
19
Dependability for

Embedded Systems
Distributed Embedded Systems

Philip Koopman
November 11, 2015

Some slides based on material by Dan Siewiorek
© Copyright 2001-2015, Philip Koopman

2

Preview
 Dependability overview

• Definitions; approaches

 How and why things break
• Mechanical / Hardware / Software
• Intro to reliability computations

 Designing systems for failure detection & recovery
• Practical limits of fault tolerant design
• Environment & other sources of problems
• How to (and not to) design a highly available system

3

Definitions
 Source for this section:

• Fundamental Concepts of Dependability (2001)
• Avizienis, Laprie & Randell; fault tolerant computing community

[Avizienis/Laprie/Randell 01]

4

Threats:
• Failure = system does not deliver service
• Error = system state incorrect (may or may not cause failure)
• Fault = defect; incorrect data; etc. (potential cause of error if activated)

[Avizienis/Laprie/Randell 01]

5

Primary Attributes of Dependability
 Dependability (covers all other terms):

• The ability to deliver service that can justifiably be trusted

 Availability:
• Readiness for correct service – “Uptime” as a percentage

 Reliability:
• Continuity of correct service

– (How likely is it that the system can complete a mission of a given duration?)
 Safety:

• Absence of catastrophic consequences on the user(s) and the environment
 Confidentiality:

• Absence of unauthorized disclosure of information
 Integrity:

• Absence of improper system state alterations
– (Note: security involves malicious faults; confidentiality & integrity)

 Maintainability:
• Ability to undergo repairs and modifications

 MTBF: Mean Time Between Failures
• Time between failures, including down-time awaiting repair from previous failure

[Avizienis/Laprie/Randell 01]

6

Means to Attain Dependability
 Fault prevention – “get it right; keep it right”

• Avoid design defects (good process; tools; etc.)
• Shielding, robust design, good operational procedures etc. for runtime faults

 Fault tolerance – “when things go wrong, deal with it”
• Error detection
• Recovery
• Fault handling

 Fault removal – “if you don’t get it right at first, make it right”
• Verification & validation (design phase)
• Corrective & preventive maintenance (operations)

 Fault forecasting – “know how wrong you expect to be”
• Simulation, modeling, prediction from process metrics (data from models)
• Historical data, accelerated life testing, etc. (data from real systems)

(Note: many of above require accurate fault detection to know when something
needs to be fixed or avoided)

7

Generic Sources of Faults
 Mechanical – “wears out”

• Deterioration: wear, fatigue, corrosion
• Shock: fractures, stiction, overload

 Electronic Hardware – “bad fabrication; wears out”
• Latent manufacturing defects
• Operating environment: noise, heat, ESD, electro-migration
• Design defects (e.g., Pentium FDIV bug)

 Software – “bad design”
• Design defects – some code doesn’t break; it comes pre-broken
• “Code rot” – accumulate run-time faults

– Sometimes this “feels” like wearout or random failures, but it is a design fault

 Outside influence – operation outside intended design limits
• People: Mistakes/Malice
• Environment: natural disasters; harsh operating conditions

8

Definition of Reliability
 Reliability is the probability that a system/product will perform in a

satisfactory manner for a given period of time under specified
operating conditions
• Probability: usually assumes constant, random failure rate

– Typical assumption: system is in “useful life” phase
• Satisfactory: usually means 100% working or m of n redundancy
• Time: usually associated with mission time = a period of continuous operation
• Specified operating conditions: all bets are off in exceptional situations

Burn-in issues can be
dramatically reduced with
good quality control (e.g.,
6-sigma) – but only from
high quality suppliers!

9

Reliability Calculations
 R(t) is probability that system will still be operating in single

mission at time t
• Start of mission is time 0
• Assume no repairs made during single

mission
• λ is constant failure rate (in same units

as time, e.g., per hour during useful life)

• Assumption: independent faults!

• Example: if λ is 25 per million hours, for an 8-hour mission:

(i.e., the system will complete an 8-hour mission without failure 9,998 times of 10,000)

tetR )(

%98.99)8()8)(10*25(6


eR

10

MTTF & Availability
 MTTF = Mean Time To Failure

• (related to MTBF, but doesn’t include repair time)
• MTTF can be represented as the failure rate λ (typically in per million hours)

 Counter-intuitive situation is:
How many systems are still working at t=MTTF?
mission time = MTTF, t = 1/λ, R(λ) = 37%

 Availability is up-time computed over life of system, not per mission
• As an approximation (assuming detection time is small):

Availability = 1 - ((Time to repair one failure) / MTBF)

• Example: repair time of 10 hours; MTBF of 1000 hours
– Availability = 1 – (10 / 1000) = 0.99 = 99%

%79.361 1
1







   eeetR t 





11

Origins of Reliability Theory
 WWII: Modern reliability

theory invented
• To improve V-2 German rocket
• For US Radar/electronics

 Problem: Misleading
mechanical analogy:
• “Improved” V-2 rockets kept

blowing up!
• “Chain is as strong as its

weakest link”
– So strengthen any link that

breaks to improve system
• Assumes failures based only on

over-stress effects
• Works for simple mechanical

components (chains), not
electronic components

12

Serial Equivalent Reliability
 Serial reliability – It only took one failure to blow up an original V-2

• Any single component failure causes system failure

• Example for mission time of 3 hours:
– λ1 = 7 per million hours: R(3)1 = e-3*7*10-6 = 0.999979
– λ2 = 2 per million hours: R(3)2 = e-3*2*10-6 = 0.999994
– λ3 = 15 per million hours: R(3)3 = e-3*15*10-6 = 0.999955
– R(3)TOTAL = R(3)1 R(3)2 R(3)3

= 0.999979 * 0.999994 * 0.999955 = 0.999928
which equates to 72 failures per million missions of 3 hours each

– Serial system reliability can be dominated (but not solely determined) by worst
component

1 2 3


i

iSERIAL tRtRtRtRtR)()()()()(321

13

Parallel Equivalent Reliability
 Parallel reliability

• Simple version -- assume only 1 of N components needs to operate

– Computed by finding (1 – unreliability) of composite system

• Example for mission time of 3 hours
– λ1 = 7 per million hours: R(3)1 = e-3*7*10-6 = 0.999979
– λ2 = 200 per million hours: R(3)2 = e-3*200*10-6 = 0.999400
– λ3 = 15000 per million hours: R(3)3 = e-3*15000*10-6 = 0.955997
– R(3)TOTAL = 1-[(1-R(3)1)(1-R(3)2)(1-R(3)3)]

= 1-[(1-0.999979)(1- 0.999400)(1- 0.955997)] = 0.999 999 999 45
which equates to 550 failures per trillion missions of 3 hours in length

– You can make a very reliable system out of moderately reliable components
(but only if they are all strictly in parallel!)

• More complex math used for M of N subsystems
– These may also be a “voter” that counts for a serial reliability element!

1

2

3

    321)(1)(1)(11)(tRtRtRtR TOTAL 

  
i

itR)(11

14

Combination Serial/Parallel Systems
 Recursively apply parallel/serial equations to subsystems

• Example for mission time of 3 hours
– λ1 = 7 per million hours: R(3)1 = e-3*7*10-6 = 0.999979
– λ2 = 200 per million hours: R(3)2 = e-3*200*10-6 = 0.999400
– λ3 = 15000 per million hours: R(3)3 = e-3*15000*10-6 = 0.955997
– λ4 = 2 per million hours: R(3)4 = e-3*2*10-6 = 0.999994
– R(3)PARALLEL = 1-[(1-R(3)1)(1-R(3)2)(1-R(3)3)] = 0.999 999 999 45
– R(3)TOTAL = R(3)PARALLEL R(3)4 = 0.999 999 999 45 * 0.999994 = 0.999994

• Note that a relatively reliable serial voter dominates reliability of redundant
system!

1

2
4

3

15

Pondering Probability: Reliability vs. Availability
 Availability is per generic unit of time

• Analogous to “I’ve tossed N heads in a row; what’s probability of heads next
time?”
(answer: still 50%)

• Instantaneous measure – no notion of duration of time
• E.g.: “Our servers haven’t crashed in 5 years minus 1 hour. What is chance

they will crash in the next hour?”

 Reliability is for a continuous mission time
• Analogous to the next N coin tosses in a row coming up “heads” (N is mission

length)
(answer: one chance in 2N)

• Assumes everything is working and is has no pre-mission memory
• Assumes failures are independent
• The longer the mission, the less likely you will get lucky N hours in a row
• E.g.: “What is the chance our server will run for 5 years without crashing?”

16

Common Hardware Failures
 Connectors

• Especially wiring harnesses that can be yanked
• Especially if exposed to corrosive environments

 Power supplies
• Especially on/off switches on PCs
• Batteries

 Moving mechanical pieces
• Especially bearings and sliding components

17

How Often Do Components Break?
 Failure rates often expressed in

failures / million operating hours (“Lambda” λ) or
“FIT” (Failures in time, which is per billion operating hours)

 We have no clue how we should quantitatively predict software field
reliability
• Best efforts at this point based on usage profile & field experience

Military Microprocessor 0.022

Automotive Microprocessor 0.12 (1987 data)

Electric Motor 2.17

Lead/Acid battery 16.9

Oil Pump 37.3

Human: single operator best case 100 (per Mactions)

Automotive Wiring Harness (luxury) 775

Human: crisis intervention 300,000 (per Mactions)

/Mhr

18

Data Sources – Where Do I Look Up λ?
 Reliability Analysis Center (US Air Force contractor)

• http://rac.alionscience.com/
• Electronic Parts Reliability Data (2000 pages)
• Nonelectronic Parts Reliability Data (1000+ pages)
• Nonoperating Reliability Databook (300 pages)

 Recipe books:
• Recipe book: MIL-HDBK-217F
• Military Handbook 338B: Electronic Reliability Design Handbook
• Automotive Electronics Reliability SP-696

 Reliability references:
• Reliability Engineering Handbook by Kececioglu
• Handbook of Software Reliability Engineering by Lyu…

– … where you’ll read that this is still a research area

19

Data Sources
 Reliability Analysis Center (RAC); USAF Contractor

• Lots of data for hardware; slim pickings for software

20

Transient Faults Matter Too
 Software: they can happen in essentially all software (“crashes”)

• Software is deterministic, but sometimes a “random” fault model is useful
– Race conditions, stack overflows due to ISR timing, etc.

 Hardware: 10x to 100x more frequent than permanent faults
• Electromagnetic Interference
• Random upsets due to cosmic rays = “Soft Errors” (yes, really)

Radiation strike causing transistor
disruption (Gorini 2012)

(Constantinescu 2003, p. 16)

(This one is for real! Circa 1992)

22

Each Airplane Gets Hit By Lightning About Once/Year

http://www.crh.noaa.gov/pub/ltg/plane_japan.html
also: plane_fast_lightning_animated.gif

23

Tandem Environmental Outages
 Extended Power Loss 80%
 Earthquake 5%
 Flood 4%
 Fire 3%
 Lightning 3%
Halon Activation 2%
 Air Conditioning 2%

 Total MTBF about 20 years
MTBAoG* about 100 years

• Roadside highway equipment will be more exposed than this
* (AoG= “Act Of God”)

24

IBM 3090 Fault Tolerance Features

 Reliability
• Low intrinsic failure rate technology
• Extensive component burn-in during

manufacture
• Dual processor controller that

incorporates switchover
• Dual 3370 Direct Access Storage units

support switchover
• Multiple consoles for monitoring

processor activity and for backup
• LSI Packaging vastly reduces number

of circuit connections
• Internal machine power and

temperature monitoring
• Chip sparing in memory replaces

defective chips automatically

 Availability
• Two or tour central processors
• Automatic error detection and

correction in central and expanded
storage

• Single bit error correction and double
bit error detection in central storage

• Double bit error correction and triple
bit error detection in expanded storage

• Storage deallocation in 4K-byte
increments under system program
control

• Ability to vary channels off line in one
channel increments

• Instruction retry
• Channel command retry
• Error detection and fault isolation

circuits provide improved recovery and
serviceability

• Multipath I/O controllers and units

25

More IBM 3090 Fault Tolerance

 Data Integrity
• Key controlled storage protection (store and

fetch)
• Critical address storage protection
• Storage error checking and correction
• Processor cache error handling
• Parity and other internal error checking
• Segment protection (S/370 mode)
• Page protection (S/370 mode)
• Clear reset of registers and main storage
• Automatic Remote Support authorization
• Block multiplexer channel command retry
• Extensive I/O recovery by hardware and

control programs

 Serviceability
• Automatic fault isolation (analysis routines)

concurrent with operation
• Automatic remote support capability - auto call

to IBM if authorized by customer
• Automatic customer engineer and parts

dispatching
• Trade facilities
• Error logout recording
• Microcode update distribution via remote

support facilities
• Remote service console capability
• Automatic validation tests after repair
• Customer problem analysis facilities

26

IBM 308X/3090 Detection & Isolation
 Hundreds of Thousands of isolation domains

• 25% of IBM 3090 circuits for testability -- only covers 90% of all errors

 System assumes that only 25% of faults are permanent
• If less than two weeks between events, assume same intermittent source
• Call service if 24 errors in 2 hours

 (Tandem also has 90% FRU diagnosis accuracy)

 Why doesn’t your laptop have memory parity?

 Does your web server have all these dependability features?

27

Approximate Consumer PC Hardware ED/FI

This space intentionally blank

28

Tandem Causes of System Failures

(Up is good; down is bad)

29

Typical Software Defect Rates
 Typical “good” software has from 6 to 30 defects per KSLOC

• (Hopefully most of these have been found and fixed before release.)
• Best we know how to do is about 0.1 defects/KSLOC for Space Shuttle

 Let’s say a car component has 1 million lines of code.
• That’s 6,000 to 30,000 defects, BUT

– We don’t know severity of each one
– We don’t know how often they’ll be activated (usage profile)

• So, we have no idea how to convert these defects into a component failure rate!
– You can go by operational experience…
– … but that doesn’t address the risk of novel operating situations

• AND, there is still the issue of requirements defects or gaps

30

Embedded Design Time Fault Detection
 Follow rigorous design process

• Good software maturity level
• Clear and complete specifications
• FMEA, FTA, safety cases, other failure analysis techniques

 Follow rule sets for more reliable software
• No dynamic memory allocation (avoids “memory leaks”)
• Follow guidelines such as MISRA C standard (http://www.misra.org.uk/)
• Target and track software complexity to manage risk

 Extensive testing
• Development testing
• Phased deployment with instrumentation and customer feedback
• Adopt new technology slowly (let others shake out the obvious bugs)

31

Embedded Runtime Fault Detection Techniques
 Watchdog timer (hung system; real-time deadline monitoring)

• Software resets timer periodically
• If timer expires before being reset it restarts the system

 Compute faster than is required
• Perform periodic calculations 2x to 10x faster than needed

– Send network messages more often than needed and don’t bother to retry
– Compute control loops faster than system time constants

• Let inertia of system damp out spurious commands
– Works well on continuous system with linear and reversible side effects

 Rely upon user to detect faults
• User can re-try operation; BUT, not effective on unattended systems

 Periodic system reboot & self-test to combat accumulated faults

 Avoid connection to Internet to avoid malicious faults

32

Critical System Fault Detection
 Concurrent detection: detects & reports error during computation

• Parity on memory, data buses, ALU, etc.
• Software flow checking

– Did software hit all required checkpoints?
• Multi-version comparison to detect transient hardware faults

– Compute multiple times and compare

 Pre-emptive detection
• Idea is to activate latent faults before they can affect real computations
• Execute self-test (perhaps periodic reboot just to exercise self-test)

– Hardware tests
– Data consistency checks

• Exercise system to activate faults
– Memory scrubbing daemon that reads all memory locations periodically

 A single CPU can’t detect and mitigate all of its own faults
• Getting a safe/ultra-dependable system requires duplex computing path

33

2-of-2 Systems: Achieving “Fail-Fast/-Silent”
 A technique to provide high-reliability safety systems

• Reliability theory often requires “fail-fast/fail-silent” behavior
• Get that via cross-checking pairs of components
• Note: doesn’t improve reliability; it improves safety by killing off faulty

components quickly

 Assumptions:
• System is safe or otherwise “OK” if

component fails fast/silent
– Might be accomplished via shutdown

• Faults occur independently and randomly
– This means assuming “perfect” software
– Failed common components (e.g., power supply)

cause fail-fast/-silent behavior
• Comparison circuits don’t have a common failure mode

– Each component checks the other’s output independently
– Both outputs needed to actuate system

34

Post-Modern Reliability Theory
 Pre-WWII: mechanical reliability / “weakest link”
 “Modern” reliability: hardware dominates / “random failures”

 But, software & people matter! (“post-modern” reliability theory)
• Several schools of thought; not a mature area yet
• Still mostly ignores people as a component in the system

1) Assume software never fails
– Traditional aerospace approach; bring lots of $$$$ and cross your fingers

2) Assume software fails randomly just like electronics
– May work on large server farms with staggered system reboots
– Doesn’t work with correlated failures -- “packet from Hell” or date rollover

3) Use software diversity analogy to create M of N software redundancy
– Might work at algorithm level
– Questionable for general software
– Pretty clearly does NOT work for operating systems, C libraries, etc.

4) Your Ph.D. thesis topic goes here: ________________

35

Conclusions
 Parallel and serial reliability equations

• There is genuine math behind using redundant components

 Historically, goals of 100% unattainable for:
• Fault detection/isolation
• Availability
• Design correctness
• Isolation from environmental problems
• Procedural design correctness & following procedures

 The biggest risk items are people & software
• But we’re not very good at understanding software reliability
• We understand people reliability, but it’s not very good

36

Historical Perspective: Apollo 11 Lunar Landing
[Rocket engine burning during descent to Lunar Landing]
 102:38:26 Armstrong:

(With the slightest touch of urgency) Program Alarm.
 102:38:28 Duke: It's looking good to us. Over.
 102:38:30 Armstrong: (To Houston) It's a 1202.
 102:38:32 Aldrin: 1202. (Pause)

[Altitude 33,500 feet.]

The 1202 program alarm is being produced by data overflow in the computer. It is not
an alarm that they had seen during simulations but, as Neil [Armstrong] explained
during a post-flight press conference “In simulations we have a large number of
failures and we are usually spring-loaded to the abort position. And in this case in
the real flight, we are spring-loaded to the land position.”

In Houston, Steve Bales, the control room's expert in the LM guidance systems, has
determined that the landing will not be jeopardized by the overflow. The overflow
consists of an unexpected flow of data concerning radar pointing. The computer has
been programmed to recognize this data as being of secondary importance and will
ignore it while it does more important computations.

[Apollo mission logs]

37

Video of Apollo 11 Landing
 At the time all we had was audio – no live TV

during the landing
• 11 min. clip; HBO mini-series, but accurate

 Things to note:
• Collins is in the command module
• Armstrong & Aldrin in Eagle  Lunar Lander
• 1201 & 1202 alarms light up the “abort mission”

warning light
– Computer/human interface was just a bunch of digits

on a display panel
– Total of five of these alarms (three shown in the

HBO version of events)
• At zero seconds of fuel remaining they’re supposed

to abort
– Jettison lower half/landing stage and return to orbit
– Q: for Apollo 11, how many seconds of fuel were

left when they landed? Dual NOR Gate

[Wikipedia]

