
1© 2020 Philip Koopman

Security Mitigation &
Validation

Prof. Philip Koopman

“The trouble with programmers is that
you can never tell what a programmer
is doing until it’s too late.”

– Seymour Cray

2© 2020 Philip Koopman

 Anti-Patterns for security mitigation & validation
 Poorly considered password policy
 Poorly considered privilege management
 Assuming firewall or air gap is perfect security
 No implementing secure update + secure boot
 Just relying on penetration testing

Mitigation best practices
 Keep up to date with good security practices
 Secure update + secure boot
 Penetration testing is only a starting point

Security Migitation & Validation

3© 2020 Philip Koopman

 Typical failure scenarios
 Same password used by everyone
 Weak passwords (“1234”)
 Strong password policy  post-it note work-around

 Possible solutions
 Different password per person with reasonable strength
 Two-factor authentication (e.g., RFID transponder)

 Balance between usability & security
 Can you memorize: 7R#Ve9j3e@ahi7gjHr(*\pW4!X?
 2017 NIST guidelines (https://pages.nist.gov/800-63-3/)

– Good ideas: long size, hash/salt/stretch for storage
– Avoid: words in dictionary, requiring weird characters, password hints, timed expiry
– Avoid SMS for 2fa (!) due to phone number hijacking (at least in some countries)

Principle: Password Strength

4© 2020 Philip Koopman

Storing Passwords
 Don’t store them as plain text!
 Don’t just encrypt them either

 Hash:
 Store a digest of password
 But, dictionary attacks are a problem
 Rainbow table: precomputed hashes

 Salting & pepper:
 Salt: random extra text
 Pepper: systematic extra text
 Can be secret or public (tradeoffs)

 Generically, key stretching:
 E.g., PBKDF2 stretching
 Use up to date techniques! 2013

5© 2020 Philip Koopman

 Each user & task should only have as much capability as it needs
 Commonly, “user,” “administrator,” “factory”
 Better: per-user fine-gain bit map of function permission
 Related: helpful to log who did what (forensics)

 Common mistakes
 Make a common task high privilege

– Everyone used to log in as admin for Windows
 Give everyone the same password

– Once someone has admin, can’t roll them back
 Make risky operations too easy (no confirmation)

 In general, think through permissions
 Customers may push back, but this is important

Principle: Least Privilege

6© 2020 Philip Koopman

 Infotainment-to-CAN Firewall
CPU non-secured update
 Attackers reflashed firewall to

access CAN

6
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

http://illmatics.com/Remote%20Ca
r%20Hacking.pdf

What Happens With Unsigned Updates

7© 2020 Philip Koopman

 You’ll need to deploy security patches
 Your code might have a vulnerability
 3rd party code (library, OS, communications)

might be vulnerable
 Secure update good practices:
 Bootloader that does updates

– First stage: integrity check for 2nd stage; can’t be changed(!)
– Second stage: knows how to load application image

 Bootloader checks image public key signature
– Public key hard-coded into bootloader
– Only properly signed images are loaded
– Consider limited date ranges (key revocation is hard)

» E.g., pre-deploy public key every 3 months for 20 years
– Consider hard-coding repository IP addresses

Secure Update

https://www.allegrosoft.com/wp-content/uploads/Secure-Firmware-Updates-Paper.pdf

8© 2020 Philip Koopman

 If your firmware is compromised, you are insecure
 Need a way to make sure you only run factory-authorized code
 Use public key signature to check firmware image integrity

– Note: symmetric hash exposes signing key to attack

Example Mitigation: Secure Boot

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/AR-08-31.pdf

9© 2020 Philip Koopman

 Misconception: “Encryption Equals Security”
 Encryption provides secrecy – but you might need integrity!
 Encryption invokes export controls
 What are the actual security requirements?

 Example for firmware distribution
 Symmetric key encryption of firmware is a bad idea

– Key recovery permits adversary to sign malicious images
 Public key encryption of firmware addresses secrecy

– Reverse engineering will recover firmware image and/or decrypt key
– But strong crypto secrecy tends to invoke export controls!

 Secure signature (Public Key Digest) works well
– A digest is a small hash of the entire message (like a checksum, but crypto-secure)
– Sign image off-line one time; all devices can use public key to validate
– Use per-download encryption as defense in depth

Encrypting vs. Signing

10© 2020 Philip Koopman

“Pen test” – attempt to attack system to look for problems
 Automated vulnerability testing
 Test known security exploits to see if they succeed
 Test for bug fixes for known non-exploited bugs
 Port scanning for dangerous open

(unnecessary) Ethernet ports
 Penetration analysis
 Hire a “red team” to attempt to penetrate system
 Fuzz testing – send random inputs; see what breaks

 Looks for likely-to-be-exploited vulnerabilities
 Does not guarantee perfect security

Penetration Testing

11© 2020 Philip Koopman

See Also: “Rubber Hose Attack”

12© 2020 Philip Koopman

 Static & dynamic code analysis
 General code quality tools: Coverity, PC-Lint
 Security-specific security tools

– Look for violations of checkable secure coding rules
– Various tools for thread safety, bounds checking, …

 Potential problem:
– False positives (many warnings are not

actual vulnerabilities)

 Peer review
 Security-oriented review of source code
 E.g., Cert C 98 Coding Standard

– http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1255.pdf
– E.g., use strcpy_s() instead of strcpy()

Code Analysis

13© 2020 Philip Koopman

 Intrusion detection
 Detect abnormal patterns of system operation
 False positives are expensive;

no such system is perfect

 Monitor Black Hat sites
 Look for published exploits against your product

 Honey pot systems
 Deploy a monitored decoy system and look for successful attacks

 Bug bounties
 Pay anyone who finds an exploit so you can fix it

Many Other Approaches

14© 2020 Philip Koopman

 Good practices:
 Encourage strong but usable passwords
 Use fine-grain permissions
 Be careful storing password information
 Respect limitations of firewall approaches
 Use secure update and secure boot
 Use more than just penetration testing

 Pitfalls:
 Thinking security is easy
 Using intuition instead of doing your homework

Security Mitigation & Validation

15© 2020 Philip Koopman

https://xkcd.com/327/

	��Security Mitigation & Validation� �
	Security Migitation & Validation
	Principle: Password Strength
	Storing Passwords
	Principle: Least Privilege
	What Happens With Unsigned Updates
	Secure Update
	Example Mitigation: Secure Boot
	Encrypting vs. Signing
	Penetration Testing
	See Also: “Rubber Hose Attack”
	Code Analysis
	Many Other Approaches
	Security Mitigation & Validation
	Slide Number 15
	Slide Number 16

