
1© 2020 Philip Koopman

Safety Plans

“Adventure is just bad planning.”
– Roald Amundsen

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

2© 2020 Philip Koopman

 Anti-Patterns for Safety Plans:
 It’s just a pile of unrelated documents
 It doesn’t address software integrity
 You don’t link to a relevant safety standard
 It doesn’t link to a security plan

 Safety Plan:
 Safety Standard: pick a suitable standard
 Hazards & Risks: hazard log, criticality analysis
 Goals: safety strategy, safety requirements
 Mitigation & Analysis: HAZOP, FMEA, FTA, ETA, reliability, …
 Safety Case: safety argument

Safety Plan: The Big Picture for Safety

3© 2020 Philip Koopman

 Usually “functional safety” (safety functions)
 IEC 61508 is a generic starting point
 Many domains have specific standards

– ISO 26262, EN-50126/8/9, MIL-STD-882,
IEC 60730, DO-178, …

 Key elements of a safety standard:
 Method for determining risk

– Usually Safety Integrity Level (SIL)
 SIL determines engineering rigor

– Analysis techniques
– Mitigation techniques

 Life-cycle approach to safety

Safety Standards
[IEC 61508]

4© 2020 Philip Koopman

 Safety Goal: top level definition of “safe”
 Example: vehicle speed control

– Hazard: unintended vehicle acceleration
– Goal: engine power proportional to accel. pedal position

 Safety strategy: how you plan to achieve goal
– Example: correct computation AND

engine shutdown if unintended acceleration

 Safety Requirements:
 Goals at system level; requirements provide supporting detail
 Supporting requirements generally allocated to subsystems

– Might include functionality and fail-safe mitigation requirements
 Examples:

– Engine torque shall match accelerator position torque curve
– Pedal/torque mismatch shall result in engine shutdown

Safety Goals & Safety Requirements

5© 2020 Philip Koopman

 Idea: Start with component failure; analyze results; identify hazards

 Significant limitations for generating hazards
 “Complex component” failures are not well behaved

– Software fails however it wants to fail
– Integrated circuits are usually highly coupled internally

 Poor at representing correlated and accumulated faults
– E.g., exploding capacitor damaging several nearby components

FMEA: Failure Mode Effects Analysis

Component Potential Failure Mode Failure Effects Recommended Action Status

Resistor R2 Open Triggers Shutdown Use Industrial spec.
component

Done

Short Over-current/
potential Fire

Circuit Redesign Open

Capacitor C7 Explodes Potential Fire Select different
component

Open

6© 2020 Philip Koopman

 Hazard structured brainstorming
 For each system requirement:

– Modify with a guide word
– Does the result suggest a hazard?

 Effective starting point, but not
guaranteed to find all hazards

 Examples
 When pressure exceeds 6000 psig, relief

valve shall NOT actuate.
 System shall come to a complete stop

within AFTER 5 seconds when
emergency stop is activated.
– Alternately: System shall come to a

complete stop within 5 seconds LATE
when emergency stop is activated.

HAZard and Operability Analysis (HAZOP)

https://goo.gl/KTer9C

7© 2020 Philip Koopman

 Hazard: a potential source of injury or damage
 A potential cause of a mishap or loss event (people, property, financial)

 Hazard log
 Captures hazards for a system
 HAZOP generates some hazards
 Others are legacy & experience

 Risk evaluation
 Risk = Probability * Consequence

– Typically determined via a risk table
 Risk must be reduced to acceptable levels

– Risk determines required SIL (e.g. “Very High”  SIL 4)

Hazards & Risks

Probability

Co
ns

eq
ue

nc
e

RISK

8© 2020 Philip Koopman

 Failure Mode Effects Analysis (FMEA)
 Work forward from fault to mishap

 Fault Tree Analysis (FTA)
 Work backward from hazard to causes
 Strategy: HAZOP identifies fault tree roots

 Avoid single points of failure
 If component breaks, is system unsafe?
 Computational elements fail in worst way

 Life-critical systems require redundancy
 Also avoid correlated faults
 High-SIL software techniques to avoid SW defects

Safety Analysis & Mitigation

Fault Tree

9© 2020 Philip Koopman

 This system is safe because:
structured argument + evidence

 Incorporates safety plan topics:
 Methodical identification of hazards
 Each hazard evaluated for risk
 Mitigation rigor determined by risk (e.g., SIL)
 Analysis rigor determined by risk (e.g., SIL)
 Safety requirements appropriately cover all hazards

– Including both accidental faults & malicious faults

 Example techniques
 Goal Structuring Notation (GSN) http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

 Systems-Theoretic Process Analysis (STPA / Leveson)

Safety Case

[GSN Standard]

10© 2020 Philip Koopman

 A written Safety Plan including:
 Hazards + risks
 Safety goals + requirements
 Safety analysis + Mitigation
 Following a safety standard
 Resulting in a written safety case
 Independent audit of safety case

 Pitfalls:
 Software safety usually stems from rigorous SIL engineering
 FMEA can miss correlated & multipoint faults – must use FTA
 Need to include safety caused by security attacks

Best Practices For Safety Plans

https://www.flickr.com/photos/jurvetson/1118807

11© 2020 Philip Koopmanhttps://xkcd.com/369/

12© 2020 Philip Koopman

https://xkcd.com/1328/

	��Safety Plans����
	Safety Plan: The Big Picture for Safety
	Safety Standards
	Safety Goals & Safety Requirements
	FMEA: Failure Mode Effects Analysis
	HAZard and Operability Analysis (HAZOP)
	Hazards & Risks
	Safety Analysis & Mitigation
	Safety Case
	Best Practices For Safety Plans
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

