
1© 2020 Philip Koopman

Data Integrity
Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

~“I have a bad feeling about this.”~
― Star Wars, Episode k {k=1..9}

2© 2020 Philip Koopman

 Anti-Patterns for Data Integrity:
 No checks on memory data

– Program image and configuration
– RAM and other data integrity

 No end-to-end message checks
 Using checksum instead of CRC

 Memory & data integrity
 Detecting data corruption:

– Mirroring, Parity & SECMED codes, Checksum, CRC
– If data word consistent with error code, then no detectable error
– Random hash as a starting point: random k-bit error code by chance misses 1/2k errors

 Malicious faults require cryptographically strong integrity check
– All error codes discussed here are easy to attack

Data, Message & Memory Integrity
Codeword =
Dataword +
Error Code

3© 2020 Philip Koopman

 Hardware faults
 Network message bit flips
 Bad EEPROM/Flash writes
 “Bit rot” (storage degrades over

time)

 Single event upsets: Soft Errors
 Affect both memory & CPU logic
 Error detecting codes usually don’t

help with CPU logic faults!

 Software corruption
 Bad pointers, buffer overflow, etc.

Sources of Data Faults
Soft Errors
Simplified

4© 2020 Philip Koopman

 Key term: Hamming Distance (HD)
 Smallest # of bit flips possibly undetected
 Flips across data value and error code
 Higher HD is better (more errors detected)

 Parity: detects single bit errors (HD=2)
 Store one bit that holds XOR of all bits

 Mirroring (HD=2, but cheap computation)
 Store data twice: plain and inverted bits

– E.g.: 0x55  {0x55, 0xAA} two-byte pair

 SEC: (Hamming Code) correct single bit errors
 SECDED:

Single Error Correction, Double Error Detection
 Use a Hamming Code + parity bit to give HD=4
 Size approximately 1 + log2 (number of data bits)

Overview of Data Integrity Mechanisms
HD Flips

Detected
Flips

Undetected
Examples

1 None 1+ No Error
Code

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

4 1-3 4+ Some CRCs,
SECDED

HD Flips
Detected

Flips
Undetected

Examples

1 None 1+ No Error
Code

2 1 2+ Parity,
Checksum,
Mirroring,
Any CRC

3 1-2 3+ Hamming
(SEC),

Some CRCs,
Short

Fletcher

4 1-3 4+ Some CRCs,
SECDED

5+ HD-1 HD+ Good CRC

5© 2020 Philip Koopman

 “Add” up all the data bits
 XOR all data words (HD=2)

– Detects 1-bit errors
 2’s complement addition (HD=2)

– Detects 1-bit and most 2-bit errors
 1’s complement addition (HD=2)

– Wraps carry bit, so slightly better

 Complex checksums:
 Fletcher checksum (HD=2, HD=3)

– Keeps two running 1’s comp. sums
– HD=3 at short lengths, HD=2 at long lengths

 Adler checksum (HD=2, HD=3)
– Uses prime moduli counters
– Fletcher is typically a better & faster choice

Checksum Techniques Compared

Maxino, T., & Koopman, P. "The Effectiveness of
Checksums for Embedded Control Networks,"
IEEE Trans. on Dependable and Secure
Computing, Jan-Mar 2009, pp. 59-72.
Error rate BER = 10-6


D

ow
n

Is
 G

o o
d

6© 2020 Philip Koopman

 The mechanism:
 Shift and XOR of

selected feedback bits
 Accumulated residue in

shift register is the CRC
“checksum” value

 The math:
 The data and the feedback bit pattern are both binary coefficient polynomials
 Error code is remainder from polynomial division of data by feedback over GF(2)

 Feedback polynomial selection matters
 Some popular polynomials are poor choices, including international standards(!)
 Some rules of thumb are misguided (e.g., (x+1) divisibility for high HD)
 Best polynomials are found via brute force search of exact evaluations

Cyclic Redundancy Check (CRC)

Example Feedback Polynomial:
0xB41 = x12+x10+x9+x7+x+1 (“+1” is implicit in hex value)

= (x+1)(x3 +x2 +1) (x8 +x4 +x3 +x2 +1)
Factor of (x+1)  implicit parity (detects all odd errors)

11
1 1 1 1 1

1 1 1

7© 2020 Philip Koopman

https://users.ece.cmu.edu/~koopman/crc/
 Example: HD=4 for 256 bit data word  0x247 (10 bit CRC)
 Example: HD=6 for 128 bit data word  0x9eb2 (16 bit CRC)

Finding “Good” Polynomials

https://users.ece.cmu.edu/%7Ekoopman/crc/

8© 2020 Philip Koopman

 Ensure sufficient data integrity
 CRC on network packets
 Periodic CRC on flash/EEPROM data
 Appropriate memory integrity check on RAM

 Pitfalls:
 Assuming mirroring is enough

– What about data on stack?
– What about data inside operating system?

 Assuming memory data integrity is all you need
– What about corrupted calculations?

 Using a checksum when you should use a CRC
 Many subtle pitfalls for the unwary. See FAA report: https://goo.gl/uKFmHr

Best Practices For Data Integrity

9© 2020 Philip Koopman

https://www.xkcd.com/378/

10© 2020 Philip Koopman

https://www.explainxkcd.com/wiki/index.php/1683:_Digital_Data

	��Data Integrity��
	Data, Message & Memory Integrity
	Sources of Data Faults
	Overview of Data Integrity Mechanisms
	Checksum Techniques Compared
	Cyclic Redundancy Check (CRC)
	Finding “Good” Polynomials
	Best Practices For Data Integrity
	Slide Number 9
	Slide Number 10
	Slide Number 11

