Electrical &Com uter

C o
M%Il.{(l)% gie (() ENGINEERING
University

™| Embedded Software
Prof. Philip Koopman R e q u i r e m e nt S

"In spite of appearances, people seldom know what
they want until you give them what they ask for. "
— Donald Gause and Gerald Weinberyg,
Are Your Lights On?

© 2021 Philip Koopman 1

SPECIFY
PRODUCT

Product
Requirements

SPECIFY
SOFTWAR

E

oftware Requirements *

RCHITECTURE

Test Plan &

High Level Design *

Test Results

YOU ARE HERE

PACEABILITY & VALIDATION

Carnegie
Mellon
University

ACCEPTANCE
TEST

+Product

’ Software Test Results

SOFTWARE
TEST

’ Integration Test Results

INTEGRATION
TEST

’ Unit Test Results

DESIGN
MODULES

<>

UNIT
TEST

Detailed Design *

IMPLEMENT

’ Source Code

©

2021 Philip Koopman 2

Al . G
Carnegie

Requirements Overview D

m Anti-Patterns:

e Requirements aren’t written down o ggggM
e Requirements incomplete, imprecise .
s) . FBI Virtual Case
e “Be like last version, except... : .
File project
terminated

® Requirements

e Requirements faults can defeat a
design before it is even built

e Describe what system does
— Also what it's not supposed to do
e Precise, testable language
— Each requirement traces to system test

® Requirements issues:

e Requirements not defined when
development contract signed

e “We will know it when we see it”
e Repeated requirements changes

e Scope creep (new requirements
added) of 80%

© 2021 Philip Koopman 3

Carnegie
AC) y

Characteristics of Good Requirements e

®m Precise and minimally constrained
e Describes what system should do, not how it does it
e Uses “shall” to require an action; “should” to state a goal
e If possible has a numeric target instead of qualitative term
— Has tolerance (e.g., 500 msec +/- 10%, “less than X")
® Traceable & testable
e Each requirement has a unique label (e.g., “R-7.3")
e Each requirement cleanly traces to an acceptance test
e Requirement satisfaction has a feasible yes/no test X 5 s

®m Supported within context of system U3 €— R3 €— T3
e Supported by rationale or commentary U4 €—P R4 €— T4

e Uses consistent terminology i
e Any conflicting requirements resolved or prioritized

U1l <€—p R1 <€ T1

© 2021 Philip Koopman 4

Carnegie

Problematic Requirements Uiversity

Untraceable (no label)

e System shall shut down when E-STOP is activated.
Untestable

e R-1.1: System shall never crash

Imprecise

e R-1.7: The system provides quick feedback to the user.
No measurement tolerance

e R-2.3: LED shall flash with a period of 500 msec
Overly complex

e R-7.3: Pressing the red button shall activate Widget X, while
pressing the blue button should cause LED Z to blink instead
of LED Y illuminating steadily, which would be accomplished via the yellow button.

Describes implementation

e R-8.3: Pressing button W shall cause two 16-bit integer values to be added, then ...
© 2021 Philip Koopman 5

Carnegie
Mellon

Requirements Ambiguity L

B A requirements engineer gets a text message:
“On the way home, please pick up one carton of milk.

And if they have eggs, get six.” = (-
inbemae o SREY
L‘i’.“T"‘-

® The requirements engineer comes home with: =
6 cartons of milk and no eggs.

ML)
AR
| =)

ML)
AR
| =)

N LD
AR
vl

® Spouse: “Why did you buy six cartons of milk?!”

O [0) {20)
e 8 B

B Requirements Engineer: “They had eggs.”

Adapted from: www.ganssle.com/jokes.htm. ~ © 2021 Philip Koopman 6

. " Carnegie
Extra-Functional Requirements o ity
m Emergent properties (things hard to attribute to one component)
e Performance, real-time deadlines — .v". \\
e Security, Safety, Dependability in general) ‘/"/'" "‘}“,
e Size, Weight and Power consumption (“SWaP”) = ’y/ // ”// L1

— Often handled with an allocation budget across components

e Forbidden behaviors (“shall not do X")
— Often in context of safety requirements

“Safety function” is a way to ensure a negative
behavior, but some behaviors are emergent

(NO JUMPING

®m Design constraints
e Must meet a particular set of standards

e Must use a particular technology ' CITY ORD. 13.40.030
e System cost, project deadline, project staffing %Oo,gmm

© 2021 Philip Koopman 7

Carnegie
AC) y

Product vs. Engineering Requirements o,

® Product level requirements:
what the product does

e Example:
“PR6. The clock shall support a user-settable audible alarm.”

e Gives a feature list of what the product actually does
e Can be the interface between marketing and engineering

B Detailed functional/engineering requirements:
how the product actually works
e Example: “R5. Time set buttons shall change the alarm set time.”
e Embedded systems often have detailed requirements tied to operational modes

— “RS. In Alarm Set Mode the time set buttons shall change the alarm set time.”

— “R6. Pressing the “+" time set button shall increase time value by one minute per button

press according to the current set mode.”
© 2021 Philip Koopman 8

N G
Carnegie

Requirements Approaches e

Text document with list of requirements :
. . Soda Machine
e Works best if domain experts already know reqts.

e Over time, this can converge to OK reqts.
inserts a quarter

UML Use Cases

e Different activities performed by actors 02, Customer pushes

e Requirements are scenarios attached a soda button

to each use case
Aglle User Stories U3. Customer pushes
coin return button
U4. Observe soda
availability

e Each story describes a system interaction
Functional decomposition Customer
UML Use Case Diagram
© 2021 Philip Koopman 9

e Start with primary system functions

e Make more and more detailed lists of sub-
functions (creates a “functional architecture”)

Prototyping to elicit requirements
e Customers know it when they see it
e Sometimes a paper mock-up is enough

N G
Carnegie

Requirements Templates (EARS) Mellogg_ >

m Easy Approach to Requirements Syntax (Mavin etal.) e.g.: https://bit.ly/2CQSF37

m [While/Where <precondition>] [when/if <trigger> then]

<system> shall <response>
Ubiquitous: The touch screen shall have a response time of less than 250 msec.
State-driven: WHILE an external speaker is connected, the internal speaker shall mute.
Event-driven: WHEN a card is inserted, the card reader shall verify credentials.

Optional feature: WHERE a convertible roof is installed, a park/roof motion interlock
function shall be provided.

Unwanted: IF an invalid value is entered THEN an error message shall be displayed.
Complex: combinations of the above

B Requirements issues to avoid:

Ambiguous, vague, complex, omitted, duplicated, wordy, implementation, untestable
© 2021 Philip Koopman 10

. Carnegie
Example Software Requirements o iy

Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project

Title: Software Requirements Specification g;)lecl:?\f:;)i:)ef gﬁg;;}?:N—REQ—OOM [lj:;/ﬁi:s;(;n(:) f—61
Parent Req | ReqID Requirement Text and Rationale Prior | Allocated
-ity | To GRC-CONN-REQ-0084
EFFECTIVE DATE: 02/23/2010
National Aeronautics and FSRD-3714 | SRS- The Software shall send data at a user data rate from | P2 PAS
Space Administration 32.6.12 zero up to and including 100 Mbps.

Rationale: The maximum data rate the Payload
Avionics Software must send is 100 Mbps. Lower
rates must also be handled.

FSRD-3133 | SRS- The software shall send and receive data on two P2 PAS
3.2.6.13 SpaceWire channels simultaneously at up to the
maximum SDR interface data rate (full duplex) that
can be sustained by both SDRs.

Rationale: When communicating with multiple
radios, the Software will need to sustain an
achievable data rate. In this requirement, it is
defined as the minimum data rate of the two (or
three, if possible) SDRs involved in the experiment.
For instance, this data could be provided in the
routing table. If two other radios are involved, then
the data rate may change, based on the capability of
those two radios (i.e. a new minimum interface data
rate). This value should not be hard coded, but
should have the capability for change, once on-orbit.

https://goo.gl/qct5tL © 2021 Philip Koopman 11

N G
Carnegie

Best Practices for Requirements N
m Six C-terms for Good Requirements HEADLIGHTS ON
e Clear, Concise, Correct, EDCUL%NSGE

Coherent, Complete and Confirmable

m Also:
e Deal with extra-functional issues

e Relate requirements to design flow
— Associate with user stories or use cases
— Trace to corresponding test

® Requirements pitfalls https://go0.gl/6H3dxi
e Avoid unnecessary details and implementation
e If it's missing from requirements, it won't get done
e If it's not testable, you won't know if it got done

© 2021 Philip Koopman 12

\WE NEED TO MAKE 500 HOLES IN THAT LJALL,
50 TVE BUILT THIS AUTOMATIC DRILL.. IT USES
ELEGANT PRECISION GEARS TO CONTINUALLY
ADJUST ITS TORGVE AND SPEED AS NEEDED:

GREAT, IT'S THE PERFELT WEIGHT!
WELL (OAD 500 OF THEM INTO
THE CANNON LJE MADE AND
SHOOT THEM AT THE WALL.

HOW SOFTWARE. DEVELOPMENT WORKS

https://xkcd.com/2021/

	��Embedded Software Requirements�� ���
	YOU ARE HERE
	Requirements Overview
	Characteristics of Good Requirements
	Problematic Requirements
	Requirements Ambiguity
	Extra-Functional Requirements
	Product vs. Engineering Requirements
	Requirements Approaches
	Requirements Templates (EARS)
	Example Software Requirements
	Best Practices for Requirements
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Requirements Overview
	Discussion Questions
	Exercises

