-
idence may be the presence of an authenticated identity
on an access-control list, or the verification of a capabil-
ity presented with the request. Several more recent pro-
posals encode access-control policy and supporting cre-
dentials in a formal logic (e.g., [16]). Of particular in-
terest here are those in which the evidence supporting a
request is a proof in this logic that the request satisfies the
access-control policy (e.g., [3]). That is, credentials (i.e.,
certificates) are encoded as formulas in the logic (e.g.,
“KAlice signed (KBob speaksfor Bob)”, using the no-
tation of [3]; see Section 3 for a summary) and used as
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premises, from which the policy is proved using inference
rules of the logic.

In this paper, we introduce a distributed strategy by
which this proof can be generated and show that the strat-
egy outperforms prior approaches in many contexts. All
prior works of which we are aware employ what we call an
eager strategy, in which the party assigned to submit the
proof1 (the reference monitor or requesting client) gen-
erates it singlehandedly, retrieving only certificates from
others when necessary. Instead, here we advocate a lazy
strategy, in which a party enlists the help of others to prove
particular subgoals in the larger proof—versus merely re-
trieving certificates from them—yielding a proof that is
assembled in a more distributed fashion.

There are compelling reasons to depart from the ea-
ger strategy employed in previous works. Fundamen-
tally, eager strategies place a burden on the prover to re-
quest certificates without knowledge of what certificates
are available or will be signed. As such, in systems where
delegations occur dynamically and at user discretion, an
eager strategy may request a certificate from a user that
the user will be unwilling to sign because it conveys too
much authority, or that conveys too little authority and so
dooms the user to be interrupted again later. For example,
an access-control policy requiring Alice says action(X)
in order to perform X (e.g., open a door) can be
satisfied by a request Bob says action(X) if Alice
signs Bob speaksfor Alice. However, as this con-
veys far more authority to Bob than merely the au-
thority to perform X—namely, the ability to perform
any action on behalf of Alice—Alice may refuse to
sign it. Similarly, asking Alice for a weak cer-
tificate, e.g., KAlice signed (Bob says action(X) ⊃
Alice says action(X)), precludes Alice from making
more general statements that will save her from being
interrupted later to approve another action Y for Bob.
For example, Alice might instead add Bob to a group
(e.g., KAlice signed (Bob speaksfor Alice.Students))
to which she has already delegated the right to perform X
(e.g., Alice says (Alice.Students says action(X) ⊃

1In contrast to our goals here, most systems do not submit a formal
proof, but rather informal (but sound) evidence that a request should be
granted. Except where appropriate in Section 2, in the rest of this paper
we will nevertheless refer to this evidence as a “proof”.
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Alice says action(X))) as well as other actions.
From this, Alice’s device can then assemble a proof
of Alice says (Bob says action(X) ⊃ Alice says
action(X)), which is exactly what was needed. More
importantly, Alice need not be contacted the next time
Bob needs to prove access to a resource to which
Alice.Students are authorized.

As such, we advocate a distributed (“lazy”) prov-
ing strategy, whereby (continuing our example)
Bob asks Alice to prove the subgoal (Alice says
(Bob says action(X) ⊃ Alice says action(X))). In
addition to permitting Alice more flexibility in choosing
how to prove this (if she chooses to at all), we show
empirically that this approach can have significant
performance and usability benefits in a system that uses
a tactical theorem prover to assemble this proof. In par-
ticular, we demonstrate using an access-control policy for
physical access at our institution that the lazy approach
we advocate achieves significantly better performance
and usability in natural measures, including the number
of messages sent and the number of interruptions to
users. We also describe extensions to lazy proving that
further improve these measures, even when compared
to the same improvements applied to an eager strategy,
and reduce overheads to practical levels. While some of
these extensions, notably caching, have been explored
elsewhere, we demonstrate that caching must be used
in unintuitive ways to achieve its potential, and we
further introduce a novel and more effective optimization
called automatic tactic generation. These empirical
improvements are achieved despite the fact—which we
prove here—that our lazy strategy will always succeed in
completing a proof when the eager approach would.

Our motivation for pursuing this work is a system that
we are presently implementing at our institution to build
a robust and secure authorization device from a standard
converged mobile device (“smartphone”). In the context
of this paper, each phone is equipped with a tactical the-
orem prover for generating proofs of authorization to ac-
cess resources, which in our testbed include computer ac-
counts and physical rooms. At the time of this writing,
we are equipping a new building on campus to control ac-
cess to over 25,000 square feet of space, including over
60 doors, as well computer accounts and other virtual re-
sources for persons occupying this space. The algorithms
described here are central to this testbed.

The remainder of this paper is structured as follows.
We discuss related work in Section 2. We cover back-
ground in access-control logics and tactical theorem prov-
ing in Section 3. We detail our approach to distributed
proof generation in Section 4. We evaluate our ap-
proach empirically and introduce optimizations including
caching and automatic tactic generation in Section 5. We
conclude in Section 6.

2. Related Work

Distributed authorization has received considerable at-
tention from the research community. Much of the re-
lated research, however, revolves around formalizing and
analyzing the expressive power of authorization systems
(c.f., [1, 3, 12, 17]), and only a fraction of it addresses the
practical details and strategies for distributing and collect-
ing certificates.

Taos The Taos operating system made two main con-
tributions to distributed access control [23]: its access-
control mechanism was inspired by a formal logic [2, 16];
and its access-control mechanism was built in at the OS,
rather than application, level. The former quality inspired
a greater degree of trust in the well-foundedness, and
therefore correctness, of the implementation. The latter
allowed the notion of identity to be embedded at a lower
level, making it easier, for example, to reason about the
security of communication channels within the OS.

In Taos, authority is initially derived from login cre-
dentials, and then partially or fully delegated via secure
channels to other processes. A credential manager builds,
checks, and stores the credentials as they are passed
around. An authentication agent determines whether a re-
questing process has the right to execute a particular ac-
tion by querying the credential manager and referring to
access-control lists (ACLs). A trusted certification author-
ity (CA) maintains the mappings between cryptographic
keys and the names used in ACLs. Reasoning about cre-
dentials is performed locally by the credential manager,
and there are no provisions for identifying and locating
missing credentials.

PolicyMaker and KeyNote PolicyMaker [7] is a trust-
management framework which blurs the distinction be-
tween policies and credentials by expressing them both as
(possibly signed) programs. Determining whether a pol-
icy is satisfied involves executing the policy and the sup-
plied credentials. Execution is local to the entity that is
trying to verify whether a request is valid.

In the general case, allowing credentials to include ar-
bitrary programs causes the evaluation of these credentials
to become potentially intractable. However, by imposing
constraints on credentials (in particular, by requiring each
to be executable in polynomial time, monotonic, and au-
thentic) it is possible to specify a polynomial-time algo-
rithm for determining whether a set of credentials satis-
fies a policy [8]. These and other constraints led to the
creation of KeyNote [6], which refines the ideas of Poli-
cyMaker into a more practical system.

Although credentials contain code to be executed and
can be authored by different entities, the credentials are
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all collected by and executed in the local environment of
the entity that is evaluating a policy. Hence, at evaluation
time a credential cannot take advantage of any special-
ized knowledge present in the environment of the node on
which the credential originated. No provision is built into
PolicyMaker to automatically collect credentials as they
are needed. In fact, generalizing credentials in the style of
PolicyMaker may as a side effect make it more difficult to
determine how to go about locating a missing credential.

SD3 and QCM SD3 [15] is a trust-management system
that further develops the idea of automatically distributing
and fetching certificates that was introduced in QCM [14].
SD3 is implemented as middleware, shielding users from
the details of using cryptographic primitives and certifi-
cate distribution. Unlike most other distributed authoriza-
tion systems, but similarly to our approach, it produces
easily verifiable proofs of access—this makes it possible
for a potentially complex credential-collection algorithm
to reside outside of the system’s TCB. An SD3 query eval-
uator automatically fetches remote certificates needed to
fulfill access requests. In addition, it allows certificates
to be requested using wildcards and caches remote certifi-
cates after they have been fetched. In this paper we in-
vestigate more powerful methods for fetching the needed
certificates while allowing the authors of the certificates
more control over which certificates are used.

Placeless Documents Balfanz et al. have developed a
distributed access-control infrastructure for Java applica-
tions [4], one of the first implemented systems to be built
around a sound formal core. Requests to access resources
are accompanied by certificates that can be used to verify
the validity of the request. The system does not specify,
however, how certificates are collected or how a requester
determines which certificates should be attached to a par-
ticular request; this is a focus of the present paper. Once
a certificate is transmitted, it is cached by the recipient.

Proof-Carrying Authorization Appel and Felten [3]
proposed a distributed authorization framework that uses
a higher-order logic as a language for defining arbitrary
application-specific access-control logics. The underlying
higher-order logic allows the application-specific logics to
be remarkably expressive. At the same time, proofs of ac-
cess constructed in any such application-specific logic can
easily be verified by a simple, general checker. Bauer et
al. [5] used this framework to develop an access-control
system for regulating access to web pages. Their sys-
tem also included a mechanism for automatically fetch-
ing and caching certificates needed to construct proofs of
access. Like SD3, this system implements only a simple
certificate-retrieval strategy, upon which we improve here.

SPKI/SDSI SPKI 2.0 [13], a merger of the SPKI [12]
and SDSI [21] efforts, is a digital-certificate scheme that
inherits the binding of privileges to keys proposed in SPKI
and the local names of SDSI. SPKI certificates are rep-
resented as tuples, and can bind names to keys, names
to privileges, and privileges to keys. The authorization
process for SPKI involves verifying the validity of certifi-
cates, translating the uses of names to a canonical form,
and computing the intersection of the privileges described
in authorization tuples.

SPKI has recently been implemented as an access-
control mechanism for web pages [9, 19]. In the imple-
mented system, the web server presents a web browser
with the ACL protecting a requested page. It is the
browser’s responsibility to provide the server with a set
of certificates which can be used to verify the browser’s
authority. Efficient algorithms for selecting such a set of
certificates from a local cache have been proposed [10, 11]
and extended to retrieve certificates from a distributed cre-
dential store [18]; however, in each case the algorithm for
selecting this set is executed locally by the browser.

3. Background

To be able to precisely discuss the constructions of
proofs of access, we first need to define a logic that will
allow us to describe our access-control scenarios. The
access-control logic we will use is straightforward and
developed in the style of Lampson et al. [16]. However,
we emphasize that our techniques are not specific to this
logic.

3.1. Access-Control Logic

Our access-control logic is inhabited by terms and for-
mulas. The terms denote principals and strings, which are
the base types of our logic.

The key constructor elevates strings representing pub-
lic keys to the status of principals. For example, if pubkey
is a particular public key, then key(pubkey) is the prin-
cipal that corresponds to that key.

Principals may want to refer to other principals or to
create local name spaces—this gives rise to the notion of
compound principals. We will write Alice.secretary to
denote the principal whom Alice calls “secretary.”

More formally, the terms of our logic can be described
as follows:

t ::= s | p
p ::= key(s) | p.s

where s ranges over strings and p principals.
The formulas of our logic describe principals’ beliefs.

If Alice believes that the formula F is true, we write
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Alice says F . To indicate that she believes a formula F is
true, a principal signs it with her private key—the result-
ing sequence of bits will be represented with the formula
pubkey signed F .

To describe a resource that a client wants to access, we
introduce the action constructor. The first parameter to
this constructor is a string that describes the resource. To
allow for unique resource requests, the second parameter
of the action constructor is a nonce. A principal believes
the formula action(resource,nonce) if she thinks that
it is OK to access resource during the session identified
by nonce. We will usually omit the nonce in informal
discussion and simply say action(resource).

Delegation is described with the speaksfor and
delegate predicates. The formula Alice speaksfor Bob
indicates that Bob has delegated to Alice his author-
ity to make access-control decisions about any resource.
delegate(Bob, Alice, resource) transfers to Alice only
the authority to access the particular resource called
resource.

The formulas of our logic are described by the follow-
ing syntax:

φ ::= s signed φ′ | p says φ′

φ′ ::= action (s, s) | p speaksfor p |
delegate(p, p, s)

where s ranges over strings and p principals.
Note that the says and signed predicates are the

only formulas that can occur at top level.
The inference rules for manipulating formulas are also

straightforward (see Appendix A). For the purposes of
illustration, we present the SPEAKSFOR-E rule, which al-
lows principals to exercise delegated authority.

A says (B speaksfor A) B says F

A says F (SPEAKSFOR-E)

3.2. Tactical Theorem Provers

To gain access to a resource controlled by
Bob, Alice must produce a proof of the formula
Bob says action(resource). To generate such proofs
automatically, we use a theorem prover.

One common strategy used by automated theo-
rem provers, and the one we adopt here, is to re-
cursively decompose a goal (in this case, the for-
mula Bob says action(resource)) into subgoals un-
til each of the subgoals can be proved. Goals can
be decomposed by applying inference rules. For ex-
ample, the SPEAKSFOR-E rule allows us to prove
Bob says action(resource) if we can derive proofs

of the subgoals Bob says (Alice speaksfor Bob) and
Alice says action(resource).

Attempting to prove a goal simply by applying infer-
ence rules to it often leads to inefficiency or even non-
termination. Instead of blindly applying inference rules,
tactical theorem provers use a set of tactics to guide their
search. Roughly speaking, each tactic corresponds either
to an inference rule or to a series of inference rules. Each
tactic is a tuple (P, q), where P is a list of subgoals and
q the goal that can be derived from them. Each success-
ful application of a tactic yields a list of subgoals that re-
main to be proved and a substitution that instantiates the
free variables of the original goal. Suppose, for example,
that the SPEAKSFOR-E inference rule was a tactic which
we applied to Bob says action(resource). In this tac-
tic the names of principals are free variables (i.e., A and
B rather than Bob and Alice), so the produced substitu-
tion list would include the substitution of Bob for the free
variable A (Bob/A). A certificate is represented as a tactic
with no subgoals; we commonly refer to such a tactic as
a fact. In practice, facts would only be added to the set of
tactics after verifying the corresponding digital certificate.

4. Distributed Proof Generation

4.1. Proving Strategies

In traditional approaches to distributed authorization,
credentials are distributed across multiple users. A sin-
gle user (either the requester of a resource or its owner,
depending on the model) is responsible for proving that
access should be allowed, and in the course of proving
the user may fetch credentials from other users. All users
except for the one proving access are passive; their only
responsibility is to make their credentials available for
download.

We propose a different model: each user is both a
repository of credentials and an active participant in the
proof-generation process. In this model, a user who is
generating a proof is now able to ask other users not only
for their certificates, but also to prove for him subgoals
that are part of his proof. Each user has a tactical theorem
prover that he uses to prove both his own and other users’
goals. In such a system there are multiple strategies for
creating proofs.

Eager The traditional approach, described above,
we recast in our environment as the eager strategy
for generating proofs: a user eagerly keeps working
on a proof until the only parts that are missing are
credentials that she can download. More specifically
to our logic, to prove that she is allowed access to a
resource controlled by Bob, Alice must generate a proof
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of the formula Bob says action(resource). The eager
approach is for Alice to keep applying tactics until the
only subgoals left are of the form A signed F and
then query the user A for the certificate A signed F .
In Alice’s case, her prover might suggest that a simple
way of generating the desired proof is by demonstrating
Bob signed action(resource), in which case Alice
will ask Bob for the matching certificate. For non-
trivial policies, Alice’s prover might not know of a
particular certificate that would satisfy the proof, but
would instead try to find any certificate that matches
a particular form. For example, if Bob is unwilling to
provide Alice with the certificate she initially requested,
Alice might ask him for any certificates that match
Bob signed (A speaksfor Bob), indicating that Bob
delegated his authority to someone else. If Bob provided
a certificate Bob signed (Charlie speaksfor Bob),
Alice’s prover would attempt to determine how a
certificate from Charlie would let her finish the proof.

Lazy An inherent characteristic of the eager strategy
is that Alice’s prover must guess which certificates other
users might be willing to contribute. The guesses can
be confirmed only by attempting to download each cer-
tificate. In any non-trivial security logic (that is, almost
any logic that allows delegation), there might be many
different combinations of certificates that Bob and others
could contribute to Alice that would allow her to complete
the proof. Asking for each of the certificates individu-
ally is very inefficient. Asking for them in aggregate is
impractical—for example, not only might a principal such
as a certification authority have an overwhelming number
of certificates, but it’s unlikely that a principal would al-
ways be willing to release all of his certificates to anyone
who asks for them.

With this in mind, we propose the lazy strategy for gen-
erating proofs. Recall that credentials (A signed F ) im-
ply beliefs (A says F ). The typical reason for Alice to ask
Bob for a credential Bob signed F is so that she could
use that credential to demonstrate that Bob has a belief
that can lead to Alice being authorized to perform a par-
ticular action. Alice is merely guessing, however, that this
particular credential exists, and that it will contribute to a
successful proof.

The lazy strategy is, instead of asking for Bob signed
F , to ask Bob to prove Bob says F . From Alice’s stand-
point this is a very efficient approach: unlike in the eager
strategy, she won’t have to keep guessing how (or even
whether) Bob is willing to prove Bob says F ; instead she
will get the subproof (or a negative answer) with exactly
one request. From Bob’s standpoint the lazy approach
also has clear advantages: Bob knows what certificates he
has signed, so there is no need to guess; he simply assem-
bles the relevant certificates into a proof. Additionally,

Bob is able to select certificates in a manner that conveys
to Alice exactly the amount of authority that he wishes.
This is particularly beneficial in an interactive system, in
which Bob the person (as opposed to Bob the network
node) can be asked to generate certificates on the fly.

In the lazy strategy, then, as soon as Alice’s theorem
prover produces a subgoal of the form A says F , Alice
asks the node A (in the above example, Bob) to prove the
goal for her. In other words, Alice is lazy, and asks for as-
sistance as soon as she finds a subgoal that might be more
easily solved by someone else. In Section 5 we demon-
strate empirically the advantages of the lazy strategy.

Our prover assumes a cooperative environment in
which a malicious node may easily prevent a proof from
being found or cause a false proof to be generated. Our
system adopts the approach of prior work (e.g., [3, 15]),
in which the reference monitor verifies the proof before al-
lowing access, which means that these attacks will merely
result in access being denied.

4.2. A General Tactical Theorem Prover

We introduce a proving algorithm that, with minor
modifications, can produce proofs in either a centralized
(all certificates available locally) or distributed manner
(each node knows all of the certificates it has signed). The
distributed approach can implement either the eager or the
lazy strategy. We will use this algorithm to show that both
distributed proving strategies will successfully produce a
proof in all cases in which a centralized prover can pro-
duce a proof.

Our proving algorithm, which is derived from a stan-
dard backchaining algorithm (e.g., [22, p.288]), is shown
in Figure 1. The proving algorithm, bc-ask, takes as input
a list of goals, and returns either failure, if all the goals
could not be satisfied, or a substitution for any free vari-
ables in the goals that allows all goals to be satisfied si-
multaneously. The algorithm finds a solution for the first
goal and recursively determines if that solution can be
used to produce a global solution. bc-ask proves a goal
in one of two fashions: locally, by applying tactics from
its knowledge base (Figure 1, lines 15–20); or remotely,
by iteratively asking for help (lines 10–14).

The helper function subst takes as parameters a sub-
stitution and a formula, returning the formula after re-
placing its free variables as described by the substitution.
compose takes as input two substitutions, θ1 and θ2, and
returns a substitution θ′ such that subst(θ′,F ) = subst(θ2,
subst(θ1, F )). rpcl takes as input a function name and
parameters and returns the result of invoking that func-
tion on the machine with address l. We assume that the
network does not modify or delete data, and that all mes-
sages arrive in a finite amount of time. unify takes as input
two formulas, F1 and F2, and determines if a substitution
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0 global set KB /* knowledge base */

1 substitution bc-ask( /* returns a substitution */
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
2 local substitution answer /* a substitution that solves all goals */
3 local set failures ′ /* local copy of failures */
4 local formula q′ /* result of applying θ to first goal */

5 if (goals = [ ] ∧ θ ∈ failures) then return ⊥ /* θ known not to produce global solution */
6 if (goals = [ ]) then return θ /* base case, solution has been found */
7 q′ ← subst(θ, first(goals))

8 l ← determine-location(q′) /* prove first goal locally or remotely? */
9 failures ′ ← failures

10 if (l �= localmachine)
11 while ((α ← rpcl(bc-ask(first(goals), θ, failures ′))) �= ⊥) /* make remote request */
12 failures ′ ← α ∪ failures ′ /* prevent α from being returned again */
13 answer ← bc-ask(rest(goals), α, failures) /* prove remainder of goals */
14 if (answer �= ⊥) then return answer /* if answer found, return it */

15 else foreach (P, q) ∈ KB /* investigate each tactic */
16 if ((θ′ ← unify(q, q′)) �= ⊥) /* determine if tactic matches first goal */
17 while ((β ← bc-ask(P, compose(θ′, θ), failures ′)) �= ⊥) /* prove subgoals */
18 failures ′ ← β ∪ failures ′ /* prevent β from being returned again */
19 answer ← bc-ask(rest(goals), β, failures) /* prove remainder of goals */
20 if (answer �= ⊥) then return answer /* if answer found, return it */
21 return ⊥ /* if no proof found, return failure */

Figure 1. bc-ask, our proving algorithm

θ exists such that subst(θ, F1) = subst(θ, F2), i.e., it deter-
mines if F1 and F2 can be made equivalent through free-
variable substitution. If such a substitution exists, unify
returns it. A knowledge base, KB , consists of a list of
tactics as described in Section 3.2. determine-location
decides whether a formula F should be proved locally or
remotely and, if remotely, by whom. Figure 2 shows an
implementation of determine-location for the lazy strat-
egy; an implementation for the eager strategy can be ob-
tained by removing line 1 and removing the if-then clause
from line 2. When bc-ask is operating as a centralized
prover, determine-location always returns localmachine .

When proving a formula F locally, bc-ask will iter-
ate through each tactic in the knowledge base. If a tactic
matches the formula being proved (line 16), bc-ask will
attempt to prove all the subgoals of that tactic (line 17). If
the attempt is successful, bc-ask will use the resulting sub-
stitution to recursively prove the rest of the goals (line 19).
If the rest of the goals cannot be proved with the substi-

tution, bc-ask will attempt to find another solution for F
and then repeat the process.

The algorithm terminates when invoked with an empty
goal list. If the current solution has been marked as a fail-
ure, bc-ask returns failure (⊥) (line 5). Otherwise, bc-ask
will return the current solution (line 6).

Note that this algorithm does not explicitly generate a
proof. However, it is straightforward to design the goal
and tactics so that upon successful completion a free vari-
able in the goal has been unified with the proof [5].

We proceed to show that all of the strategies proposed
thus far are equivalent in their ability to generate a proof.

Theorem 1 For any goal G, a distributed prover using
tactic set T will find a proof of G if and only if a central-
ized prover using T will find a proof of G.

For the full proof, please see Appendix B. Infor-
mally: By close examination of the algorithm, we show
by induction that bc-ask explores the same proof search
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0 address determine-location(q) /* returns machine that should prove q */
1 θ ← unify(q, “A says F ”) /* unify with constant formula “A says F ” ... */
2 if (θ = ⊥) then θ ← unify(q, “A signed F ”) /* ... or with “A signed F ” */
3 if (θ = ⊥ ∨ is-local(subst(θ, “A”))) then return localmachine
4 else return name-to-addr(subst(θ, “A”)) /* instantiate A to a principal, then return

* the corresponding address */

Figure 2. Algorithm for determining the target of a request

space whether operating as a centralized prover or as a
distributed prover. In particular, the centralized and dis-
tributed prover behave identically except when the dis-
tributed prover asks other nodes for help. In this case,
we show that the distributed prover iteratively asks other
nodes for help (lines 10–14) in exactly the manner that a
centralized prover would consult its own tactics (lines 15–
20).

Corollary 1 For any goal G, a lazy prover using tactic
set T will find a proof of G if an eager prover using tactic
set T will find a proof of G.

Proof Sketch Lazy and eager are both strategies for dis-
tributed proving. By Theorem 1, if a lazy prover finds a
proof of goal G, then the centralized prover will also find
a proof of G, and if a centralized prover can find a proof
of G then an eager prover will also. �

4.3. Distributed Proving with Multiple Tactic Sets

So far we have only considered systems in which the
tactic sets used by all principals are identical. This is only
realistic when all resources are in a single administrative
domain. It is possible, and indeed likely, that different do-
mains may use a different sets of tactics to improve per-
formance under different policies. It is also likely that
different domains will use different security logics, which
would also necessitate different sets of tactics.

In this more heterogenous scenario, it is more difficult
to show that a distributed prover will terminate. Since
each prover is allowed to use an arbitrary set of tactics,
asking a prover for help could easily lead to unproductive
cycles of expanding and reducing a goal without ever gen-
erating a proof. Consider the following example: Alice
has a tactic that will prove Alice says (Bob says F ) if
Alice has a proof of Bob says F . However, Bob has the
opposite tactic: Bob will say F if Bob has a proof of
Alice says (Bob says F ). If Bob attempts to prove Bob
says F by asking Alice for help, a cycle will develop in
which Bob asks Alice to prove Alice says (Bob says F ),
prompting Alice to ask Bob to prove the original goal,
Bob says F .

In order to force the system to always terminate, we
must impose an additional constraint—a request-depth
limiter that increments a counter before each remote re-
quest, and decrements it after the request terminates. The
counter value is passed along with the request, so that
the remote prover can use the value during subsequent
requests. When the counter exceeds a preset value, the
prover will return false, thus breaking any possible cy-
cles. While it is possible that this modification will pre-
vent the prover from discovering a proof, in practice the
depth of a proof is related to the depth of the policy, which
is bounded. Even in this environment, we would like to
show that distributed proof generation is beneficial. As a
step towards this, we introduce the following lemma:

Lemma 1 A locally terminating distributed prover oper-
ating in an environment where provers use different tactic
sets, in conjunction with a request-depth limiter, will ter-
minate on any input.

Proof Sketch We construct a prover bc-ask′ that will oper-
ate in a scenario with multiple tactic sets by removing the
else statement from Line 15 of bc-ask, causing Lines 16–
20 to be executed regardless of the outcome of Line 10.
If the request depth is greater than the maximum, Line 11
will immediately return failure. If the request depth is less
than the maximum, we use induction over the recursion
depth of bc-ask′ to show that Lines 11 and 17 terminate,
which means that bc-ask′ terminates. �

Although it is necessary that a distributed prover termi-
nate when operating under multiple tactic sets, our goal
is to show that such a prover can prove a larger set of
goals than any node operating on its own. This is accom-
plished by forcing the distributed prover to attempt to lo-
cally prove any goals for which a remote request failed.

Theorem 2 A locally terminating distributed prover op-
erating in an environment where provers use different tac-
tic sets, in conjunction with a request-depth limiter, will
prove at least as many goals as it could prove without
making any requests.
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Figure 3. The authorization scheme for physical
space in Hamerschlag Hall, home of the Carnegie
Mellon Electrical & Computer Engineering Depart-
ment

Proof Sketch We define a localized prover LP to be a
prover that does not interact with other principals, and DP
to be a distributed prover as described above. We want to
show that if LP can find a proof of a goal G, then DP can
find a proof as well. Both LP and DP use bc-ask′ which
we construct from bc-ask by removing the else statement
from Line 15, causing Lines 16–20 to be executed regard-
less of the outcome of Line 10. Indirectly from Lemma 1,
the call on line 11 will always terminate, which means
that lines 10–14 will terminate. If lines 10–14 produce a
solution, we are done. If lines 10–14 do not produce a
solution, DP will try to find a solution in the same man-
ner as LP. We use induction to show that the results of
further recursive calls will be identical between the sce-
narios, which means that DP will produce a solution if LP
does. �

5. Empirical Evaluation

To fully understand the performance of lazy proving,
we have undertaken a sizeable empirical study; we present
the results here.

We implemented our proving algorithm in Prolog, tak-
ing advantage of Prolog’s built in backchaining. We aug-
mented the prover to maintain the current network loca-
tion, and extended the definition of certificates such that
the prover may only use certificates known to its current
location. A request is recorded whenever the location of
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Dept. A Head
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CMU.CA.Prin6
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CA

CMU.CA.PrinX

KeyX

CMU.CA.Prin1

Key1

Figure 4. An expanded version of the authorization
scheme for Hamerschlag Hall, modified for use in an
digital access-control system

the prover changes. We note that our techniques are spe-
cific neither to prolog nor our choice of tactics and could
be implemented in other automated theorem proving en-
vironments (e.g., [20]).

5.1. Constructing a Policy

One of the difficulties in evaluating distributed autho-
rization systems is the lack of well-defined policies with
which they can be tested. In the absence of such poli-
cies, it is often hard to conjecture how the performance of
a system on simple example policies would relate to the
performance of the same system if used in practice.

To remedy this problem, we first undertook to map the
physical access-control policy for rooms in our depart-
ment’s building (Figure 3). Such policies are often not
explicitly recorded, however the policy reflects the hierar-
chical structure of authorization in our department, which
leads us to believe that it is representative of most orga-
nizations. A close examination of this policy reveals that
it contains elements that would be superfluous in a digi-
tal access-control system. For example, delegation of au-
thority is conveyed either through physical tokens (the key
issuer gives a user a key) or through the organizational hi-
erarchy (the head of the department delegates to the floor
manager the responsibility of managing access to all the
rooms on a floor, but doesn’t provide him with a physi-
cal token). In a digital access-control policy, delegation
of authority is always explicitly represented; furthermore,
in the digital domain it is unnecessary to have a policy in-
clude elements, such as the Key Issuer and Smart Card Is-
suer, whose sole purpose is the distribution of physical to-
kens. At the same time, a practical digital policy requires
the mapping of keys to names. Universities typically have
a registrar’s office that performs similar bookkeeping; we
add to the registrar the duties of a local certification au-
thority. Another characteristic of physical access-control
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(2,2,10) 49 706 409.5 177.5 94.3
(2,4,10) 93 1398 810.5 334.5 184.5
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Lazy No Cache Positive &
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Tree Principals Requests STDEV Requests STDEV

(1,1,1) 6 28 0 16 0
(2,1,1) 9 61 33 27.5 11.5
(2,2,2) 17 141 80.1 44.5 20.4

(2,2,10) 49 397 227.4 92.5 48.0
(2,4,10) 93 781 450.1 164 88.2
(2,4,30) 253 2061 1189.1 404 226.7

Figure 5. Performance of initial access with different caching strategies

policies used in practice is the difficulty in maintaining the
separation between users and the roles they inhabit (for
example, the role of department head and the person who
has that position). In a digital system, where delegation
of authority is always explicit, this separation is easier to
manage. Due to the importance of the university’s key,
we split it into a master key and a signing key. Figure 4
roughly illustrates our derived policy.

Ideally, we would like to simulate the deployment of
our system on a university-wide scale. However, helped
by the hierarchical organization of the university’s access-
control policy (and access-control policies in general), the
search for proofs is limited to a small subset of the over-
all population; consequently, we restrict our simulation to
several such subsets without significantly impacting the
accuracy of our results.

We chose to structure the authorization tree from the
university to individual users as a complete tree. We de-
scribe a policy with a (j, k, l) tree to indicate that there
are j department heads, k floor managers under each de-
partment head, and l users under each floor manager. We
test our algorithms with several different (j, k, l) trees. We
chose to use complete trees for simplicity only; when sim-
ulating unbalanced trees constructed by randomly remov-
ing a fixed number of nodes from a complete tree, our
results differ by less than 4% 2.

Each of the policies protecting a room re-
quires that the university approve access to it (e.g.,
CMU says action(room15)). The proof that a user
may access the room is based on a chain of certifi-
cates leading from CMU to the user himself. The
proof also shows which inference rules (of the logic
described in Section 3.1) need to be applied to the

2We constructed 20 unbalanced trees with 253 principals each by ran-
domly removing 216 nodes from a complete (3,5,30) tree. The perfor-
mance of the initial access with both forms of caching enabled decreased
by up to 4%, with an average decrease of 2%.

certificates and in what order to demonstrate that the
certificates imply that access should be granted (e.g.,
CMU says action(room15)). Appendix C shows how
a particular set of certificates is formalized in our logic
and provides a proof of access representative of those
generated by our prover; it also explains how we populate
our simulations with certificates.

5.2. Evaluation Criteria

The primary criteria we use to evaluate the perfor-
mance of the two proving strategies detailed in Section 4
is the number of requests made while attempting to con-
struct a proof. Since requests in our system may ulti-
mately cause an actual user to be queried to approve the
creation of a certificate, the number of requests roughly
approximates the required level of user interaction. Ad-
ditionally, since much of the communication may be be-
tween poorly connected devices (such as cell phones con-
nected via GPRS), the number of requests involved in
generating a proof will be one of the dominant factors in
determining the time necessary to generate a proof.

When running the simulations, the only principals who
access resources are those located in the lowest level in the
hierarchy. The resources they try to access are rooms on
their floor to which they are allowed access. Unless other-
wise specified, the performance results reflect the average
over all allowed combinations of users and resources.

5.3. First Access

Figure 5 shows the average number of requests made
by each proving strategy when first attempting to prove
access to a resource. On average, lazy outperforms eager
by between 25% and 45%, with the performance differ-
ence growing wider on larger authorization trees. How-
ever, the number of requests made is far too large for ei-
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(2,2,10) 43 177.5 94.3 177.5 96.5
(2,4,10) 93 334.5 184.5 334.5 186.6
(2,4,30) 253 894.5 507.8 894.5 509.9

Lazy First Access Second Access
Tree Principals Requests STDEV Requests STDEV

(2,1,1) 9 27.5 11.5 15.5 10.5
(2,2,2) 17 44.5 20.4 21.1 16.3

(2,2,10) 43 92.5 48.0 47.1 37.7
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Figure 6. Performance of subsequent access to a different resource by a different principal

ther strategy to be used in a practical setting. Upon fur-
ther investigation, we discovered that more than half of
all requests are redundant (that is, they are repetitions of
previous requests), indicating that caching would offer a
significant performance benefit.

Our initial intuition was to cache proofs of all success-
ful subgoals found by the prover. However, as Figure 5
indicates, caching the results of successful proof requests
offers surprisingly little performance benefit. We discov-
ered that most of the redundant requests will, correctly,
result in failure; that is, most of the redundant requests
explore avenues that cannot and should not lead to a suc-
cessful access. We modified the caching mechanism to
cache failed results as well as positive results (also shown
in Figure 5). This reduced the number of queries by up to
75% for both strategies.

5.4. Effects of Caching on a Second Access

Since all of the results discovered by the eager strat-
egy are cached only by the principal who accessed the re-
source, the cache is of no benefit when another principal
attempts to access a resource. The lazy scheme distributes
work among multiple nodes, each of which can cache the
subproofs it computes. In the lazy scheme, access of the
same or a similar resource by a second, different principal
will likely involve nodes that have cached the results of
previous accesses. This enables the lazy strategy to take
advantage of caching in a way that the eager strategy can-
not, resulting in significant performance gains. To com-
pute the average performance, we ran the simulation for
every possible combination of principals making the first
and second access. Figure 6 shows that the average case
eager performance in the second access is identical to its
performance in the first attempted, as expected. The figure
also shows that caching on interior nodes in the lazy strat-
egy decreases the number of requests made by the second
access by approximately a factor of 2. The result is that

lazy completes the second access with approximately one-
fourth the number of requests of eager.

5.5. Automatic Tactic Generation

Caching subgoals and certificates is clearly helpful
when subsequent requests are identical to those that have
already been proved. Often the second and subsequent
accesses will have different proof goals, in which case
caching will be of limited use even if there is great sim-
ilarity between the two proofs. To take advantage of the
similar shape of different proofs, we introduce automatic
tactic generation (ATG).

Automatic tactic generation aims to remember the
shape of previously computed proofs while abstracting
away from the particular certificates from which the
proofs are built. In order to leverage the knowledge of the
proof shape gained during the first access, the prover must
cache a proof that is not fully instantiated. The proof is
stripped of references to particular resources and nonces;
these are replaced by unbound variables. The certificates
that were part of the proof, similarly abstracted, become
the subgoals of a new tactic. The stripped proof is the
algorithm for assembling the now abstracted certificates
into a similarly abstracted goal. This allows any future ac-
cess attempt to to directly search for certificates pertaining
to that resource without generating intermediate subgoals.

A common scenario in which automatic tactic gener-
ation is very useful is when attempting to access several
rooms on the same floor. The policies protecting each of
the rooms are likely to be very similar, since they belong
to the same organizational unit and share the same ad-
ministrator. Pure caching is not likely to help much be-
cause the rooms are all named differently, but automatic
tactic generation allows proofs to be computed very ef-
ficiently, as shown in Figure 7. ATG is an optimization
allows both the eager and the lazy strategy to complete
subsequent proofs with a minimal number of requests.
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Figure 8. Average of 10 simulations with 1500 random accesses in a (4,4,25) tree

5.6. Simulating a User’s Experience in a Deployed
System

The results thus far clearly demonstrate the benefits of
the lazy strategy in simple, controlled scenarios. A more
practical scenario, which we explore here, may involve
many users accessing different resources in somewhat ar-
bitrary order and frequency.

In this scenario, we have chosen to use a (4,4,25) tree.
This means that there are four department heads, each
with four floor managers. Each floor has 25 residents,
for a total of 400 users who will be accessing resources.
The system controls access to the main door to the build-
ing, security doors on each of the sixteen floors, and 400
offices: one for each user. Each of these principals has
access to his office, the floor on which his office resides,
and the building’s main door. We show the performance
for the first 1500 accesses that occur in this system. Each
access is made by a randomly chosen principal to one of
the three resources which he can access (again chosen at
random). This scenario was too large to be simulated ex-

haustively, so instead we show the average of ten runs.

Figure 8 shows the performance of the system with
all optimizations enabled, measured both as the average
number of requests each principal has to answer per ac-
cess attempt, and the total number of requests per access
attempt. In this more realistic scenario, the lazy strategy
continues to do well. During the first interval of 125 ac-
cesses, the lazy strategy is at least three times more effi-
cient in the number of requests made. Note also that the
number of requests quickly drops to a level that could be
practical for a deployed system.

In practice, the number of times a user receives a re-
quest will be somewhat lower because a sizeable percent-
age of requests are made to the CA and the root node of
the authorization tree. It is likely that the CA and the root
node will either generate all certificates prior to bringing
the system online, or will have an automated system for
signing certificates, thus alleviating the burden on the user.
Furthermore, we do not restrict whom a principal may ask
for help, which would be necessary in practice.
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6. Conclusion and Future Work

Previous work on distributed authorization systems
largely did not focus on practical strategies for collect-
ing the certificates used to show that a request satisfies an
access-control policy. However, attention to these strate-
gies is necessary for the deployment of rich certificate-
based access control, particularly in cases where creden-
tials are created dynamically with user involvement.

In this paper we introduced a new distributed approach
to assembling access-control proofs. The strength of our
approach is that it places the burden of proving a state-
ment on the party who is most likely to have (or be willing
to create) credentials relevant to proving it. In contrast,
prior approaches asked the prover to guess credentials that
might be available, thereby inducing greater numbers of
attempted retrievals and user interruptions. In addition
to these advantages, we showed empirically that this ap-
proach responds very well to caching and to a new opti-
mization, automatic tactic generation. We achieve these
advances with no loss in proving power: our distributed
approach completes a proof whenever a centralized ap-
proach that uses certificate retrieval would do so.

Our algorithms are a cornerstone of a testbed we are
developing that leverages smartphones to create and en-
force an access-control policy for both physical rooms and
virtual resources. Once complete, this testbed will regu-
late access for a population of roughly 150 people to over
60 doors, in addition to computer logins and other virtual
resources. Each person’s smartphone will hold crypto-
graphic keys for creating credentials, as well as a tactical
theorem prover for generating proofs of authority. If in
the course of generating a proof of authority, the tactical
theorem prover on a phone encounters a subgoal that, ac-
cording to the distributed proving algorithm of Section 4,
should be sent to another for proof, then the subgoal
will be conveyed in real time over cellular data services
(SMS/MMS over GPRS) to that party. The tactical the-
orem prover on that phone, in turn, will attempt to prove
the subgoal with credentials it already has stored, other
subgoals others prove for it (recursively), and various pos-
sible credentials it could create with its user’s permission.
For the last of these, the smartphone prompts the user to
determine which of these credentials, if any, it should cre-
ate. Upon receiving user instruction, the credential is cre-
ated, and the subgoal proof is generated and returned to
the requesting smartphone. We expect such interruptions
to be infrequent; for most requests, caching and automatic
tactic generation should yield proofs silently.
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A. Inference Rules of Our Logic

pubkey signed F

key(pubkey) says F (SAYS-I)

A says (A.S says F )
A.S says F (SAYS-LN)

A says (B speaksfor A) B says F

A says F (SPEAKSFOR-E)

A says (B speaksfor A.S) B says F

A.S says F
(SPEAKSFOR-E2)

A says (delegate(A, B,U )) B says (action(U, N))
A says (action(U, N))

(DELEGATE-E)

B. Proof of Termination for a Distributed
Prover

Notation Let CP refer to a centralized prover with tactics T
and facts F . Let DP refer to a distributed prover consisting of
i cooperating nodes, each using tactics T and facts fi such that⋃

i
fi = F .
When comparing CP to DP, we will refer to line N as [Nc]

or [Nd] if being run by CP or DP respectively. To refer to vari-
able A on this line, we state [Nc].A or [Nd].A. When B is a
function parameter, we shorten the notation to [c].B or [d].B.
We introduce a special constant localmachine that represents
the principal associated with the machine on which the prover is
being run. Let [c].result represent the substitution returned by
bc-ask in the centralized scenario, and [d].result represent the
substitution returned in the distributed scenario. We make the
assumption that all invocations of rpc are transparent to bc-ask.

B.1. Lemma 2

Lemma 2 Consider two invocations of bc-ask made by CP and
DP made under the following assumptions:

1. bc-ask is invoked with identical parameters in both sce-
narios

2. goals �= [ ]
3. first(goals) is such that [8d].l �= localmachine
4. Any recursive call to bc-ask will produce the same answer

if invoked with the same parameters in both scenarios.
Let α1, . . . , αk, αk+1 denote the sequence of return results

from the (k + 1) bc-ask invocations on line 11 by DP, and
let β1, . . . , βk′ denote the sequence of return results of the k′

bc-ask invocations on line 17 by CP that do not return ⊥. Then,
k = k′ and for each 1 ≤ i ≤ k, αi = βi.

Proof We prove Lemma 2 by induction over i. Our induction
hypothesis is that [11d].failures ′

i = [17c].failures ′
i. Note that

αk+1 = ⊥.

Base Case We must show that [11d].α1 = [17c].β1 and that
[11d].failures ′2 = [17c].failures ′2. Since [11d].failures ′1 =
[d].failures and [17c].failures ′1 = [c].failures, we can use As-
sumption 1 to conclude that [11d].failures ′1 = [17c].failures ′

1.
Assumption 1 tells us that [d].θ = [c].θ, from which we can con-
clude that [7d].q′ = [7c].q′.

DP will call bc-ask (line 11) on machine l. Let [Nr] represent
the execution of line N within this remote call.

5r–6r [r].goals=[d].first(goals), which cannot be empty, by
Assumption 2, so the body of these if statements will never
be executed.

7r first([r].goals) = first(first([d].goals)) = first([d].goals).
Additionally, [r].θ = [d].θ. Since we know that [7d].q′ =
[7c].q′, we can conclude that [7r].q′ = [7c].q′.

8r Since DP made the RPC to [8d].l, [8r].l is localmachine .
9r [9r].failures′1 = [r].failures = [11d].failures ′1.
10r Since [8r].l = localmachine, the body of this if statement

([11r]–[14r]) will never be executed.
15r Since [8r].l = localmachine, the body of this else state-

ment will always be executed.
16r We let [c].R ⊆ [c].KB represent the set of tactics with

which [16c].q′ can unify and [r].R ⊆ [r].KB represent the
set of tactics with which [16r].q′ can unify. Knowing that
[16r].q′ = [16c].q′, we now show that [r].R = [c].R. If [c].Rt

represents the subset of [c].R that is tactics with subgoals and
if [c].Rf represents the subset of [c].R that is facts of the
form A signed F , [c].Rt∪ [c].Rf = [c].R. By definition of
our scenario, all machines in DP know all tactics with sub-
goals, so [r].Rt = [c].Rt. Furthermore, our scenario states
that machine A knows all facts of the form A signed F .
Since [8r].l = localmachine , [r].Rf = [c].Rf with respect
to the formula q′. Having shown [r].Rt = [c].Rt and [r].Rf

= [c].Rf , we can conclude that [r].R = [c].R.
Since [r].R = [c].R, if unify succeeds in one scenario, it
will succeed in both. As a result, [16r].(P, q) = [16c].(P, q),
which means that [16r].θ′ = [16c].θ′.

17r [17r].failures ′ = [11d].failures ′1, which we have shown to
be equal to [17c].failures ′1. Assumption 4 tells us that any
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recursive call to bc-ask made by DP will produce the same
answer as a call made by CP with the same parameters. Hav-
ing shown the equality of all parameters to bc-ask, we can
conclude that [17r].β = [17c].β. If β = ⊥, both [c] and [r]
will go to line 15 and repeat lines 16–17 using the next tactic.
If no such tactic exists, they will both fall through to line 21
and return ⊥. If β �= ⊥, then we have found [17c].β1, and
that [17r].β = [17c].β1.

19–20r Since [r].goals = first([d].goals), rest([r].goals) must
be the empty set. Therefore, [19r].answer= [17r].β, which
is equal to [17c].β1.

Since [11d].α1 = [r].result and [r].result = [17c].β1,
we can conclude [11d].α1 = [17c].β1 as desired. Since
[11d].failures ′

1 = [17c].failures ′
1 and [11d].α1 = [17c].β1, the

execution of [12d] and [18c] will produce [12d].failures ′
2 =

[18c].failures ′
2 as desired.

Induction When the recursive call on [11d] is made for the
ith time, [11d].failures ′

i = [d].failures∪ [11d].α1 ∪ . . .∪
[11d].αi−1 and [17c].failures ′i = [c].failures∪ [17c].β1∪ . . .∪
[17c].βi−1.

5r–8r These lines will behave identically to the base case.
9r [9r].failures ′ = [11d].failures ′i. Using our induc-

tion hypothesis, we can conclude that [9r].failures ′ =
[17c].failures ′

i.
10r, 15r–16r These lines will behave identically to the base

case.
17r Having shown the equality of all parameters to bc-ask, we

can use Assumption 4 to conclude that [17r].β = [17c].β. As
in the base case, if β = ⊥, both [c] and [r] will go to line 15
and repeat lines 16–17 using the next tactic. If no such tactic
exists, they will both fall through to line 21 and return ⊥.
If β �= ⊥, then we have found [17c].βi, and that [17r].β =
[17c].βi.

19r–20r As in the base case, [r].result = [17r].β.

[11d].αi = [r].result , which is equal to [17c].βi as de-
sired. Since [11d].failures ′

i = [17c].failures ′
i and [11d].αi

= [17c].βi, the execution of [12d] and [18c] will produce
[12d].failures ′

i+1 = [18c].failures ′
i+1 as desired. Finally, we

have shown that there is a one-to-one correspondence between
αi and βi, and so k = k′. �

B.2. Lemma 3

Using Lemma 2, we now prove a stronger result. For the
purposes of the following lemma, we define the recursion depth
to be the number of times bc-ask directly invokes itself (i.e.,
invocations wrapped in RPC calls do not increase the recursion
depth, but all others do).

Lemma 3 If both CP and DP invoke bc-ask with parameters
goals , θ, and failures , then [c].result = [d].result .

Proof We prove Lemma 3 via induction on the recursion depth
of bc-ask. Our induction hypothesis is that at a particular recur-
sion depth, subsequent calls to bc-ask with identical parameters
will return the same answer in DP as in CP.

Base Case The deepest point of recursion is when goals is the
empty list. Since [d].failures = [c].failures and [d].θ = [c].θ,
lines 5–6 will execute identically in DP and CP returning either
θ or ⊥.

Induction In this case, goals �= [ ].

5d–6d Since [c].goals = [d].goals �= [ ], both DP and CP pro-
ceed to line 7.

7d Because [c].goals = [d].goals and [c].θ = [d].θ, [7d].q′ =
[7c].q′.

8d–9d By definition of determine-location, [8c].l =
localmachine . Depending on [7d].q′, [8d].l may or may
not be localmachine. We proceed to show that in either
situation, [c].result = [d].result .

In both cases, [c].failures = [d].failures, and so
[9c].failures ′ = [9d].failures ′.

Case A of 8d–9d: [8d].l �= localmachine We show that each
assumption of Lemma 2 holds.

1 is an assumption of the current lemma as well.

2 is fulfilled by the definition of the inductive case we are
trying to prove.

3 is true by the definition of Case A.

4 is true by our induction hypothesis.

Therefore, by Lemma 2, the sequence α1, . . . , αk, αk+1 of
return results from the (k + 1) bc-ask invocations on line 11
by DP, and the sequence β1, . . . , βk′ of return results of the
k′ bc-ask invocations on line 17 by CP that do not return ⊥
satisfy k = k′ and for each 1 ≤ i ≤ k, αi = βi. As a
result, applying the induction hypothesis at [13d] and [19c]
yields [13d].answer = [19c].answer in each iteration, and
[c].result = [d].result .

Case B of 8d–9d: [8c].l = [8d].l=localmachine

Analogously to the argument in the base case of Lemma 2
(line [16r]), [d].R = [c].R, where [c].R is set of tactics with
which [16c].q′ can unify, and [d].R is the set of tactics with
which [16d].q′ can unify. As a result, applying the induc-
tion hypothesis at [19d] and [19c] yields [19d].answer =
[19c].answer in each iteration, and [c].result = [d].result .

�

B.3. Theorem 1

Theorem 1 For any goal G, a distributed prover using tactic
set T will find a proof of G if and only if a centralized prover
using T will find a proof of G.

Proof Both CP and DP will attempt to prove G by invoking
bc-ask with goals = G, θ equal to the empty substitution, and
failures = [ ]. Lemma 3 states that in this situation, the result
returned by CP and DP is identical. From this, we can conclude
that DP will find a solution to G if and only if CP finds a solu-
tion. �
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P1 = KCMU signed (key(KCMUS
) speaksfor key(KCMU ))

P2 = KCMU signed (key(KCMUCA
) speaksfor key(KCMU ).CA)

P3 = KCMUCA
signed (key(KUserA) speaksfor key(KCMU ).CA.UserA)

P4 = KCMUCA
signed (key(KUserB) speaksfor key(KCMU ).CA.UserB)

P5 = KCMUCA
signed (key(KUserC) speaksfor key(KCMU ).CA.UserC)

P6 = KCMUS
signed (delegate(key(KCMU ), key(KCMU ).DH1, resource))

P7 = KCMUS
signed (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH1)

P8 = KUserA signed (delegate(key(KCMU ).DH1, key(KCMU ).DH1.FM1, resource))
P9 = KUserA signed (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH1.FM1)

P10 = KUserB signed (delegate(key(KCMU ).DH1.FM1, key(KCMU ).CA.UserC, resource))

P11 = KUserC signed (action(resource, nonce))

0 key(KCMU ) says (key(KCMUS
) speaksfor key(KCMU )) SAYS-I(P1 )

1 key(KCMU ) says (key(KCMUCA
) speaksfor key(KCMU ).CA) SAYS-I(P2 )

2 key(KCMUCA
) says (key(KUserA) speaksfor key(KCMU ).CA.UserA) SAYS-I(P3 )

3 key(KCMUCA
) says (key(KUserB) speaksfor key(KCMU ).CA.UserB) SAYS-I(P4 )

4 key(KCMUCA
) says (key(KUserC) speaksfor key(KCMU ).CA.UserC) SAYS-I(P5 )

5 key(KCMU ).CA says (key(KUserA) speaksfor key(KCMU ).CA.UserA) SPEAKSFOR-E2(1, 2)
6 key(KCMU ).CA says (key(KUserB) speaksfor key(KCMU ).CA.UserB) SPEAKSFOR-E2(1, 3)
7 key(KCMU ).CA says (key(KUserC) speaksfor key(KCMU ).CA.UserC) SPEAKSFOR-E2(1, 4)

8 key(KCMUS
) says (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH1) SAYS-I(P7 )

9 key(KCMU ) says (key(KCMU ).CA.UserA speaksfor key(KCMU ).DH1) SPEAKSFOR-E(0, 8)

10 key(KUserA) says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH1 .FM1) SAYS-I(P9 )
11 key(KCMU ).CA.UserA says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH1 .FM1) SPEAKSFOR-E2(5, 10)
12 key(KCMU ).DH1 says (key(KCMU ).CA.UserB speaksfor key(KCMU ).DH1.FM1) SPEAKSFOR-E2(9, 11)

13 key(KCMUS
) says delegate(key(KCMU ), key(KCMU ).DH1, resource) SAYS-I(P6 )

14 key(KCMU ) says delegate(key(KCMU ), key(KCMU ).DH1, resource) SPEAKSFOR-E(0, 13)

15 key(KUserA) says delegate(key(KCMU ).DH1, key(KCMU ).DH1.FM1, resource) SAYS-I(P8 )
16 key(KCMU ).CA.UserA says delegate(key(KCMU ).DH1 , key(KCMU ).DH1.FM1, resource) SPEAKSFOR-E2(5, 15)
17 key(KCMU ).DH1 says delegate(key(KCMU ).DH1, key(KCMU ).DH1 .FM1, resource) SPEAKSFOR-E2(9, 16)

18 key(KUserB) says delegate(key(KCMU ).DH1.FM1 , key(KCMU ).CA.UserC, resource) SAYS-I(P10 )
19 key(KCMU ).CA.UserB says delegate(key(KCMU ).DH1 .FM1 , key(KCMU ).CA.UserC, resource) SPEAKSFOR-E2(6, 18)
20 key(KCMU ).DH1.FM1 says delegate(key(KCMU ).DH1.FM1 , key(KCMU ).CA.UserC, resource) SPEAKSFOR-E2(12, 19)

21 key(KUserC) says action(resource, nonce) SAYS-I(P11 )
22 key(KCMU ).CA.UserC says action(resource, nonce) SPEAKSFOR-E2(7, 21)
23 key(KCMU ).DH1.FM1 says action(resource, nonce) DELEGATE-E(20, 22)
24 key(KCMU ).DH1 says action(resource, nonce) DELEGATE-E(17, 23)
25 key(KCMU ) says action(resource, nonce) DELEGATE-E(14, 24)

Figure 9. Proof of key(KCMU ) says action(resource, nonce)

C. Sample Proof of Access

Figure 9 shows a proof that allows UserC to access
resource, a resource controlled by KCMU using the policy
described in Section 5.1. The goal that must be proved is
key(KCMU ) says action(resource, nonce). P1–P11 repre-
sent the necessary certificates, and below them is the proof.

The inference rules used by this proof are those of Ap-
pendix A. This proof is representative of those generated by
our prover during the simulations of Section 5.

In our simulations, a certificate like P3–P5 is generated for
each principal. Each department head is given authority over
each resource in the corresponding department via certificates
like P6, and the job of department head is assigned to a particu-

lar user via a certificate like P7; each floor manager position is
similarly created and populated by certificates such as P8–P9;
and each user authorized to use resource receives a certificate
similar to P10. Finally, every user attempting to access a re-
source creates a certificate like P11.
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