
1© 2020 Philip Koopman

Critical System
IsolationProf. Philip Koopman

These tutorials are a simplified 
introduction, and are not sufficient on 
their own to achieve system safety.
You are responsible for the safety of 
your system.

“Good Fences
Make Good Neighbors”

– Folk Saying



2© 2020 Philip Koopman

 Anti-Patterns for Isolation:
 Low-SIL software can access critical data
 Low-SIL software can block critical tasks

 Need isolation between different SILs
 Lower SIL assumed to compromise High SIL

– Higher SIL  “trusted” (critical tasks)
– Lower SIL  “untrusted” (non-critical tasks)

» Corrupts high-SIL data values, timing, configuration

 Hardware isolation is best option
– Different SILs separated on different chips
– Different networks for safety vs. non-safety data

» Network data exchange is safety critical

Critical System Isolation



3© 2020 Philip Koopman

 Memory value interference
 Non-critical task modifies critical variables
 Non-critical ISR causes critical task stack overflow
 Non-critical task memory leak; heap exhaustion

 CPU time interference
 Non-critical task runs at high priority; starves critical tasks
 Non-critical task disables interrupts; delaying critical tasks

 Watchdog timer
 Non-critical task kicks watchdog regularly
 Non-critical task disables watchdog

 System configuration
 Non-critical task changes digital output to input

 Network
 Non-critical node sends unsafe critical message

Mixed-SIL Interference Examples



4© 2020 Philip Koopman

 Develop all software at highest SIL
 Avoids isolation, but increases expense

 Hardware solution – separate CPU chips
 Multi-core provides only partial isolation

 High-SIL RTOS approaches
 Hardware memory protection (MMU)
 Hardware CPU time isolation (e.g., multi-core)
 Virtualization of I/O and configuration

 Other techniques can help for Low-SIL
 Variable mirroring (two one’s complement copies)
 Critical tasks run at high priorities or in ISRs
 Non-modifiable watchdog timer configuration

 Self-test is insufficient for High-SIL integrity
 Fault in high SIL hardware can subvert self-test

Mitigating Cross-SIL Interference

Single CPU at SIL 3 or SIL 4



5© 2020 Philip Koopman

 Lower-SIL task is ~ a malicious attacker
 How can it disrupt higher-SIL software?
 Consider:

memory corruption, timing, configuration, network

 Implications for safety:
 A weaker fault model means making assumptions
 Lower-SIL update means revisiting assumptions

 Implications for security:
 Higher-SIL functions more resistant to attack if isolated
 Bad pattern: everything on one CPU with desktop OS
 Better pattern: isolated CPUs with high-SIL critical RTOS

Isolation and Security
https://goo.gl/TyxLIM

http://i.imgur.com/rGtgr.jpg



6© 2020 Philip Koopman

 Use as much hardware isolation as you can
 Consider:

– Data value isolation 
– CPU time isolation
– Configuration corruption
– Shared resource isolation

 Applies to any different SILs
– Crucial for non-SIL  SIL 3/4

 Pitfalls:
 Multi-core CPU isn’t enough on its own (other shared resources!)
 IEC 60730: Arguing that low-SIL software won’t interfere…

… requires re-arguing after every low-SIL change

Best Practices For Critical System Isolation

https://goo.gl/6kFQb9



7© 2020 Philip Koopman
https://m.xkcd.com/651/


	��Critical System�Isolation��
	Critical System Isolation
	Mixed-SIL Interference Examples
	Mitigating Cross-SIL Interference
	Isolation and Security
	Best Practices For Critical System Isolation
	Slide Number 7
	Slide Number 8
	Slide Number 9



