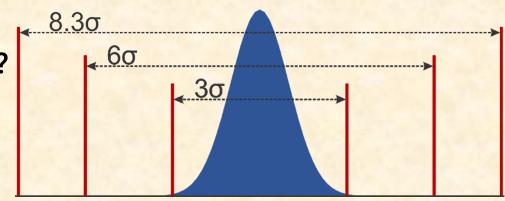

SOTIF & Edge Cases

Identifying & Mitigating Hazards


Carnegie Mellon University

- ISO 26262: Hazard and Risk Analysis (HARA)
 - Identify and mitigate risks in accordance with ASIL requirements
- ISO 21448:
 Identify and mitigate unsafe scenarios
 - Safety of the Intended Function (SOTIF)
 - Reduce "unknown unsafe" area
 - Restrict ODD if needed
 - Deploy at acceptable residual risk

Six Sigma Isn't Enough for Safety

- Key Performance Indicators (KPIs) help with quality
 - Are all functions working?
 - Is the functionality improving?
 - Is the fault rate decreasing?

- Good KPIs are just a start
 - Six Sigma Quality: 99.99966% (five nines)
 - Better, but not enough for life critical functions
 - Fatal Crash Avoidance: 99.999999996% (eleven nines)
 - Safety is 1 million times more demanding! → 8.34 sigma
 - » (example: 1000 opportunities/mile, 250M miles/fatal crash, 1.5σ shift)

It's All About The Edge Cases

Carnegie Mellon University

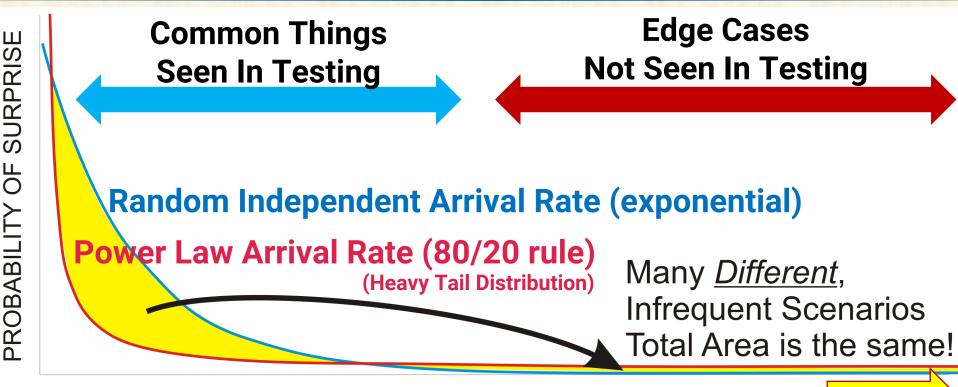
- Gaps in training data can lead to perception failure
 - Safety needs to know: "Is that a person?"
 - Machine learning provides:
 "Is that thing like the people already in my training data?"

PREDICTED CONCEPT	PROBABILITY
bird	0.997
no person	0.990
one	0.975
feather	0.970
nature	0.963
poultry	0.954
outdoors	0.936
color	0.910
animal	0.908

https://www.clarifai.com/demo

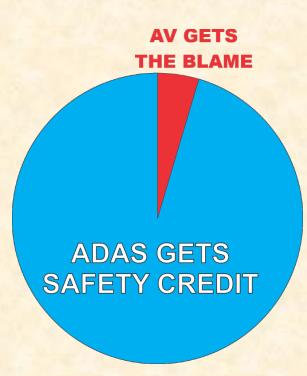
- Edge Case are surprises
 - You won't see these in training or testing
 - → Edge cases are the stuff you didn't think of!

Why Edge Cases Matter


- Where will you be after 1 Billion miles of drive-fix-drive?
- Assume 1 Million miles between unsafe "surprises"
 - Example #1:100 "surprises" @ 100M miles / surprise
 - All surprises seen about 10 times during testing
 - With luck, all bugs are fixed
 - Example #2:
 100,000 "surprises" @ 100B miles / surprise
 - Only 1% of surprises seen during 1B mile testing
 - Bug fixes give no real improvement (1.01M miles / surprise)

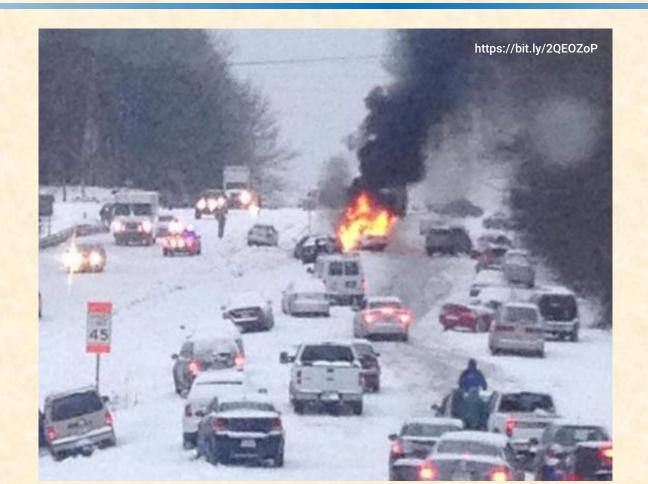
https://goo.gl/3dzg

Real World: Heavy Tail Distribution


TOTAL TESTING TIME

Humans are good at heavy tail

From Driver Assist to Automation



- Driver Assistance (Advanced Driver Assistance System/ADAS)
 - Effective driver monitoring
 - Safety credit if low false positives
 - Every activation can be a life saved
 - Non-activation was driver's fault anyway
- Automated Vehicle (AV)
 - Scenario completeness & coverage
 - Sensor fusion, perception, prediction
 - Blamed for false negatives in heavy tail
 - Every mistake can be a life lost

ADS Must Handle Unusual Situations

They have not endorsed this slide)

CARS

Tesla Autopilot Mistakes Burger King for Stop Signs, and They Transform it into an Advertisement!

Human Intuition Isn't Enough

- Some (perhaps most?) surprises are not obvious to humans
 - Characteristics human test designers think shouldn't matter

Rare events humans know are important but are under-

represented

- High visibility clothing

How good is your ADS at knowing it doesn't know?

Changing Relevance of Perception Defects

- ❖ Functional safety → SOTIF & system safety
- Heavy tail/edge cases determine safety
- Need to do something safe for unknown unknowns

