
1© 2020 Philip Koopman

Avoiding
Spaghetti Code

“The go to statement as it stands is just
too primitive; it is too much an invitation to
make a mess of one’s program.”

― Edsgar Dijkstra, 1968

Prof. Philip Koopman

2© 2020 Philip Koopman

 Anti-Patterns:
 Deeply nested

conditionals
 “Switch” nesting
 High Cyclomatic Complexity (too many paths through the code)

 Unstructured code leads to bugs
 Unstructured code is generally hard to understand, test, and review

– But, even structured code can be problematic if it is too complex
 Want to limit complexity within each unit (e.g., subroutine, method)

– Complex code is difficult to review – you will miss bugs during review
– Complex code can be difficult or impossible to test

Spaghetti Code
http://www.hacker-dictionary.com/terms/spaghetti-code

3© 2020 Philip Koopman

McCabe Cyclomatic Complexity (MCC)
 Measure each module (subroutine, method, …)
 Draw a control flow graph

– Graph has an arc for each path through the module
 MCC is # of “holes” in graph + 1

– Worst case number of unit tests to cover all paths
– Might need more tests – it’s a guideline

 Strict Cyclomatic Complexity (SCC)
 For complex “if” tests, each condition counts

– “if ((x == 0) || (y == 0)) …”
counts as +2, because need to test x!=0 and y!=0

– MCDC testing requires this type of coverage

Measuring Complexity

1

2

3 4

5

M
C

C
=5

4© 2020 Philip Koopman

 Complexity beyond GOTO due to:
 Nested conditionals
 Overly complex lines of code
 Multiple return points
 Nested exceptions

High MCC Results in Tangled Code

 Applying MCC
 Want maximum MCC to be 10 or 15

– Above 30 is highly suspect
– Above 50 is untestable in practice

» Too tangled to reasonably test each path
» Exception for flat switch statements

– Above 75 predicts bug farms
» Each fix breaks something else

http://www.mccabe.com/pdf/mccabe-nist235r.pdf

5© 2020 Philip Koopman

 Problem: complex conditionals used to game complexity
 If (x) { if (y) { if (z) {…} } } MCC of +3
 If (x && y && z) {…} MCC of +1

– But same number of test cases…
… and same complexity

 Solution: SCC (also known as CC2)
 Every extra conditional Boolean term counts +1

– if (x) { if (y) { if (z) {…} } }  SCC of +3
– if (x && y && z) {…}  SCC of +3

 Important notes on applying MCC/SCC:
 This is a per-subroutine metric, not whole .c file
 The point is to encourage breaking up complex code into small pieces

Strict Cyclomatic Complexity (SCC)

6© 2020 Philip Koopman

SF = SCC + (Globals*5) + (SLOC/20)
 SCC = Strict Cyclomatic Complexity
 Globals = # of read/write global variables referenced
 SLOC = # source lines of code (e.g., C statements)
 Scoring:

– 5-10 - This is the sweet spot for most code
– 15 - Don't go above this for most modules
– 20 - Look closely; possibly refactor
– 30 - Refactor the design
– 50 - Untestable; throw the module away and redesign
– 75 - Unmaintainable; throw the module and its design away; start over
– 100 - Nightmare; throw it out and re-architect

Spaghetti Factor (SF) Metric

7© 2020 Philip Koopman

 Keep MCC below 10 to 15
 Even better, keep SCC below 10 to 15

– Exception: easy to test flat switch statements are OK
 This enables thorough unit test

 Additional signs of complexity issues
 “If” statements nested more than 2 or 3 deep
 Nested “if” and “switch” statements
 Excessive “break,” “continue,” multiple “return”

 If your module is too complex, it’s time to break it up!
 Focus on worst offenders & break pieces of logic out into helper functions
 The point of this is to enable good peer review and good unit test

 Complexity pitfalls:
 Creeping complexity over time … at some point, refactor!

Code Complexity Best Practices

8© 2020 Philip Koopman

https://xkcd.com/292/

https://goo.gl/pvDMHX CC BY-NC 2.0

	���Avoiding�Spaghetti Code�� ��
	Spaghetti Code
	Measuring Complexity
	High MCC Results in Tangled Code
	Strict Cyclomatic Complexity (SCC)
	Spaghetti Factor (SF) Metric
	Code Complexity Best Practices
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Discussion Questions
	Exercises

