
Chapter 4
Implementation of the TIGRE

Machine

This chapter discusses the details of implementation of the TIGRE
abstract machine.  Section 4.1 describes the abstract machine and its
assembly language.  Section 4.2 describes the mapping of the TIGRE
abstract machine onto different hardware platforms, including assemb-
ly language implementations for the VAX and the MIPS R2000 architec-
tures.  Section 4.3 describes the implementation of the core Turner Set
combinators in TIGRE assembly language.  Section 4.4 describes mini-
mum TIGRE software support requirements.

4.1. THE TIGRE ABSTRACT MACHINE

TIGRE is defined as an abstract machine having its own assembly
language.  This abstract machine has an instruction set which is
designed to implement efficiently the primitive operations for perform-
ing graph rewriting and graph evaluation.  This chapter presents a
development of TIGRE implementations in C, VAX assembly language,
and MIPS R2000 assembly language.  The development is shown start-
ing from an abstract machine, through TIGRE assembly language, and
then to a mapping onto real platforms at both the hardware and
assembly language level.

4.1.1. Hardware Definition

Figure 4-1 shows a block diagram of the TIGRE abstract machine.  As
a minimum, TIGRE requires a processing unit, a scratchpad register
storage space, a spine stack/subroutine return stack, memory for hold-
ing combinator definitions, and heap memory for holding the graph
nodes.

TIGRE needs three memory spaces.  The first memory space
contains the spine stack, which is used to save pointers to the nodes in

25



the program graph that have been visited during stack unwinding.  The
second memory space contains the definitions for combinators (written
in TIGRE assembly language).  The third space contains the garbage-
collected heap memory that holds the program graph.  There is no
prohibition of two or three of the memory spaces sharing the same
hardware resources, but they are treated as separate at the abstract
level to emphasize their different uses.

The processing unit must provide an ALU for arithmetic and
logical operations, as well as control logic to fetch, decode, and execute
instructions.  The primary operation of the control logic is as a threading
engine.  In other words, the control logic will thread through a series of
pointers representing the left spine of a graph while pushing node
addresses onto the spine stack.  Once a pointer into combinator memory
is found, the control logic switches from threading in the heap memory
space to execution in the combinator program memory space.  A small
amount of internal storage of intermediate values is required, which is
designated as the scratchpad register space.  One particularly impor-
tant register is the interpretive pointer (ip ), which is frequently called
the program counter on conventional machines.

4.1.2. TIGRE Assembly Language

The threaded execution characteristics of the TIGRE abstract machine
are very much like the execution characteristics for the abstract
machine used by the Forth programming language (Kogge 1982, Moore
1980).  Similar to a Forth abstract machine, TIGRE has two modes of
operation: threading and execution of primitives.  Instead of expression
evaluation stack manipulation primitives used by the Forth abstract

HEAP
MEMORY

SPINE
STACK

SCRATCHPAD
REGISTERS

PROGRAM
MEMORYCONTROL

LOGIC

ALU

Figure 4-1.  A block diagram of the TIGRE abstract machine.

26 Chapter 4.  Implementation of the TIGRE Machine



machine, TIGRE uses graph reduction primitives which operate on the
spine stack.

Forth procedure definitions primarily consist of procedure calls
and stack manipulation primitives.  The stack manipulation primitives
are the assembly language of the Forth abstract machine.  In a similar
manner, TIGRE combinator graphs consist of pointers and combinators.
The combinators are primitives of the graph reduction process (cor-
responding to the assembly language of the graph interpreter).  A
problem with both Forth and TIGRE is that the stack-oriented actions
of the primitives are not directly supported by most CPU architectures.
In order to solve the problem of specifying the operation of TIGRE
combinators in a machine-independent way, we shall define a lower
level interface than the combinator, called TIGRE assembly language.

The purpose of TIGRE assembly language is to define a low level,
abstract implementation of combinators for the TIGRE abstract
machine.  This assembly language must have the property of concisely
defining the actions required to process a particular combinator,
together with the property of efficient mapping onto a variety of com-
mercially available hardware platforms.  The assembly language is
defined in terms of resource names and abstract machine instructions
as follows.  The syntax used is a one- or two-operand register/memory
based instruction format.

The resources controlled by TIGRE assembly language include the
interpretive pointer ip , computational scratchpad registers, the spine
stack, and heap memory.
• ip     –    The interpretive pointer.  This register directs the

threading through the graph.  It must be set to point to the
next node to thread through before the “thread” instruction is
executed.

• Ln    –    The left child of the node pointed to by the nth ele-
ment from the top of the spine stack.

• Rn    –    The right child of the node pointed to by the nth ele-
ment from the top of the spine stack.

• L+, R+    –    These are equivalent to L0  and R0, except that
the spine stack pointer is auto-incremented (i.e. “auto-
popped”) after the access.

• temp n    –    Scratchpad node registers.  The “allocate” instruc-
tion deposits addresses of newly allocated nodes into these
registers.

4.1.  THE TIGRE ABSTRACT MACHINE 27



• Ltemp n, Rtempn    –    The left/right child of the node pointed
to by scratchpad node register temp n.

• result     –    A temporary result register for returning the
value of strict computations.

• scratch n    –    Other scratchpad registers needed for hold-
ing intermediate results.

There are three classes of operands:
• i    –    Immediate data.
• n    –    Node reference.
• p    –    Pointer.

The core of the instruction set is as follows:
• allocate  i    –    Allocate i new graph nodes, depositing

pointers to them in temp0, temp1, ..., temp (i-1).
• mov n, p    –    Move the contents of the operand n to pointer p.
• pop  i    –    Pop i elements off of the spine stack.
• push  p    –    Push the pointer p on top of the spine stack.
• top  p    –    Replace the top of the spine stack with the pointer

p.
• thread     –    Thread through the node pointed to by the ip

register.
• eval  n    –    Recursively reduce the graph rooted at the node

n, leaving the result in the result  register, using the spine
stack to save a return address.

• return     –    Thread and pop through the top of the spine
stack, restarting execution just beyond the most recent
evaluation.

In two-operand instructions, the source operand is on the left, and
the destination operand is on the right.  In addition, there are the usual
complement of instructions for conditional execution, arithmetic, and
other strict operations that one would expect to be available in all
assembly languages.

As an example of how graph reduction operations can be expressed
in TIGRE assembly language, consider the combinator S’, which is
defined as:

28 Chapter 4.  Implementation of the TIGRE Machine



S’ ≡ λc. λf. λg. λx. (c (f x)) (g x)
or, equivalently, as

S’ c f g x → (c (f x)) (g x)
Figure 4-2 shows the definition of S’ graphically as well.

This code can be straightforwardly compiled into TIGRE as-
sembler code.  A simple compilation process yields the following com-
binator rule for S’:

; allocate heap cells
allocate 3 ; temp0, temp1, and temp2 get

; the pointers to new cells.
; write values to heap cells
mov R1, Ltemp0 ; (f x)
mov R3, Rtemp0
mov R0, Ltemp1 ; (c (f x))
mov temp0, Rtemp1

f

temp1

3

g

x

c

f

0

2

3

1

S’

g

x

c

xtemp2

temp0

L1 R1

L2 R2

L3 R3

L3 R3

Ltemp1 Rtemp1 Ltemp2 Rtemp2

Ltemp0 Rtemp0

L0 R0

Figure 4-2.  The S’ combinator.     S’ c f g x → (c (f x)) (g x)

4.1.  THE TIGRE ABSTRACT MACHINE 29



mov R2, Ltemp2 ; (g x)
mov R3, Rtemp2
; rewrite root node of subgraph
mov temp1, L3 ; (c (f x)) (g x)
mov temp2, R3
; discard spine stack pointers to nodes 0, 1, 2
pop 3
; restart threading from node temp1
mov temp1, ip
thread

First, three new heap cells are allocated, with pointers to them left
in temp0 , temp1 , and temp2 .  Next, the newly allocated heap cells are
written with values taken from the input parameters to the combinator.
The first instruction deposits the contents of the right-hand side of the
node pointed to by the second-to-top spine stack element (performing a
double indirect fetch through the spine stack) into the left-hand side of
the temp0  node just allocated on the heap.  The other operations are
similar.  Note that the notation temp0  refers to the address of the temp0
node, while Ltemp0  and Rtemp0  refer to the contents of the left- and
right-hand sides of node temp0 .

Once the newly allocated heap cells have been written with ap-
propriate values, the root node of the subtree undergoing the S’ graph
transformation is rewritten to point to temp1  and temp2 .  Since it is not
easily decidable whether the other nodes participating in the S’ reduc-
tion are shared by other portions of the program graph, they are simply
abandoned.

This code is correct and easily generated.  However, it is sub-op-
timal in a number of respects.  For instance, redundant fetches to the
spine stack and heap memory are performed.  Ideally, such redundan-
cies would be eliminated by the standard compiler or high level language
available on the target platform for TIGRE.  Unfortunately, it is difficult
for a compiler or assembler to improve the performance of this code
sequence because of all the pointer operations being performed.  For
example, conventional compilers given the code sequence for S’ cannot
be absolutely sure that the value represented by R3 is not changed by a
store into Rtemp1 .  In order to prove that, it would have to understand
the global graph rewriting operations and spine traversals performed
by the program.  Experiments with the MIPS R2000 optimizing C
compiler and assembler show that essentially no optimization takes
place, and that most load delay slots are filled with NOP instructions.

30 Chapter 4.  Implementation of the TIGRE Machine



4.1.3. A TIGRE Compiler

Rather than trust the efficiency of compilation to external compilers of
varying degrees of optimization, we have written an optimizing TIGRE
compiler (Lee & Koopman 1989).  The purpose of the compiler is to
generate TIGRE assembly language source code when given the defini-
tion of a combinator.  This compiler not only generates code such as that
given for S’ above, but also performs various optimizations to produce
code that is of the same quality as hand-written assembler code for C,
VAX assembly language, and MIPS R2000 assembly language.  The
compiler performs as many optimizations as possible at the TIGRE
assembly code level, then performs a simple mapping of TIGRE as-
sembler instructions into directly corresponding sequences of target
machine instructions.  Optimizations include: reusing values in
registers to eliminate redundant memory accesses, consuming spine
stack elements in order from the top to allow on-the-fly popping of the
stack for machines with post-increment addressing modes, grouping of
writes to memory for better performance on machines with wide
memory write buffers, and reusing values in registers to eliminate
redundant memory accesses.

4.2. MAPPING OF TIGRE ONTO VARIOUS EXECUTION
MODELS

Since TIGRE is an abstract machine definition, it must be emulated on
whatever hardware is actually used.  Therefore, it is important that
TIGRE be designed to efficiently map onto a variety of execution
platforms.  The following sections describe the mapping of TIGRE into

PROGRAM
MEMORY
(CODE)

 REGISTER
VARIABLES

C RUN-TIME
PACKAGE

HEAP &
SPINE STACK

(C HEAP
MEMORY)

Figure 4-3.  Mapping of the TIGRE abstract machine onto C.

4.2.  MAPPING OF TIGRE ONTO VARIOUS EXECUTION MODELS 31



a portable C implementation as well as assembly languages for the VAX
and the MIPS R2000 processors.

4.2.1. Mapping of TIGRE Onto the C Execution Model

TIGRE can be mapped into C in a straightforward manner, but with
some inherent inefficiency.  In order to keep C implementations port-
able, TIGRE must use an interpretive loop with one-bit tag checking of
cell values when performing spine unwinding.

Figure 4-3 shows the mapping of TIGRE onto a C abstract execu-
tion engine.  The spine stack is a vector of 32-bit nodes allocated from
the C heap space.  TIGRE heap memory is likewise allocated from the
C heap space (and is managed with garbage collection by TIGRE).
Combinator memory corresponds to the compiled C program, which
contains the combinator definitions.  The scratchpad registers are im-
plemented using register variables.

As spine nodes are unwound, addresses to the nodes are placed
onto a software-managed stack.  When a combinator node is found, a
switch  statement (case statement) is executed to jump to the ap-
propriate combinator code.  Many C compilers implement the switch
statement by using a jump table, so the case analysis is reasonably
efficient.  The C code for S’ is:

case DO_SPRIME:
New_Node(3);
Use_Me;
Ltemp1 = ip = Rme ;
Rtemp1.child = TARGET(temp0);
Use_Parent;
Ltemp0 = Rparent;
Pop_Spine(2);
Use_Me;
Ltemp2 = Rme;
Use_Parent;
Rtemp2 = Rtemp0 = Rparent;
Lparent.child = TARGET(temp1);
Rparent.child = TARGET(temp2);
*(spine_ptr) = temp1 + 1 ;
continue;
  
Several macro definitions are used in C to make the code readable.

New_Node()  is a macro that expands into a heap node allocation process
with a conditional call to the garbage collector in case the heap memory
is exhausted.  Use_Me is a macro that caches the top-of-stack element
from the spine stack into a register variable for use with later references

32 Chapter 4.  Implementation of the TIGRE Machine



to the R0 or L0  cells.  The TIGRE compiler automatically invokes this
macro to perform the caching just before an R0 or L0  reference is needed.
Use_Parent  is similar to Use_Me, except it caches the value of the
second from top stack element from the spine stack for later use in
referencing R1 and L1 .  Because many machines have a limited number
of registers, the TIGRE compiler structures C code in such a way as to
access only the top two stack elements at any one time, popping the stack
as arguments to the combinator are consumed.  Auto-incrementing
access to the stack pointer is not used, because many machines do not
support this addressing mode in hardware, and may therefore execute
code more slowly when using post-incrementing address modes because
of extra instructions generated by the C compiler.

Rme and Lme in the C code correspond to R0 and L0 .  Rparent  and
Lparent  in TIGRE assembly language similarly correspond to R1 and
L1 .  The “TARGET” notation generates a reference to the address of a
heap node.  The “.child ” notation is used to satisfy type checking
requirements of the C compiler, since heap cells may contain pointers,
combinator values, or integer constants.

The C code generated by the TIGRE compiler is nearly identical to
hand-tuned C code.  The hand-tuned C code was developed by iteratively
examining the assembly language output of a VAX C compiler and
changing the C source code to improve efficiency.  The result is that, on
a VAX, the C code generated for a particular combinator is as close as
is possible to the VAX assembler expression of that combinator within
the limit of the capabilities of the C language.  Unfortunately, C is
unable to explicitly express indirect jumps, “light-weight” subroutine
calls (that do not save stack frames), direct subroutine return stack
manipulations, and other convenient implementation mechanisms for
TIGRE threading operations.  For this reason, C implementations of
TIGRE typically run two or three times slower than assembly language
implementations on the same hardware.

4.2.2. Mapping of TIGRE Assembly Language Onto a VAX

Since the VAX has a lightweight subroutine call instruction (jsb ),
TIGRE can map very efficiently onto the VAX architecture.  As shown
in Figure 3-8, each heap node consists of a triple of cells, with the first
cell containing a VAX jsb  instruction.  The VAX then executes self-
modifying graph code, using the hardware-supported stack pointer
register as the spine stack pointer.  Jumps to combinators are ac-
complished by simply having a pointer to the combinator code resident
in a heap cell.

4.2.  MAPPING OF TIGRE ONTO VARIOUS EXECUTION MODELS 33



Figure 4-4 shows how the TIGRE abstract machine maps onto a
VAX 8800.  The spine stack and heap memory both reside in main
program memory.  The combinator memory is a sequence of VAX
assembly instructions that resides in a different memory segment (at
least under the UNIX operating system), but shares the same physical
memory.  Since the VAX 8800 has a single cache memory, all three
TIGRE memory spaces share the same cache.  The VAX hardware
registers are used as the TIGRE scratchpad registers.

The following is optimized VAX assembly code for the S’ com-
binator, commented with the corresponding TIGRE assembly code:

# r3 is temp0, r4 is temp1, r5 is temp2, r9 is ip
movl (r3), r0 # cache pre-touch
movl *(sp)+, r9 # mov R+, ip /* R+ pops R0 */
movl r9, (r4) # mov ip, Ltemp1
movab -2(r3), 4(r4) # mov temp0, Rtemp1
movl *(sp)+, (r3) # mov R1, Ltemp0
movl *(sp), (r5) # mov R2, Ltemp2
movl 4(sp), r7 # mov R3, Rtemp2
movl (r7), r8
movl r8, 4(r5)
movl r8, 4(r3) # mov R3, Rtemp0
movab -2(r4), -4(r7) # mov temp2, L3
movab -2(r5), (r7) # mov temp2, R3
movab 4(r3), (sp) # top Rtemp1
jmp (r9) # thread
 
In the VAX 8800 code, the first instruction performs a dummy read

to accomplish cache pre-touch, which partially defeats the write-no-al-
locate behavior of the cache memory on that machine (the reason for
this is discussed in Chapter 6).  The movl  instructions use the double-

 REGISTERS

CONTROL
LOGIC

ALU (CACHE)

PROGRAM,
HEAP &

SPINE STACK
(MAIN

MEMORY)

Figure 4-4.  Mapping of the TIGRE abstract machine onto a VAX 8800.

34 Chapter 4.  Implementation of the TIGRE Machine



indirect addressing capability of the VAX architecture to implement
efficiently many TIGRE assembler instructions with a one-to-one cor-
respondence.

The movab instructions are used to write pointers to new nodes
into heap cells.  Since the VAX uses a subroutine-threaded interpreta-
tion of TIGRE, two bytes (the size of a jsb  opcode) must be subtracted
from each address to point to the jsb  in front of each heap node.  The
jsb  instruction places the address of the right-hand side of a node onto
the spine stack, so an offset of -4 is used to access the left-hand side of
a heap node.  Finally, the thread instruction is simply a jump to the jsb
opcode of the next heap node to be unwound onto the spine stack.

It should be noted that writing into the instruction stream is not
necessarily safe on a high-end VAX architecture.  In the case of VAX
8800 code, a dummy write instruction must be added to the end of some
combinators (S’ is not one of them) in order to flush a write buffer, forcing
updating of resident cache elements, which in turn forces updating of
the instruction prefetch buffer.  However, with this one programming
note, self-modifying TIGRE code runs perfectly on the VAX 8800.  A
non-self-modifying version of TIGRE on a VAX can be designed which
uses an interpretive loop to perform stack unwinding instead of sub-
routine call instructions, but executes at slower speed.

4.2.3. Mapping of TIGRE Assembly Language Onto a MIPS
R2000

The MIPS R2000 processor does not support a subroutine call instruc-
tion.  Furthermore, the R2000 has split instruction and data caches,
with no updates of the instruction cache for bus writes.  This means that

PROGRAM
MEMORY
(I-CACHE)

 REGISTERS

CONTROL
LOGIC

ALU

(D-CACHE)

HEAP &
SPINE STACK

(MAIN
MEMORY)

Figure 4-5.  Mapping of the TIGRE abstract machine onto a MIPS

4.2.  MAPPING OF TIGRE ONTO VARIOUS EXECUTION MODELS 35



self-modifying code is not practical on an R2000.  So, the R2000 im-
plementation of TIGRE uses a five-instruction interpretive loop to
perform stack unwinding, and does a jump to the combinator code when
the highest order bit (which is a one-bit tag) of a cell value is set.

Figure 4-5 shows how the TIGRE abstract machine maps onto a
MIPS R2000.  The combinator memory resides in the instruction cache
(the TIGRE kernel is small enough to fit entirely into cache), while the
stack memory and graph memory reside in a combination of the data
cache and main memory.  The code for the S’ combinator below is
scheduled to eliminate pipeline breaks caused by the one-clock load
delay slot of the R2000.  Comments are given in C code instead of TIGRE
assembler to make the buffering of pointers to the top and second spine
elements more obvious.

 # $16 = spine stack pointer
 # $18 = temp0,  $19 = temp1,  $20 = temp2
 # $21 = buffer for top of spine stack
 # $17 = buffer for second on spine stack

$DO_SPRIME:
NEWNODE3 ; # allocate 3 cells

lw $21, 0($16) # Use_Me ;
lw $17, 4($16) # Use_Parent;
lw $10, 0($21) # Ltemp1  = ip  = Rme ;
sw $19, 4($18) # Rtemp1.child=TARGET(temp2);
sw $10, 0($18)
lw $8, 0($17) # Ltemp2 = Rparent ;
addu $16, $16, 8 # Pop_Spine(2) ;
sw $8, 0($19)
lw $21, 0($16) # Use_Me ;
lw $17, 4($16) # Use_Parent;
lw $8, 0($21) # Ltemp3 = Rme ;
sw $18, -4($17)  # Lparent.child=TARGET(temp1);
lw $9, 0($17) # Rtemp2 = Rtemp3 = Rparent ;
sw $8, 0($20)
sw $9, 4($19)
sw $9, 4($20)
sw $20, 0($17) # Rparent.child=TARGET(temp3);
addu $8, $18, 4 # *(temp_spine) = temp1+1;
sw $8, 0($16) # moved to branch delay slot
b $THREAD # continue;

With the R2000 assembly language, it becomes apparent that the
combinator definition for S’ is simply a long sequence of memory loads
and stores.  This corresponds closely to the notion of performing a graph
rewrite, which is simply copying values between memory locations.

36 Chapter 4.  Implementation of the TIGRE Machine



4.2.4. Translation to Other Architectures

The availability of a reasonably quick subroutine call instruction on
many architectures makes the TIGRE technique applicable, in theory,
to most computers.  In practice, there are issues having to do with
modifications of the instruction stream that make the approach difficult
to implement on some machines.  It should be emphasized, however,
that these problems are the result of inappropriate (for the current
application) tradeoffs in system design, not the result of any inherent
limitation of truly general-purpose CPUs.  Inasmuch as graph reduction
is a self-modifying process, it is not surprising that a highly efficient
graph reduction implementation makes use of self-modifying techni-
ques.  One could go as far as to say that the extent to which graph
reducers use self-modifying code techniques reflects the extent to which
they efficiently implement the computation being performed.

4.3. TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS

The previous section explored the mapping of TIGRE onto a high level
language, a Complex Instruction Set Computer (CISC) architecture,
and a Reduced Instruction Set Computer (RISC) architecture.  The
following subsections describe the different classes of combinators
needed for implementing TIGRE efficiently, and give example com-
binator implementations in TIGRE assembly language.

4.3.1. Non-Strict Combinators

The Turner Set of combinators includes two types of non-strict com-
binators: projection combinators and simple graph-rewriting com-
binators.  Each type has a different implementation strategy.

4.3.1.1. 1-Projection Combinators

The 1-projection combinators, I and K, are combinators that jump to the
right-hand side of the heap node referred to by the topmost element on
the spine stack, discarding one or more other references to heap nodes
on the spine stack.  They have the general form:

W a b c d ... → a
In TIGRE, these 1-projection combinators are implemented by

jumping to the subgraph pointed to by a, while popping references to

4.3.  TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS 37



the other inputs b, c, d, and so on.  No graph rewriting is performed,
but rather a simple “fall-through” flow of control operation is performed.

For the I combinator, this strategy results in remarkably simple
code:

mov R0, ip
pop(1)
thread
 
The simplicity of this code results in great speed.  It also eliminates

a conditional analysis that would otherwise be required to decide
whether the I node is at the top of a subtree, in which case the address
of the parent cell may not be available for rewriting in the TIGRE
evaluation scheme.

The K combinator is defined in TIGRE as:

mov R0, ip
pop(2)
thread
 

Thus, we see that the operation of I and K are almost identical if viewed
in the proper manner.

In other graph reducers, the K combinator rewrites a node to
eliminate the reference to the second input argument.  In TIGRE, the
K combinator simply pops the reference from the spine stack, eliminat-
ing it from the dynamic execution history of the program (but not from
the static tree structure).  In fact, any 1-projection combinator that takes
n input arguments may be defined as:

mov R0, ip
pop( n)
thread

With this method, space is temporarily lost in the heap to subgraphs
that would have been abandoned as garbage with a projection com-
binator that did graph rewrites.  With the TIGRE projection combinator
scheme, such subgraphs cannot be reclaimed until the subtree owning
the reference to the K combinator is itself abandoned  However, in
practice, defining K to perform “fall-through” operations results in
measurably improved overall performance (yielding approximately a
5% overall program speed improvement for the Fibonacci benchmark
discussed in Chapter 5 using the SKI subset of the Turner Set).  A
secondary space consideration is that I nodes themselves take up heap
space that might be reclaimed, but this problem can be overcome by

38 Chapter 4.  Implementation of the TIGRE Machine



using a garbage collector that performs I-node shorting (Peyton Jones
1987) if necessary.  Similarly, K-node shorting could be added to the
garbage collector if desired.

4.3.1.2. Simple Graph Rewriting Combinators

The Turner Set also includes other non-strict combinators which per-
form simple graph rewriting functions.  These combinators are S, B, C,
S’, B*, and C’.  All are similar in definition to the S’ example already
discussed.

4.3.2. Strict Combinators

Strict combinators require that some or all of their arguments be
evaluated before the combinator can produce an answer.  TIGRE can
use totally strict combinators that perform computations and return
results, and can use partially strict combinators, primarily for condi-
tional branching.

4.3.2.1. Totally Strict Combinators

Totally strict combinators implemented in TIGRE include literal values,
unary arithmetic/logic operations and binary arithmetic/logic opera-
tions.  All of these operations are distinguished by the fact that they are
strict, and by the fact that they all return a value to a calling function.

Evaluation of a subgraph in TIGRE is accomplished by performing
a subroutine call to a subtree to be evaluated.  In interpreted threaded
versions, this constitutes a subroutine call to a threading loop, which
accomplishes the same purpose.  Non-strict combinators do not evaluate
any of their arguments, but also do not leave any pointers to their
arguments on the spine stack.  So, what happens during program
execution is that non-strict combinators continually rewrite the pro-
gram graph without causing a permanent buildup of entries on the spine
stack.  When a combinator executes, the compilation process has
guaranteed that exactly enough parameters are on the spine stack to
perform its function.  When a combinator that returns a result is
completed, it can remove its own inputs from the spine stack and be
guaranteed that the top element of the spine stack is always a return
address to the function that invoked the subtree evaluation.

When a strict combinator requires an input to be evaluated, it
performs a subroutine call to perform the evaluation, then resumes
execution when the evaluation of the subtree is completed, accepting the

4.3.  TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS 39



result of the evaluation in the “result ” register of the TIGRE abstract
machine.

As an example of a combinator that returns a result, consider LIT.
LIT takes one input, which is a constant value in the right-hand side of
a node, and returns that value in the result register:

mov R0, result
pop 1
return

The + combinator is an example of a combinator that evaluates
arguments and returns a result.  Simple TIGRE assembler code for the
+ combinator is:

/* evaluate first argument */
mov R+, ip
evaluate  

/* recursive call to evaluation function*/
push(result) /* save result on stack */

/* evaluate second argument */
mov R0, ip
evaluate 

/* recursive call to evaluation function*/
mov pop(1), scratch0   /* capture first result */
add scratch0, result   /* sum in result */
/* re-write answer as LIT node */
mov DO_LIT, L0
mov result, R+
return

The + combinator first calls the right-hand side of the top node on
the stack, which evaluates the first argument to + using a subroutine
call.  When the subgraph is eventually reduced, a combinator within the
evaluated subtree will return a value in the result register.  This value
is pushed onto the spine stack for safe-keeping, and the second argu-
ment to + is evaluated.  The first argument is popped back off the spine
stack, and the result is computed to be transferred back to the routine
that called the + combinator.  The + combinator also rewrites the node
which was the parent of the node containing the + combinator, so that
if the subtree is shared the evaluation need only be performed once.

40 Chapter 4.  Implementation of the TIGRE Machine



4.3.2.2. Partially Strict Combinators

The only partially strict combinator in the Turner Set is the IF com-
binator, shown in Figure 4-6.  The IF combinator evaluates its first
argument, then selects the second argument if the first argument is true
(non-zero), or selects the third argument if the first argument is false
(zero).

The code for IF is:

mov R+, ip
evaluate          /* evaluate first argument */
bzero IF_B

           /* TRUE - select first input */
mov R0, R1

IF_B:            /* FALSE - leave second input */
mov R1, ip
mov DO_I, L1
pop 2
thread
The code evaluates the first argument.  Then, if the first argument

is true (non-zero), the second argument is used to overwrite the third
argument, otherwise the third argument is left in place.  Finally, an I
combinator is placed in the left-hand side of the third argument node,
converting the node to a jump to the selected subtree.  While the IF
combinator could be implemented so as not to rewrite graphs, in the
style of the projection combinators, the overhead involved in repeatedly
evaluating the first argument probably outweighs the savings possible
from not rewriting the graph.

I g

f

0
IF x =  0

1

IF

g

x

2
I f

2

OR

IF x ≠  0

Figure 4-6.  The IF combinator.     IF x f g → (I f)  OR  (I g)

4.3.  TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS 41



4.3.3. List Manipulation Combinators

The Turner Set includes definitions for two list manipulation com-
binators: P and U.  P is the “pairing” combinator, which works much
like a “cons” operation in LISP.  Figure 4-7 shows the P transformation,
which protects a pair of subtrees from being evaluated, and returns a
pointer to the structure of paired elements.  A succession of P com-
binators may be used to build data lists or other data structures.

Figure 4-8 shows the U transformation, which performs an “un-
pair” operation.  The U combinator is guaranteed by the compilation
process to always have a P-protected subtree as its second expression.
In effect, the U combinator is used to peel away the protection afforded
to a pair by the P combinator.

An obvious way to implement the U combinator is to have it
interpret the P-protected subtree to locate and extract the two list
subtrees.  Unfortunately this process is slow.  It is further complicated
by the fact that un-rewritten projection combinators (I and K) and nodes
may be lingering between the U combinator and the P combinator,
introducing case analysis situations into the tree traversal process.

The way TIGRE implements the U combinator efficiently is to
recursively call the P subgraph (using an evaluation call) and let it
evaluate itself.  The value returned from the P combinator is defined to
be a pointer to the parent node of the node having the P combinator cell
(node 0 in figure 4-7):

# result is value of second from top spine stk el.
mov address_of(R1), result

# short out projection combinators
mov address_of(L0), L1 
pop 2
return

y

P x
1

0
y

P x
1

0

Figure 4-7.  The P combinator.

42 Chapter 4.  Implementation of the TIGRE Machine



The returned result  is simply the contents of the second-to-top-
most spine stack entry (which points to the parent node of the P
combinator node).  The left-hand side of this parent node is rewritten
with a pointer to the P combinator node to eliminate any potential
projection combinators in the path.  This rewriting is in preparation for
the U node making a traversal of the subtree later.  It is important to
note that the value returned by the P combinator is not necessarily the
same as the value used by the U combinator subtree to access the P
subtree, since additional projection combinators may interfere there as
well.  A secondary use of the P node which is supported by this method
is the use of P to return pointers to unevaluated lists for performing list
equality comparisons.

The U combinator expects that its second argument will be a
pointer to a tree which reduces to a P combinator subtree.  The value
returned from the P combinator points to the root of the subtree, whose
right-hand side contains one of the subtrees needed by U to build its

result.  A single indirection performed by U on the left-hand side of this
root node is guaranteed to give access to the other subtree reference
required by U, since P has shorted-out any intermediate projection
combinators.  The code for U is as follows:

mov R1, ip
evaluate

U
1

0

y

P

f

3

2

x

y

f x
4

0

Figure 4-8.  The U combinator.

4.3.  TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS 43



allocate 1 
mov R0, ip
mov ip, Ltemp0
mov Rresult, R1
mov Lresult, result
mov Rresult, Rtemp0
top (Rtemp0)
thread

The allocation is performed after the evaluation, because the evaluation
may disrupt the contents of any heap node pointer registers, and may
trigger a garbage collection cycle.

4.3.4. Supercombinators

The compilation of supercombinator definitions for TIGRE is supported
by the same set of primitives used to implement the Turner Set.
Hand-compiled supercombinator code shows that TIGRE can readily
take advantage of supercombinator compilation with sharing and strict-
ness analysis.

One example of supercombinator compilation is the “fib”
benchmark, which recursively computes the nth Fibonacci number.
Since the definition of fib is itself a supercombinator, then a single graph
rewrite for the combinator $FIB may be defined as shown in Figure 4-9.

x-1LIT

+

$FIB x

1

0

3

0

$FIB2 x-2LIT5

$FIB4

Figure 4-9.  The $FIB supercombinator.

44 Chapter 4.  Implementation of the TIGRE Machine



The idea behind the supercombinator definition is to eliminate the need
for combinations of graph rewriting combinators such as S, B, and C.
In the case of $FIB, the TIGRE assembler code is:

allocate 5
/* evaluate argument */
mov R0, ip
evaluate
cmp result,3
bge FIB_CONT
/* result less than 3, return 1 */
mov 1, result
return

FIB_CONT:
/* result not less than 3, recurse */
dec result /* decrement result for N-1 */
mov DO_LIT, Ltemp0
mov result, Rtemp0
mov DO_$FIB, Ltemp1
mov temp0, Rtemp1
mov DO_PLUS, Ltemp2
mov temp1, Rtemp2
dec result /* decrement result for N-2 */
mov DO_LIT, Ltemp3
mov result, Rtemp3
mov DO_$FIB, Ltemp4
mov temp3, Rtemp4
mov temp2, L0
mov temp4, R0
mov temp2, ip
thread

From this code, it may be seen that $FIB is able to implement
efficiently the desired behaviors of a supercombinator.  If the input
argument to $FIB is evaluated to be less than 3, then a 1 value is
returned without updating the graph at all (this is because compilation
analysis shows that the recursive calls to $FIB cannot be shared, so
graph updating is of no value).

If the input argument to $FIB is 3 or greater, then a new graph is
built to hold the recursion structures.  No stacking or other memory
mechanism is required explicitly by TIGRE to remember the fact that
two recursive evaluations are taking place for each evaluation of $FIB,
since the program graph captures all essential information.  Note that
the values (x-1) and (x-2) are pre-computed and stored in LIT nodes.

4.3.  TIGRE ASSEMBLER DEFINITIONS OF COMBINATORS 45



4.4. SOFTWARE SUPPORT

The TIGRE graph reducer cannot live in an isolated environment.  It
requires various pieces of support software for proper operation.  This
software will be briefly discussed for the sake of completeness.

4.4.1. Garbage Collection

First and foremost, TIGRE needs an efficient garbage collector.  Graph
reduction tends to generate huge amounts of garbage.  The heap
manager must therefore support efficient allocation and quick garbage
collection.  Several methods of performing this task are available, such
as mark/sweep garbage collection, stop-and-copy collection, and genera-
tional collection (Appel et al. 1988).  The TIGRE implementation cur-
rently uses stop-and-copy collection, because it gives significant
speedups over mark/sweep collection, yet is easy to implement.

Since the garbage collector must be able to discriminate com-
binator references from pointers, most implementations of TIGRE use
a one-bit tag that is set to indicate a combinator reference.  The garbage
collector can then follow references to pointers until it sees a combinator
when performing copying or marking.  This one-bit tag adds no addi-
tional execution overhead, however, since it may be ignored by the
execution engine if subroutine threading is in use.  As an example of an
actual implementation, the VAX assembler version of TIGRE aligns all
combinator definitions on odd byte boundaries so that the lowest bit of
a reference to a combinator is always 1.  Jsb  instructions in the heap
are aligned on odd 16-bit boundaries, causing pointers to heap cells to
have the lowest bit set to 0.  The garbage collector can use this alignment
information to distinguish pointers from combinators, but the jsb
instructions at run time ignore the information available, since it is not
needed.  An alternate method that does not require an explicit tag bit is
to perform an address range check to see whether a pointer points to an
element in the heap space.  On the VAX, the lowest bit was used as a
tag because the VAX architecture supports a branch-on-lowest-bit in-
struction.

A problem with stop-and-copy garbage collection, or any garbage
collector that performs relocation of elements, is that the contents of the
spine stack must be updated whenever elements are moved.  This
process of updating the spine stack is relatively quick, but it does
increase code complexity and is subject to subtle bugs.

Because of the complexity inherent in directly updating the spine
stack, a different method for coping with heap cell relocation has been

46 Chapter 4.  Implementation of the TIGRE Machine



found.  The method used by TIGRE is to simply throw away the spine
stack after a garbage collection, and restart graph reduction at the root
node of the tree.  This method is guaranteed to work, because the
program graph is continually updated by graph rewrites to reflect the
current state of the computation.  So, the information in the spine stack
is redundant, since it is guaranteed to match the path down the left
spine of the graph.  This means that the spine stack information can be
regenerated simply by re-interpreting the graph.

This method of throwing the spine stack contents away after each
garbage collection has been implemented successfully.  It eliminates the
likely chance of a bug in the stack relocation algorithm.  The cost of
regenerating the spine stack seems to be roughly comparable to relocat-
ing the spine stack (no measurable speed difference was detected on trial
runs).  And, the concept of discarding the spine stack brings to light the
fact that a processor evaluating a graph need only have one word of state
(the graph root pointer) in order to have access to the entire state of the
computation.  This economy of state representation may prove crucial
in efficiently implementing parallel processing versions of TIGRE.

4.4.2. Other Software Support

Software support is also needed to read the TIGRE graph from a file,
build it in memory, and print a graph out of memory for debugging
purposes.  These functions are supported by C procedures that call the
TIGRE interpreter as required.

The TIGRE input file parser is perhaps the most interesting of
these three functions.  The TIGRE parser takes two input modes.  The
first input mode is S-expression notation, which takes parenthesized
binary graph expressions such as:

((S ((S (K +)) I)) I)

which implements the doubling function.  Integer constants may be
included freely in the graph description, and the parser will automat-
ically create LIT nodes as the program is parsed.  S-expression notation
has the advantage of being readily understood by humans.

The second input mode for the TIGRE parser is sets of triples.
Triples are a more powerful method of representing a graph, since
S-expression notation has difficulty expression sharing and cycles.  A
triple file for the doubling function might look like:

0 #1 I
1 S  #2
2 #3 I

4.4.  SOFTWARE SUPPORT 47



3 S  #4
4 K  +

where the first column identifies an integer node number (with 0 defined
as the root of the graph).  Combinators appear as their name, while
integer constants (which have automatically created LIT nodes) appear
as just a number.  A hash mark followed by a number indicates a pointer
reference.  The middle of the three symbols in a line is the left-hand side
of a node, while the third of the three symbols is the right-hand side of
a node.

48 Chapter 4.  Implementation of the TIGRE Machine



4.4.  SOFTWARE SUPPORT 49


