
11
Verification, Validation

& Certification
Distributed Embedded Systems

Philip Koopman
October 5, 2015

© Copyright 2000-2015, Philip Koopman

[2]

Where Are We Now?
 Where we’ve been:

• How to build and analyze things
• Testing – but that is only one way to evaluate how well something is built

 Where we’re going today:
• Validation, Verification & Certification – making sure it works

– Largely this focuses on the design correctness part of dependability
– It should also deal with failure modes and safety

 Where we’re going next:
• Economics
• Test #1
• Embedded networks
• Mid-semester presentations
• Dependable/safe/secure systems

[3]

Preview
 Three related concepts:

• Verification: making sure each design step does what it was supposed to do
• Validation: making sure the end result satisfies requirements
• Certification: a written guarantee that a system is acceptable for operational use

 General Approaches
• Testing
• Analysis
• Certification strategies

 Areas of concern:
• Hardware correctness
• Software correctness

[4]

Why Is Time To Market Important?

TIME

$

 Profit window for consumer/commodity electronics may be 3 months
- Moral: Get it right the first time; use good process to improve your odds
- Sometimes – make profits on services/software, not hardware items

Product Manufacturing Cost

Avg. Selling Price

[5]

What’s The Cost Of A Finding & Fixing A Defect?

Product Lifecycle Phase

log(cost)

 Get it right the first time if you can
 If you get it wrong, find out about it as soon as possible

 A fast design process only helps if you
get it right
• If you get it wrong, you get to spend more

money fixing problems because you move
further into the design before you find
them!

Is Speed The Key To Success?

[7]

Traceability
 Traceability is checking to

ensure steps fit together
• Starting point for most V&V

 Forward Traceability:
• Next step in process has

everything in current step
• “Nothing got left out”

 Backward Traceability
• Previous step in process

provoked current step
• “Nothing spurious

included/no gold plating”

 Traceability is an audit
• Doesn’t prove correctness if

tracing is OK
• But, problems are there if tracing

fails

[8]

Definitions
 Verification:

• The process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed at the start of that phase.

• Loosely: forward traceability as design progresses
• “Did we build the product correctly?”

 Validation:
• The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements.
• Loosely: backward traceability to requirements
• “Does the product do what it should?”

 Certification:
• A written guarantee that a system or component complies with its specified requirements

and is acceptable for operational use.
• “Is an 3rd party happy enough with the product to stake his/her reputation on it?”

 Degree of required V/V/C often set by regulators (e.g., FAA)

[9]

General Approaches To V/V/C
 Testing

• Execute system to determine behavior
• Inject intentional faults to determine system response

 Analysis
• Determine if desirable properties hold true; if undesirable properties exist
• Find inconsistencies among design phases
• Determine if design rules have been followed
• Scrutinize design and documents (reviews)

 Process inspection
• Determine if process is appropriate for desired end result
• Determine if process was adequately followed

 Many techniques can be used for any of Verif., Valid., Cert.
• But, some techniques are better fits for a particular use

[10]

Testing Review/Summary
 White-box testing (“structural testing”)

• Look at program structure and design tests
– e.g., 100% of branch path coverage (both sides of each branch)

 Black-box testing (“functional testing”)
• Test every item on the functional specification
• Also, test for robustness/error handling

 Levels of test
• Unit test – testing small pieces of code; done by programmer
• Module/functional test – testing at API level; done by testing group
• Integration test – testing pieces working together; done by testing group
• Acceptance test – testing whole system; done by customer (or surrogate)
• Beta test – letting a few customers use product before full production
• Regression test – make sure changes haven’t re-activated old bugs

[11]

Starting Points For Embedded Test Coverage
 Below are example useful coverage metrics

• But remember from testing lectures – 100% coverage is not “100% tested”

 Requirements coverage
• All requirements tested in every major operating mode

 Scenario coverage
• All sequence diagrams tested (this is a form of system integration testing)

 Statechart coverage
• All states visited
• All arcs exercised

 Code coverage
• Every statement in program executed (100% branch coverage)
• Every exception handler exercised; every fault handler exercised

 FMEA coverage
• FMEA = Failure Mode Effect Analysis (table predicting results of component

faults)
• Inject faults to see if FMEA correctly predicts system response

[12]

Things Other Than SW Get Tested Too!
 Hardware testing

• “Shake & Bake” testing – temperature and vibration
• STRIFE testing – stress + life – run just beyond hardware limits

– E.g., 5% over-voltage and 5% over temperature
– Components that fail are “weak”, and likely to be field failure sources

• Margin testing
– E.g., increase clock speed until something breaks
– See if there is enough design margin to account for component variation & aging

 System-level testing (“execution” of human use of system)
• Usability tests
• Check that maintenance can be performed within required time limits
• Ensure that install & maintenance procedures work

 Software gets stress tested … but nobody really knows what that means
(in any rigorous way)!

[13]

Cost To Certify An IEEE 802.16e Aircraft Radio

Source:
Rockwell Collins
1/29/2009

[14]

Role Of Testing
 Mostly for Validation:

• Unit test – does the unit behave as it should?
• Acceptance test – if customer accepts product, that validates system is OK

 Certification
• For narrow certification, can test a specific property

– FCC certification that system does not emit too much RF interference

• For broader certification, may need tests to give credibility to analyses
– “Wing snap” test on Boeing 777 was used to demonstrate stress model accuracy
– For X-by-Wire, might need tests to demonstrate models represent actual vehicle

[15]

Run-Time Instrumentation
 Related idea is to perform some “tests” all the time

• Even in production units!
• Everyday system usage forms the “workload”
• Use a data recorder to catch and report problems for later analysis

 Selected run-time “test” techniques
• Log actions and analyze logs
• Assertions

– e.g., #assert RPM < RedLineLimit
– Doesn’t enforce this – just checks for when it happens
– Throws an exception if assertion fails at run-time; good for monitoring invariants

• Monitor system resources, e.g., memory exhaustion
• Log all exceptions that occur
• Detect loss of control loop closure

– Commanded position too far from actual position for an actuator

[16]

Error Logs
 Keep a run-time log of errors you encounter

 Helps detect bugs that escape into fielded products
• A robustly designed system will hide many bugs from the user…

… so how to you know problems are happening?
– For example, watchdog timer resets
– For example, running control loops fast to tolerate occasional missed deadline

• Permits early detection of problems that haven’t been seen by customer
– If a run-time error occurs, something is wrong with your design

• What to log: system resets, run-time errors, assertion violations, hardware
failures, non-computer failures (problems with the plant), operating conditions,
time stamps

 Protects software developers from blame
• “Product is acting weird; must be software”…

… “Our error logs say it is a hardware problem; go harass them instead”

[17]

X-by-Wire Fault Injection
 Assume that the safety case’s fault hypothesis is:

“Continues to operate despite an arbitrary single point fault”
• Then, it makes sense to test “arbitrary” faults
• Hardware or software-based fault injection makes sense

 Potential approaches to X-by-Wire fault injection:
• Test software that corrupts bits in memory

– Used successfully in many areas
• Radiation chamber

– Used successfully to find problems with TTP
• Network message fault injection

– Corrupt or drop messages on network
• Pin-level fault injection

– Disturb electrical signals on circuit boards

[TTTech04]

[18]

Analysis
 Examination of software & documentation

• No actual execution of real software
• Very effective at finding defects in requirements, design, and software

 Includes varying levels of tool / human involvement
• Ranges from complete static analysis by a compiler-like tool…
• … to humans sitting in a conference room looking at requirements documents

 Primary techniques we’ll discuss:
• Traceability
• Reviews
• Static analysis
• Model checking

• Safety analysis (FTA/FMEA/etc.) –discussed in separate lecture

[19]

Refresher On Design Reviews
 Design reviews are the most cost-effective way of preventing defects

• Think of it as V&V during design instead of after the fact

 Simple version:
• Explain your software to someone else, going through it line by line

– Explaining it out loud to yourself is helpful, but not good enough
– Doing it via e-mail generally isn’t good enough –

too easy to sweep things under rug or miss subtleties

 More industrial-strength design reviews
• Get a book on how to run design reviews
• Convene a set of people do to a review in a fixed length of time
• Have people study the code before the review; assign roles to reviewers
• Have the presenter go through it and answer questions
• Take corrective action; iterate reviews if necessary
• Part of this is knowing what to review (checklist is recommended reading);

part of it is having someone who knows how to run an effective review

[20]

Static Checking & Compiler Warnings
 Static analysis looks at design or code to find problems

• E.g., look at statechart for states not connected to any other states
• E.g., look at software for “dead code” – code that can’t be reached by any

possible execution path
• Can be done manually, but better to use tools if available

 Example static analysis approaches:
• “Lint” / C compiler warning messages (and MISRA C style checkers)

– Questionable syntax
– Type checking errors
– Bad practices

• Tools to compute McCabe Cyclomatic Complexity
– Simplistically, Cyclomatic Complexity is number of branches in a code module
– High complexity means code is more failure prone and more difficult to test

• More complex tools, such as finding possible memory leaks and unhandled
exceptions

• Always leave warnings turned on and ensure code compiles “clean”
– This is basically a “free” design review – why would you ignore it???

[21]

2012 Coverity scan of open source software results:
 Sample size: 68 million lines of open source code

• Control flow issues: 3,464 errors
• Null pointer dereferences: 2,724
• Resource leaks: 2,544
• Integer handling issues: 2,512
• Memory – corruptions : 2,264
• Memory – illegal accesses: 1,693
• Error handling issues: 1,432
• Uninitialized variables: 1,374
• Unintialized members: 918

 Notes:
• Warning density 0.69 per 1,000 lines of code
• Most open source tends to be non-critical code
• Many of these projects have previously fixed bugs from previous scans

http://www.embedded.com/electronics-blogs/break-
points/4415338/Coverity-Scan-2012?cid=Newsletter+-
+Whats+New+on+Embedded.com

[22]

Model Checking
 Model checking is a formal method for verifying finite-state concurrent

systems

 Intuitive explanation:
• Start with a model of a system. Might be something like a statechart.
• State an invariant that should apply:

– E.g., “All network nodes eventually belong to a single group after a single error”
– E.g., “Motor will not be commanded to run if any elevator doors are open”

• Run a model checker, which explores all possible transitions through statechart
– There are, in general, many transitions.

• Model checker says one of two things:
1. “I’ve looked at all possible execution paths, and what you say is guaranteed true”
2. “I found a counter-example: here it is…”

(For more explanation, see: http://www.cs.cmu.edu/~modelcheck/tour.htm)

[23]

Applying Model Checking
 Model checking is very good for proving pieces of systems correct

• Complexity is exponential with number of states
– So it doesn’t work with arbitrarily large systems; but technology improves yearly

• OK for aspects of network protocols and small pieces of software

 But, there are some cautions:
• Tests a model of design, not actual code. Software defects can still occur.

Models might have errors, etc.
• Requires specialized skills; not accessible to everyday engineers yet.
• Model has underlying assumptions!

– Assumptions are usually not true in all cases
– Arguing that an assumption is “reasonable” is insufficient for 10-9 failure rates!

• Scalability is always an issue – can’t model check a whole car

• The tricky part is knowing what properties to check!

[24]

Certification
 Some Certifying Authority says that it is

“good enough”
• Certification of individuals – licensed PE
• Certification of organizations – ISO 9000; CMM Level 3
• Certification of tools/methods – certified Ada compiler
• Certified systems or products – UL-listed

 May be process- or product-based
• UL labs – based on standardized tests of products
• ISO 9000 – audit of process
• … and lots of places in between

 Certification may not be a warranty
• Warranty gives legal remedies; certification means it is up to some standard

level of “goodness”
• Certification simply places the reputation of the certifier at stake

[25]

Example: FAA Software Certification
 Based on RTCA/DO-178B

• Demonstrate that it satisfies requirements
• Demonstrate there are no errors leading to catastrophic

failure
• (Newer version RTCS/DO-178C is recently out)

 Verification:
• HW/SW integration testing
• SW integration testing
• Low-level testing
• Requirements-based test coverage analysis
• Structural coverage analysis

 Alternate verification methods
• Formal methods
• Exhaustive input testing

[26]

Example: UL 1998 for Software Components
 Consumer electronics certification addresses software

• For software that replaces functions that previously had hardware protection
• They want to see the software! Testing alone just isn’t good enough

 Requirements:
• Design for safety
• Verification, Validation & Test
• Change management
• Software Risk Analysis

 Risk traceability matrix
• FMEA-like table

 Certification components:
• Electrical safety reviews + tests
• Environmental stress tests
• Software review – source code & some process documents

[27]

Quality

1994 Pentium FDIV bug:
• “We’ll replace the chip if you
can prove the problem affects
you”
• Eventually replaced chip for
everyone who asked at cost of
~$500M

[28]

Hardware Correctness
 Hardware testing is more manufacturing-centric

• Scan approaches
– Scan paths to test flip-flops
– Boundary scan to test chip-to-chip interconnects

• Automatic test generation

 But, what if the design is incorrect?
• The Pentium FDIV bug was a rude awakening

– Math error in floating point division that affected only a few input values
– Poor public relations resulted in demand for replacement chips  cost ~$500M
– But almost every CPU has bugs in it somewhere!

• Isolate subsystems and test in isolation
• Incorrect hardware design in many ways “feels” like a software problem…

• And, in Jan 2011 … Intel found a bug with the Cougar Point support chip
– Estimated $700M total cost

[29]

Software Correctness
 This is a big can of worms

• In general, we can’t prove software is correct (i.e., exactly meets the spec.)
• Even if we can prove it’s correct, we don’t know if the specification is correct
• So what we do is also include process (lectures on that coming up)

 Software reliability – how many defects when it ships?
• Can be inferred by tracking bug detection rates (ship it when you stop finding

bugs in testing)
• Can be improved by better process
• In general, current state of knowledge is:

“keep testing until it takes a long time to find the next defect, then ship”

 Software “field reliability” – does it fail in the field?
• Difficult problem; not a lot to say about this yet except that it is an issue
• Components to software field reliability

– Exposing design defects due to randomly occuring unusual events
– Failures due to “code rot” and “resource leaks”

[30]

Configuration Management
 Make sure that the hardware and software is actually the right stuff

• For example, compute a checksum or secure hash of the binary image
• Make sure before you ship that you are shipping the right software version
• Have a formal build process to make sure you ship a clean build

 How can this go wrong?
• Someone leaves debug code in the final build

– Watchdog timer accidentally turned off from
single-step debugging

– Back door factory access code left in
(security problem)

• Someone compiles with wrong version
of libraries, source code, etc.

• A virus gets into the build system and
infects the built image …

 Applies to hardware as well
• Want to make sure you know version

and source for critical system components
Airbus A-380 bolt with part

tracking information.
Size: 2 cm x 1 cm

[31]

What V&V Approaches Are We Using?
 For the course elevator project, list V&V techniques:

[32]

Challenge: Ultradependability
 Ultradependable systems “never” fail

• But if they never fail, how can you know what the failure rate really is?

 Can you test for ultradependability?
1. How many tests to check all possible behaviors for this function:

int32 MyProc(int32 A, int32 B, int32 C)
– (who remembers this from last lecture?)

2. How long do you have to test to verify MTBF of 10-9/hr?
(This is a typical aircraft failure rate target

• Need to test longer than 109 hours and even then you didn’t test enough

• In fact, need to test between 3* and 10* MTBF to verify MTBF
– 10* 109 hours = 1,141,000 years of testing

[33]

Ultradependability Approaches
 Good process and lots of V&V

• Use good design methodology to reduce design defect rate
• Use proven, “mature” components

– But, be careful not to expose hidden limitations with new conditions

• Test a large number of systems for a long time
– Need completely failure-free operation during testing – even one failure can

be too many for ultradependability
– There is NO SUCH THING as a one-time failure… there are just situations

waiting to re-occur in a different context

• Use formal methods on tractable, high-risk pieces
• Use fault injection to assess resiliency to problems that do happen

 This is the approach taken by safety standards

[34]

And Now, The Problem Gets Harder
 Embedded Internet –

• Can someone hack into your
car?

…into your house?
…into your digital wallet?
…into your medication pump?
…into your pacemaker?
…into your train?

• Security is now becoming part
of the validation/verification/
certification picture

– Static checkers are the first line
of defense, but much more is
required

– Penetration testing helps, but
much more is required.

[35]

Review
 The Big Problem

• We need to ensure systems will really work, and we’re on a tight deadline
• BUT, there are proven techniques that can help!

 Approaches:
• Design reviews to ensure designs are good before implementation
• Verification: making sure each design step does what it was supposed to do
• Validation: making sure the end result satisfies requirements
• Certification: a written guarantee that a system is acceptable for operational use

 In most embedded system companies, testing is the only real V&V
• BUT, testing isn’t good enough for high-dependability / safe systems!
• Need as many V&V techniques as possible
• Ultimately, need a dependability case or safety case to be sure things are OK

• Later lectures will describe more rigorous processes for critical systems

