
1© 2020 Philip Koopman

Embedded Software
Safety – Overview

“Engineering is achieving function
while avoiding failure.”

– Henry Petroski

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

2© 2020 Philip Koopman

Anti-Patterns for Embedded System Safety:
 Requirements do not address safety
 Not using an appropriate safety standard
 Safety analysis assumes perfect software
 Redundancy management inadequate

Actually know system is safe
 Correctness is only a starting point

– Requirements and other aspects matter
 Fault responses must be safe

– Hardware faults (permanent; transient)
– Software faults

Is Your System Appropriately Safe?

https://goo.gl/EgxHEo

https://goo.gl/vnqH7G

3© 2020 Philip Koopman

Defense-In-Depth For Safety
 Avoid faults occurring

 Careful design of software to avoid software defects
 Use robust hardware to avoid hardware run-time faults

 Detect and contain faults
 Error correction HW, redundant CPUs
 Watchdog timers for failed tasks, exception handling

 Use Fail Safe strategies to mitigate hazards
 For example, automatic safety shutdown mechanisms

 Incidents require operator intervention (or luck)
 Operator may be able to react correctly and quickly
 Incident will be a mishap some fraction of time

 Want to avoid escalation as much as possible
 E.g., fail safe approaches that work to avoid incidents

(For more information, see Safeware, Leveson 1986, pp. 149-150)

4© 2020 Philip Koopman

 Safety must be seen to be present
 System presumed unsafe unless convincing safety argument made
 Outsider must be able to determine safety purely from documents

 The greater the risk, the greater the need for information
 Riskier systems require more engineering rigor

 Safety must be built in, not added on
 If code is created without a safety process, throw it away; start over

 Systematic, random, and malicious faults all matter
 Consider design errors and transient faults (e.g., soft errors)
 If it’s not secure, it’s not safe

 Safety must be argued in writing and demonstrated
 Failure-free testing isn’t enough

 Safety is a lifecycle concern
 “Mission critical failures” can be considered “safety” as well

Basic Safety Principles Adapted from
MISRA 1994

5© 2020 Philip Koopman

 Space Shuttle Challenger Mishap
 January 1986 launch explosion; 7 fatalities
 Dual O-rings keep hot gases inside solid booster

– History of sometimes failing if too cold
– At launch, joint temperature was below freezing

 Booster team told: “prove launch is unsafe”
– Should have been: “no launch unless proven safe”
– Getting lucky is not the same thing as being safe

Safety Culture: Everyone Is Sure It’s Safe

EX
TE

RN
AL

 F
UE

L
TA

N
K

SOLID ROCKET JOINT

goo.gl/htsgid goo.gl/1qeswJ

EXTERNAL
FUEL TANK

SOLID
ROCKET
SEGMENTS

O
-R

IN
G

S

JOINTS

6© 2020 Philip Koopman

 Safety Topics:
 Safety Plan & Safety Standards
 Safety Requirements
 Critical System Design
 Dependability
 Single Points of Failure
 Redundancy Management
 Isolation Mechanisms
 Safety Architectural Patterns

 Pitfall:
 Safety isn’t just about whether you think it’s safe …

… it’s about whether you can prove it is appropriately safe

Overview of Embedded System Safety

(1985 – 1987) THERAC 25
Software-Controlled Radiation Therapy Mishaps

7© 2020 Philip Koopman

https://xkcd.com/1992/

	��Embedded Software�Safety – Overview����
	Is Your System Appropriately Safe?
	Defense-In-Depth For Safety
	Basic Safety Principles
	Safety Culture: Everyone Is Sure It’s Safe
	Overview of Embedded System Safety
	Slide Number 7

