
1© 2020 Philip Koopman

System Level
Testing

“Debugging is twice as hard as writing the
code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”

– Brian W. Kernighan

Prof. Philip Koopman

2© 2020 Philip Koopman

YOU ARE HERE
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

UNIT
TEST

SOFTWARE
TEST

ACCEPTANCE
TEST

CREATE SW
ARCHITECTURE

IMPLEMENT

INTEGRATION
TEST

TRACEABILITY & VALIDATION

DESIGN
MODULES

Product
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test
Plan &

Test
Results

Software Test
Results

PRODUCT

3© 2020 Philip Koopman

Anti-Patterns:
 Excessive defect “escapes”

to field testing
 Majority of testing effort is

ad hoc exploratory testing
 Acceptance testing is the

only testing done on system
°

 System test is last line of defense against shipping bugs
 System-level “acceptance test” emphasizes customer-type usage
 Software test emphasizes aspects not visible to customer

– E.g., is the watchdog timer turned on and working?

System Level Testing

The Famous “First Bug”
(But, Edison invented the term https://goo.gl/cVLpcX)

https://en.wikipedia.org/wiki/File:H96566k.jpg

4© 2020 Philip Koopman

 System test plan covers all requirements
 Every product requirement is tested

– Ad hoc testing helps, but should not be primary method
 Non-customer-visible requirements are tested

– Especially non-functional requirements
 Need to deal with embedded system I/O

– Use a HAL and swap in a test simulator harness

 Each bug found in system test is a huge deal
 You should find few (<5%?) bugs in system test
 Bug found in system test is a process failure

– System requirement defects should be most of what you find
– Make sure “one-off” bugs aren’t just tip of the iceberg process problems

Effective System Testing

https://goo.gl/uWXQBC

5© 2020 Philip Koopman

 Testing bad software
simply makes it less bad
 Testing cannot produce good

software all on its own

One third of faults take more
than 5000 years to manifest
Adams, N.E., "Optimizing preventive service of software
product," IBM Journal of Research and Development,
28(1), p. 2-14, 1984. (Table 2, pg. 9, 60 kmonth column)

 Do you test for more than
5000 years of use?

 Your customers will regularly
experience bugs that you will
not see during testing

Product Testing Won’t Find All Bugs
O

PE
R

AT
IO

N
AL

SC
EN

AR
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

6© 2020 Philip Koopman

[Wikipedia]

 February 2007; six aircraft fly to Japan
 $360 million per aircraft
 Computer crash crossing the International Date Line:

– No navigation, communications, fuel management, …
– Escorted to Hawaii by tankers
– Could have lost all six if poor visibility

 Cause:
 “It was a computer glitch in the millions of lines

of code, somebody made an error in a couple lines of
the code and everything goes.” [https://goo.gl/edGdAL]

 Related: F-16 inverts when crossing equator
 Found in simulation. (Perhaps an urban legend?)

 But still should put designers on notice of such bugs
http://catless.ncl.ac.uk/Risks/3.44.html#subj1.1

F-22 Raptor Date Line Incident

[DoD]

7© 2020 Philip Koopman

 90/10 rule applied to bug farms:
 90% of the bugs are in 10% of the modules
 Those are the most complex modules

Bug farms can be more than just bad code
 Bad design that makes it tough to write code
 Too complex to understand and test
 Poorly defined, confusing interfaces

 Fixing bug farms:
 Refactor the module, redesign the interface
 Often, smart to throw away and redesign that piece

Bug Farms: Concentrations of Buggy Code

8© 2020 Philip Koopman

10. Your module fails unit test (Tie with #9)
9. A bug is found in peer review (Tie with #10)
8. The system fails integration or software testing
7. The system fails acceptance testing
6. You get a field problem report
5. Your boss wakes you up at 2 AM because a Big Customer is off-line
4. You get an airplane ticket to a war zone to install a software update
3. You hear about the bug on social media
2. Your corporate lawyers ask you to testify in the lawsuits

And, the Number One Worst Way To Find A Bug:
1. The reporters camped outside your house ask you to comment on it

Top 10 Risks of Poor Embedded Software Quality

9© 2020 Philip Koopman

 Test all system requirements
 Everything it’s supposed to do
 Fault management responses
 Performance, extra-functional reqts.

Acceptance test vs. software test
 Acceptance test is from customer point of view – domain testing
 SW test uses internal test interfaces – software testing skills

 System test pitfalls:
 Impractical to get high coverage; won’t find all bugs
 Testing fault management is hard if you haven’t planned for it

System Test Best Practices

https://goo.gl/2iSZaM

 The one test every embedded system must pass is the dreaded
Groundhog Test. To perform this test:
 Connect a prototype unit to a de-energized power supply.
 Stand back, look the other direction and throw the switch.
 If you see your shadow, that means 6 more weeks of development.

– Rick Miu

[http://www.groundhog.org]

11© 2020 Philip Koopmanhttps://xkcd.com/1319/

https://xkcd.com/1205/

	��System Level�Testing�����
	YOU ARE HERE
	System Level Testing
	Effective System Testing
	Product Testing Won’t Find All Bugs
	F-22 Raptor Date Line Incident
	Bug Farms: Concentrations of Buggy Code
	Top 10 Risks of Poor Embedded Software Quality
	System Test Best Practices
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Discussion Questions
	Exercises

