
Chapter 2
Background

This chapter discusses background information pertinent to the re-
search discussed in the remainder of the book. Section 2.1 defines the
problem area addressed by the research: combinator graph reduction of
lazy functional programs. Section 2.2 discusses previous research on
combinator reduction methods of program execution. Section 2.3 out-
lines the approach used for research presented in later chapters, focus-
ing on the TIGRE abstract machine for combinator graph reduction.

2.1. PROBLEM DEFINITION

The problem area of interest is the efficient execution of lazy functional
programs using combinator graph reduction. Since this method of
program execution is not well known, Appendix A has been provided as
a brief tutorial on the main concepts.

2.1.1. Lazy Functional Programming

Functional programs are built by pairing expressions into applications.
Each expression may be a function or value, and the result of each
pairing may also be a function or a value. Functional programming
languages may be contrasted with more conventional, imperative,
programming languages by the fact that functional programs preserve
referential transparency (i.e., expressions have no side effects and
depend only on values returned from subexpressions), and hence lack
an assignable program state.

5

Lazy functional programming languages are further distinguished
from imperative languages by the fact that they employ lazy (or, more
precisely, nonstrict) evaluation of parameters by default. Lazy evalua-
tion (sometimes called normal order evaluation, although this term does
not precisely characterize the notion of lazy evaluation) is a call-by-need
para-

meter passing mechanism in which only a thunk* for an argument is
passed to a function when that function is called (Henderson & Morris
1976, Friedman & Wise 1976, Vuilleman 1973). Whenever a thunk is
evaluated, the result is memoized so as to avoid repeated evaluation of
the same parameter. Lazy evaluation allows the use of powerful
programming techniques such as manipulating functions as so-called
first class objects (in other words, using the same manipulation techni-
ques on functions as other data values), infinitely long lists and trees,
demand-driven I/O, and implicit coroutining.

A further advantage of lazy functional programming languages is
that it is believed they will provide easy-to-use parallelism. This is
because the compilation process simply and automatically transforms
programs into a format which makes all available parallelism explicit.
This is in contrast to the case of imperative languages, where the
parallelism can only be partially discovered by a sophisticated compiler,
or must be made explicit by the programmer.

A problem with lazy evaluation is that it seems to be costly in
practice. Examples of lazy functional programming languages include
Miranda (Turner 1985), Lazy ML (Augustsson 1984, Johnsson 1984),
SASL (Turner 1976), and Haskell (Hudak et al. 1988).

Recent developments in compilation technology (Hughes 1982,
Hudak & Goldberg 1985, Augustsson 1984) and the design of abstract
machines (Burn et al. 1988, Fairbairn & Wray 1987, Koopman & Lee
1989) have greatly improved the efficiency of lazy functional program-
ming languages. Whereas they had been two orders of magnitude
slower than conventional programming languages, now they are fast
enough to rival execution speeds of LISP, Pascal, and C on many
programs.

2.1.2. Closure Reduction and Graph Reduction

In strict programming languages, such as C or Pascal, all arguments to
a function are evaluated before the function is invoked. In languages
with lazy evaluation, the arguments are not computed until actually

6 Chapter 2. Background

* A thunk is a function that, when called, evaluates an argument. This defers the
evaluation of the parameter until the thunk is invoked. Lazy (nonstrict) evaluation,
call-by-need, call-by-name, and lexical scoping (late binding) are related terms, which
all involve deferring the evaluation of a value until it is actually needed during the
course of program execution. A thunk is a commonly used mechanism for
implementing these parameter evaluation strategies.

needed by the function. In order to accomplish this, the program must
create a thunk that computes the argument value.

Passing just a pointer to the code for a thunk as an argument is
not sufficient because, in general, the value of an argument depends on
the “current” values of other variables in the program. Thus, a com-
putational suspension, must be built for each argument. This suspen-
sion saves copies of the values upon which the argument’s computation
depends, as well as a pointer to the code for the thunk. A pointer to this
suspension is then sufficient to specify the value of the argument; the
suspension can be restarted to compute an argument value when the
result is actually needed. Of course, it is possible for the input values
required by a suspension to be the results of other suspensions, so values
within suspensions can be represented by either actual quantities or
pointers to other suspensions.

One important evaluation strategy is graph reduction. Graph
reduction involves converting the program to a lambda calculus expres-
sion (Barendregt 1981), and then to a graph data structure. One method
for implementing the graph data structure is to translate the program
to combinators (Curry & Feys 1968). A key feature of this method is
that all variables are abstracted from the program. The program is
represented as a computation graph, with instances of variables
replaced by pointers to subgraphs which compute values. Graphs are
evaluated by repeatedly applying graph transformations until the graph
is irreducible. The irreducible final graph is the result of the computa-
tion. In this scheme, graph reduction, also called combinator graph
reduction, effects the execution of the program.

The SK-combinators * (Turner 1979a, 1979b) are a small collection
of combinators implemented as graph rewriting rules. A major ad-
vantage of the SK-combinator scheme is that creation and evaluation of
suspensions is inherent in the operation of the graph networks, and so
happens automatically. No suspensions are explicitly constructed; they
are implicit in the organization of the graph itself. All the usually
“tricky” details of managing the manipulation of suspensions are hand-
led automatically.

The mechanics of SK-combinator graph compilation and reduction
are extraordinarily simple, raising the possibility of very simple and
efficient special-purpose hardware support (Clarke et al. 1980). Be-
cause of the simplicity of combinator graph reduction and the solid
theoretical foundation in the lambda calculus, many early lazy function-

2.1. PROBLEM DEFINITION 7

* See Appendix A for a tutorial on SK-combinators and the Turner Set of SK-combinators.

al programming language implementations have been based on SK-
combinators.

Another means of creating suspensions is to build closures. A
closure contains the information required to compute the value of an
argument. The contents of the closure must include a pointer to code,
as well as copies of the values (which may be constants or pointers to
other closures) of all the data needed to compute the argument. Passing
arguments to a function then involves simply passing a pointer to the
closure. This method of normal order evaluation is also known as
closure reduction (Wray & Fairbairn 1988).

As the implementation technology for lazy functional program-
ming languages has matured, research attention has focused on closure
reduction approaches. Closure reduction is more subtle in its operation
than graph reduction. However, its proponents claim that it has a
reduced bookkeeping load for program execution, and is inherently more
efficient since it does not always need to perform actual graph manipula-
tions (Wray & Fairbairn 1988). When combined with sophisticated
compiler technology, closure reducers seem to be more efficient than
previously implemented graph reducers. Closure reducers also have the
advantage that they seem to map more readily than graph reduction
implementations onto conventional hardware, especially RISC
hardware with register windows, since they use linear data structure
records for their suspensions instead of tree data structures.

The trend in research seems to be away from graph reduction and
toward closure reduction. However, comparisons of the relative merits
of these two methods, especially from a computer architecture point of
view, are essentially nonexistent. Comparisons thus far have been
based on implementations that do not necessarily represent the best
mapping of graph reduction onto conventional hardware.

2.1.3. Performance Inefficiencies

A major problem with lazy functional languages is that they are
notoriously slow, often as much as two orders of magnitude slower than
“eager” functional languages and imperative languages. Some of this
speed problem is inherent in the inefficiencies introduced by building
suspensions to lazily evaluate arguments. One obvious inefficiency is
that suspension creation requires dynamic memory allocation from a
heap data structure. When a suspension is no longer needed, it becomes
an unreferenced data structure known as garbage. Recovering the
storage (a process known as garbage collection) can be a computationally
expensive operation. Other parts of the speed problem are simply due

8 Chapter 2. Background

to inefficient implementation techniques. With this much of a perfor-
mance degradation, it is difficult to write meaningful programs to
exercise and evaluate the capabilities of this class of languages.

A large part of the development efforts by other researchers are
focused on increasing execution speed. Software techniques such as
supercombinators (Hughes 1982) and strictness analysis (Hudak &
Goldberg 1985) have resulted in substantial speedups. Also, several
custom hardware designs have been built and shown impressive results.
These efforts have made good progress toward closing the performance
gap between lazy functional programs and imperative programs. But,
further speedups will be required before programming environments
based on functional languages will be considered viable.

2.2. PREVIOUS RESEARCH

There have been many implementations of graph reducers on both
conventional and special-purpose hardware. They vary in both their
software approaches and the hardware used. Software approaches
include simple SK-combinator reduction, Turner Set combinator reduc-
tion, supercombinator reduction, and closure reduction. Hardware ap-
proaches include stock uniprocessor hardware, special-purpose graph
reduction hardware, and stock parallel processing hardware (both
SIMD and MIMD). The work reviewed here represents many im-
plementations for important combinations of the known hardware and
software techniques.

2.2.1. Miranda

The Miranda (Turner 1985) system is a straightforward commercial
implementation of a lazy functional programming language that uses
combinator graph reduction. Miranda has a reputation in the research
community of being somewhat slow and unsophisticated, but we sur-
mise that there is no more than a factor of two speed increase possible
without a major redesign effort*. Miranda apparently does not make
use of supercombinator compilation or strictness analysis techniques.
For these reasons, Miranda makes a good baseline for comparisons
among graph reducers, since it forms a widely available lower bound on
expected performance.

2.2. PREVIOUS RESEARCH 9

* The author understands that such a redesign effort is, in fact, in progress as this is
being written

2.2.2. Hyperlazy Evaluation

One approach to increasing the speed of graph reduction is to con-
centrate on only the three basic combinators S, K, and I in hopes of
better understanding the underlying principles of operation. Hyperlazy
evaluation (Norman 1988) uses this idea to implement combinator
graph reduction that is lazy at two levels. It provides for lazy function
evaluation, and it provides for lazy updating of the graph in memory by
using registers to pass small portions of the tree between combinators.

The hyperlazy evaluation scheme attempts to deal with common
sequences of graph manipulation operations not by creating more com-
plicated combinators, but rather by implementing a finite state machine
that remembers the sequence of the last few combinators executed. This
finite state machine enforces a discipline of maintaining outputs of a
combinator sequence in designated registers for use by the next com-
binator in the state sequence. Implementing the finite state machine
involves performing a case analysis at the end of each combinator to
jump to the next state based on the next combinator executed from the
graph. Problems with this finite state machine approach include a
combinatorial explosion in the number of states (and therefore the
number of code fragments to handle these states) as the length of the
“memory” of the system is increased or as the number of combinators
that is recognized by the system is increased. In the actual system, the
C combinator was used in addition to S, K, and I since it resulted in
significant efficiency improvements.

2.2.3. The G-Machine

The G-Machine (Augustsson 1984, Johnsson 1984, Peyton Jones 1987)
is a graph reducer that uses supercombinators to increase execution
speed. The idea is that in most combinator reduction schemes travers-
ing the graph tree, performing case analysis on node tags (values which
identify the data type of each node), and performing case analysis to
decide which combinator to execute are all quite expensive. Therefore,
using supercombinators speeds up the system, since supercombinators
reduce the number of nodes traversed and the number of combinators
executed. The G-Machine is representative of the most sophisticated
graph reducers developed.

A novel idea introduced by the G-Machine is the concept of using
macro instructions to synthesize sequences of machine instructions for
executing combinators. Each supercombinator is built using a sequence

10 Chapter 2. Background

of G-code instructions, which are then expanded by a macro assembler
into the assembly language of the target system.

The way the G-machine implements the case analysis for tag
values of nodes in the graph is a good example of its sophistication. Each
node has not only a pair of 32-bit data fields, but also a 32-bit tag field.
This 32-bit tag field is actually the value of a base pointer to a jump table
that then contains pointers to different code for each mode of the
G-Machine. The case analysis performed when touching any node is a
double-indirect fetch with an offset computation. The expense of
deciphering a tag is significantly reduced compared to previously used
strategies, but still quite expensive because of additional overhead
instructions required in addition to the case analysis. A newer version
of the G-machine has been developed that is tagless (Peyton Jones &
Salkild 1989), but this machine is a closure reducer, more of the nature
of TIM, described in the next section.

2.2.4. TIM

The Three Instruction Machine (TIM) (Fairbairn & Wray 1987, Wray &
Fairbairn 1988) is an evolution beyond the G-Machine graph reducer
into the realm of closure reducers. An important realization is that
graph reducers must produce suspensions to accomplish lazy evalua-
tion. Pointers to these suspensions are stored in the ancestor nodes to
a combinator in the tree. As the left spine (the leftmost path down the
program graph, which is the path taken by normal order reduction) is
traversed, the stack contains pointers to the ancestor nodes, forming a
list of pointers to the suspension elements. TIM goes a step further, and
copies the top stack elements to a memory location so that they form a
closure. This closure is simply a tuple of elements forming a vector of
data in the memory heap.

The driving force behind TIM is to make closures inexpensive to
create and manipulate. But, since the cost of traversing the spine is not
free, and since the cost of manipulating graphs is not free, TIM also uses
supercombinators to reduce the number of closures that must be created
and manipulated. Costs are greatly reduced by executing code that
pushes pointers directly onto a stack instead of traversing a graph that
incurs overhead for each node to accomplish this same building of a
pointer list on the stack. An important cost of TIM is that memory
bandwidth is expended to copy the top stack elements into a closure
created from heap memory. This is roughly equivalent in cost to a
context switch (where a set of registers are copied out to memory when
switching tasks) for each invocation of a combinator. Furthermore, the

2.2. PREVIOUS RESEARCH 11

closures are of various sizes, complicating the garbage collection
process.

The closure building on top of a stack is roughly analogous to a
machine using a set of register windows. This is not an accident. TIM
is the result of an evolution of software techniques that have trans-
formed the representation of the combinator graph reduction problem
from one of interpreting a combinator graph to one of executing sequen-
ces of inline code using register windows to contain groups of arguments.
In other words, TIM shows how the graph reduction problem can be
made to fit conventional hardware and software techniques. Since TIM
is optimized for the use of conventional software and hardware techni-
ques, it is unlikely that TIM performance can be significantly improved
by the use of any special-purpose hardware, beyond that available in a
well-designed general-purpose Reduced Instruction Set Computer
(RISC).

2.2.5. NORMA

The Normal Order Reduction MAchine (NORMA) (Scheevel 1986) at one
time was widely acknowledged to be the highest performance com-
binator graph reducer hardware built. It is special-purpose graph
reduction hardware optimized for the fastest possible operation. Among
NORMA’s features are a 370-bit wide microinstruction, five cooperating
processors, a 64-bit wide memory bus, and extensive use of semicustom
chips to optimize performance. NORMA uses a highly structured node
representation that includes five tag fields in addition to two data fields.
NORMA also uses some of its processors to perform garbage collection
operations and heap allocation in parallel with node processing and
arithmetic operations. NORMA uses the Turner Set of combinators to
accomplish graph reduction.

2.2.6. The Combinatorgraph Reducer

The concept of self-reducing combinator graphs for implementing graph
reduction was first reported by Augusteijn and van der Hoeven (Augus-
teijn & van der Hoeven 1984, van der Hoeven 1985). Their approach
was to add jsb instructions to the nodes of a combinator graph, then
directly execute the graph as instructions instead of data.

This use of self-reducing graphs is identical to the threaded inter-
pretive tree traversal mechanism described in this book (although they
were independent discoveries). Complete details of the Com-
binatorgraph Reducer are not available, but it appears that there are

12 Chapter 2. Background

differences in the operation of some of the combinators and the runtime
environment between that implementation and the TIGRE reducer
presented here.

2.2.7. Analysis and Summary

There are now two basic strategies for the lazy functional programs:
combinator graph reduction and closure reduction. Figure 2-1 shows

FUNCTIONAL
SOURCE CODE

 TURNER SET
COMBINATORS

COMBINATORS

LAMBDA CALCULUS

SK-COMBINATORS

 SUPER-
COMBINATORS

 SUPER-
COMBINATORS

TIM

NORMA

G-MACHINE

HYPERLAZY

MIRANDA

TIGRE

CLOSURE REDUCTION

GRAPH REDUCTION

Figure 2-1. Evolution of lazy functional program implementation tech-

2.2. PREVIOUS RESEARCH 13

the paths of development from functional program source code through
the lambda calculus and combinators. To improve performance beyond
the G-Machine, one can either shift to closure reduction (along the lines
of TIM), or try to minimize the costs involved with graph reduction. The
technique proposed in the next chapter (based on an abstract machine
called TIGRE) retains the combinator graph reduction approach, but
uses an unconventional software technique to reduce the cost of the
spine traversal, and from there significantly reduces the cost of execut-
ing combinators as well.

It is important to note that this review of previous work is by no
means exhaustive. Many researchers have been working on the prob-
lem of generating more efficient means of evaluating lazy functional
languages. There have been several special-purpose hardware projects
as well as software projects. Furthermore, this activity is not likely to
diminish soon.

2.3. APPROACH OF THIS RESEARCH

This book reports the results of a study of an abstract machine for graph
reduction called the Threaded Interpretive Graph Reduction Engine
(TIGRE). The goal of TIGRE is to achieve significant speedups over
other existing evaluation techniques for lazy functional programming.
A constraint on achieving this goal is to do so while remaining in a pure
graph-reduction paradigm, in order to preserve the simplest and most
obvious program structure for exploitation using parallel processors in
future endeavors.

TIGRE achieves its speedups by adopting a simplified model of
combinator graph reduction based on viewing the graph as an ex-
ecutable program structure instead of an interpretable data structure.
This shift of viewpoint causes the program graph to be viewed as a
self-modifying threaded interpretive program. The TIGRE technique
achieves significant speedups over previous combinator graph reduction
and closure reduction methods on identical standard hardware. Fur-
thermore, TIGRE on a stock workstation platform is substantially faster
than existing special-purpose graph reduction hardware.

Since TIGRE uses some unconventional software techniques, it
exhibits unusual behavior on conventional architectures. In order to
understand observed performance variations, TIGRE behavior was
instrumented and simulated. This has led to better understanding of
required hardware support for combinator graph reduction.

14 Chapter 2. Background

The next chapter describes the development of the TIGRE im-
plementation method. Chapter 4 describes actual implementation of
the TIGRE abstract machine.

2.3. APPROACH OF THIS RESEARCH 15

