Electrical &Com uter

C o
M%Il.ﬂ)% gie (() ENGINEERING
University

Security Mitigation &
Validation

“The trouble with programmers is that
you can never tell what a programmer
is doing until it's too late.”
- Seymour Cray © 2020 Philip Koopman 1

Carnegie

Security Migitation & Validation i

m Anti-Patterns for security mitigation & validation
e Poorly considered password policy
e Poorly considered privilege management
e Assuming firewall or air gap is perfect security
e No implementing secure update + secure boot
e Justrelying on penetration testing

m Mitigation best practices
e Keep up to date with good security practices
e Secure update + secure boot
e Penetration testing is only a starting point

© 2020 Philip Koopman 2

Carnegie

Principle: Password Strength e

m Typical failure scenarios
e Same password used by everyone
e Weak passwords (“1234")
e Strong password policy = post-it note work-around
m Possible solutions
e Different password per person with reasonable strength
e Two-factor authentication (e.g., RFID transponder)
®m Balance between usability & security
e Canyou memorize: 7R#Ve9j3e@ahi7gjHr(*\pW4!X?
e 2017 NIST guidelines (https://pages.nist.gov/800-63-3/)
— Good ideas: long size, hash/salt/stretch for storage

— Avoid: words in dictionary, requiring weird characters, password hints, timed expiry

— Avoid SMS for 2fa (!) due to phone number hijacking (at least in some countries)
© 2020 Philip Koopman 3

%055\W“’”@

Carnegie

Storing Passwords e
: B HACKERS RECENTLY LEAKED /55 MILLION ADOBE. USER
® Don't store them as plain text! EMAILS, ENCRYPTED PRSSWORDS, AND PASSWORD HINTS,
I : ADDBE. ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING
e Don't just encrypt them either BLOCK-MODE 3DES, THE RESULT IS SOMETHING WONDERFUL:
m Hash: USER PASSWORD HINT
. ”“:ﬁm‘ WEATHER VANE SuoRp CLLLLLLL——)
e Store a digest of password rirerorr R (=
e But, dictionary attacks are a problem . G ENEEENNS —
y Soabre06ebd B5crcBSaliudc 57
e Rainbow table: precomputed hashes Helbceab 24 FAVORITE. OF 12 APOSTLES
] 1abZ0eBbdnbeSca TuldhalaZ8Theble HAE: chJleE O‘E!NLL HT?#SDYDU
m Salting & pepper: UMD el SEXY EARLOBES T
. s e o (T
e Salt: random extra text i AN
e Pepper: systematic extra text Haabony i —
. B7abTRAG306261
e Can be secret or public (tradeoffs) T 0BVIOUS
i . w"% — MICHAEL JACKOON
®m Generically, key stretching: TRt MMl HE DIDHE HASH, HEDO THE T
A 3BaTc 9279 cadebl PURLOINED U:Dm:]
e E.g., PBKDF2 stretching e loST s STl T IO RS OOKENIOM

THE GREATEST (ROSGUORD PUZZLE (31
e Use up to date techniques! IN THE HISTORY OF THE LORLD

PERMANENT LINK TO THIS coMic: HTTPS //xKcD.com/ 1286/ 4

Carnegie

Principle: Least Privilege oty

®m Each user & task should only have as much capability as it needs
e Commonly, “user,” “administrator,” “factory”
e Better: per-user fine-gain bit map of function permission
e Related: helpful to log who did what (forensics)

® Common mistakes H D ” ‘H

e Make a common task high privilege
— Everyone used to log in as admin for Windows
e Give everyone the same password m

s
Y

/
v
N
_,é

— Once someone has admin, can’t roll them back
e Make risky operations too easy (no confirmation)

N,
V

® |n general, think through permissions

e Customers may push back, but this is important
© 2020 Philip Koopman 5

Carnegie

What Happens With Unsigned Updates Ut ity

HACRERS REMOTELY RILL A JEEP ON THE m Infotainment-to-CAN Firewall

CPU non-secured update

e Attackers reflashed firewall to
access CAN

HIGHWAY—WITHMEINIT

Hackers Remotely Kill a Jeep on the Highway—With Me in It

SHARE

http://illmatics.com/Remote%20Ca
r%20Hacking.pdf

: 58 Bz IH 3
E Bn H

© 2020 éhilip Koopman 6

Carnegie

Secure Update Mellogy 2
® You'll need to deploy security patches P }
e Your code might have a vulnerability | "
e 3rd party code (library, 0S, communications) e
might be vulnerable

Binary Image

m Secure update good practices:
e Bootloader that does updates &S o

— First stage: integrity check for 2" stage; can’t be changed(!)

— Second stage: knows how to load application image ,
e Bootloader checks image public key signature E~j

— Public key hard-coded into bootloader

— Only properly signed images are loaded

— Consider limited date ranges (key revocation is hard) bawore Uit
Communica tions
» E.g., pre-deploy public key every 3 months for 20 years L
_ Consider hard'COding repository IP addresses https://www.allegrosoft.com/wp-content/uploads/Secure-Firmware-Updates-Paper.pdf

© 2020 Philip Koopman 7

Example Mitigation: Secure Boot

Carnegie
Mellon
University

m |f your firmware is compromised, you are insecure
e Need a way to make sure you only run factory-authorized code

e Use public key signature to check firmware image integrity

— Note: symmetric hash exposes signing key to attack

Executable
Code

Hash
algorithm

key

[=
One-way
hash

Private

[Certificate |

Code signer’s

Certificate and
public key

| Executable
- _ Code

[Certificate |

Signed Code

Figure 24. Code- and Document-Signing Process

Step 2: Generate Hash

Executable o, | Executable ; E
Code Code - :
. One-way
Signed Hash hash
algorithm g0y, I
S Certificate _ Compare
(]
. : : ~
Signed Code itlzgelc't e _>]
Certificate E One-way
hash
Step 3:
Apply public key

Figure 25. Code- and Document-Signing Verification Process

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-31.pdf

© 2020 Philip Koopman 8

Carnegie

Encrypting vs. Signing Litipet ity

® Misconception: “Encryption Equals Security” /_
e Encryption provides secrecy — but you might need integrity! 4 y
e Encryption invokes export controls
e What are the actual security requirements?
m Example for firmware distribution
e Symmetric key encryption of firmware is a bad idea
— Key recovery permits adversary to sigh malicious images
e Public key encryption of firmware addresses secrecy
— Reverse engineering will recover firmware image and/or decrypt key
— But strong crypto secrecy tends to invoke export controls!
e Secure signature (Public Key Digest) works well
— Adigest is a small hash of the entire message (like a checksum, but crypto-secure)
— Sign image off-line one time; all devices can use public key to validate
— Use per-download encryption as defense in depth © 2020 Philip Koopman 9

Carnegie

Penetration Testing | S ety

“Pen test” — attempt to attack system to look for problems

m Automated vulnerability testing

e Test known security exploits to see if they succeed

e Test for bug fixes for known non-exploited bugs —

e Port scanning for dangerous open & Wy l A

(unnecessary) Ethernet ports s

® Penetration analysis

e Hire a “red team” to attempt to penetrate system

e Fuzz testing — send random inputs; see what breaks
m Looks for likely-to-be-exploited vulnerabilities

e Does not guarantee perfect security

© 2020 Philip Koopman 10

A CRYPTO NERD'S

1 IMAGINATION &

HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
chTaR To CRACK \T

NO Goop! IT'S
U096 -BIT RSN
BLPBT‘ OUR
EVIL PLAN
1S FOILED! ™

See Also: “Rubber Hose Attack”

WHAT \WOULD

Carnegie
Mellon
University

ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE TEuS U5 THE. PASSWORD.

GOT' IT.

7Q

Ci< L <prev | Rovoow J Nexr> | o1

PERMANENT LINK TO THIS coMIC: HTTPS://xkcD.com/538/

© 2020 Philip Koopman 11

Carnegie

Code Analysis e =

m Static & dynamic code analysis
e General code quality tools: Coverity, PC-Lint
e Security-specific security tools

— Look for violations of checkable secure coding rules
— Various tools for thread safety, bounds checking, ...

e Potential problem:

— False positives (many warnings are not
actual vulnerabilities)

m Peerreview
e Security-oriented review of source code
e E.g., Cert C 98 Coding Standard

- http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1255.pdf

- E.g., use strcpy_s() instead of strcpy() o, -
1HIp Koopman

Carnegie

Many Other Approaches e

® [ntrusion detection
e Detect abnormal patterns of system operation

e False positives are expensive; | 10 1010113
no such system is perfect LZZETRYW - EﬂJHACKEIQI.J.

1110 l_J.i'

® Monitor Black Hat sites
e Look for published exploits against your product

&Ql @0
Y 1lo0101? F
»,\\
| -’ :

® Honey pot systems
e Deploy a monitored decoy system and look for successful attacks

® Bug bounties
e Pay anyone who finds an exploit so you can fix it

© 2020 Philip Koopman 13

Carnegie

Security Mitigation & Validation Melloxt
: : SEkmeer e oo,
® Good practices: SIS P -

U
\

e Encourage strong but usable passwords
Use fine-grain permissions _ T =
Be careful storing password information e =73 omoq
Respect limitations of firewall approaches 0% -

Use secure update and secure boot & k FEET I TESRR :
Use more than just penetration testing ' |

m Pitfalls:
e Thinking security is easy
e Using intuition instead of doing your homework

© 2020 Philip Koopman 14

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME

(OMPUTER TROUBLE.

\%m

OH DEAR - DID HE
BREAK SOMETHING?

IN ﬁwa*r /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;—- 7

~0OH.YES LITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

https://xkcd.com/327/

© 2020 Philip Koopman 15

	��Security Mitigation & Validation� �
	Security Migitation & Validation
	Principle: Password Strength
	Storing Passwords
	Principle: Least Privilege
	What Happens With Unsigned Updates
	Secure Update
	Example Mitigation: Secure Boot
	Encrypting vs. Signing
	Penetration Testing
	See Also: “Rubber Hose Attack”
	Code Analysis
	Many Other Approaches
	Security Mitigation & Validation
	Slide Number 15
	Slide Number 16

