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Embedded Software 
Requirements

"In spite of appearances, people seldom know what 
they want until you give them what they ask for. "

– Donald Gause and Gerald Weinberg, 
Are Your Lights On?

Prof. Philip Koopman
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YOU ARE HERE
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 Anti-Patterns:
 Requirements aren’t written down
 Requirements incomplete, imprecise
 “Be like last version, except…”

 Requirements 
 Requirements faults can defeat a

design before it is even built
 Describe what system does

– Also what it’s not supposed to do
 Precise, testable language

– Each requirement traces to system test

Requirements Overview

 2005:
$170M
FBI Virtual Case
File project
terminated

 Requirements issues:
 Requirements not defined when 

development contract signed
 “We will know it when we see it”
 Repeated requirements changes
 Scope creep (new requirements 

added) of 80%
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 Precise and minimally constrained
 Describes what system should do, not how it does it
 Uses “shall” to require an action; “should” to state a goal
 If possible has a numeric target instead of qualitative term

– Has tolerance (e.g., 500 msec +/- 10%, “less than X”)

 Traceable & testable
 Each requirement has a unique label (e.g., “R-7.3”)
 Each requirement cleanly traces to an acceptance test
 Requirement satisfaction has a feasible yes/no test

 Supported within context of system
 Supported by rationale or commentary
 Uses consistent terminology
 Any conflicting requirements resolved or prioritized

Characteristics of Good Requirements
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 Untraceable (no label)
 System shall shut down when E-STOP is activated.

 Untestable
 R-1.1: System shall never crash

 Imprecise
 R-1.7: The system provides quick feedback to the user.

 No measurement tolerance
 R-2.3: LED shall flash with a period of 500 msec

 Overly complex
 R-7.3: Pressing the red button shall activate Widget X, while

pressing the blue button should cause LED Z to blink instead
of LED Y illuminating steadily, which would be accomplished via the yellow button.

 Describes implementation
 R-8.3: Pressing button W shall cause two 16-bit integer values to be added, then …

Problematic Requirements



6© 2021 Philip Koopman

Requirements Ambiguity
 A requirements engineer gets a text message:

“On the way home, please pick up one carton of milk.
And if they have eggs, get six.”

 The requirements engineer comes home with:
6 cartons of milk and no eggs.

 Spouse: “Why did you buy six cartons of milk?!”

 Requirements Engineer: “They had eggs.”

Adapted from: www.ganssle.com/jokes.htm.



7© 2021 Philip Koopman

 Emergent properties (things hard to attribute to one component)
 Performance, real-time deadlines
 Security, Safety, Dependability in general
 Size, Weight and Power consumption (“SWaP”)

– Often handled with an allocation budget across components
 Forbidden behaviors (“shall not do X”)

– Often in context of safety requirements
– “Safety function” is a way to ensure a negative

behavior, but some behaviors are emergent

 Design constraints
 Must meet a particular set of standards
 Must use a particular technology
 System cost, project deadline, project staffing

Extra-Functional Requirements

https://goo.gl/hT3nDU
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 Product level requirements:
what the product does

 Example: 
“PR6. The clock shall support a user-settable audible alarm.”

 Gives a feature list of what the product actually does
 Can be the interface between marketing and engineering

 Detailed functional/engineering requirements: 
how the product actually works

 Example: “R5. Time set buttons shall change the alarm set time.”
 Embedded systems often have detailed requirements tied to operational modes

– “R5. In Alarm Set Mode the time set buttons shall change the alarm set time.”
– “R6. Pressing the “+” time set button shall increase time value by one minute per button 

press according to the current set mode.”

Product vs. Engineering Requirements
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 Text document with list of requirements
 Works best if domain experts already know reqts.
 Over time, this can converge to OK reqts.

 UML Use Cases
 Different activities performed by actors
 Requirements are scenarios attached

to each use case
 Agile User Stories

 Each story describes a system interaction

 Functional decomposition
 Start with primary system functions
 Make more and more detailed lists of sub-

functions (creates a “functional architecture”)
 Prototyping to elicit requirements

 Customers know it when they see it
 Sometimes a paper mock-up is enough

Requirements Approaches

UML Use Case Diagram
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 Easy Approach to Requirements Syntax (Mavin et al.)  e.g.:  https://bit.ly/2CQSF37

 [While/Where <precondition>] [when/if <trigger> then]
<system> shall <response>

 Ubiquitous: The touch screen shall have a response time of less than 250 msec.
 State-driven: WHILE an external speaker is connected, the internal speaker shall mute.
 Event-driven: WHEN a card is inserted, the card reader shall verify credentials.
 Optional feature: WHERE a convertible roof is installed, a park/roof motion interlock 

function shall be provided.
 Unwanted: IF an invalid value is entered THEN an error message shall be displayed.
 Complex: combinations of the above

 Requirements issues to avoid:
 Ambiguous, vague, complex, omitted, duplicated, wordy, implementation, untestable

Requirements Templates (EARS)
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Example Software Requirements

https://goo.gl/qct5tL
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 Six C-terms for Good Requirements
 Clear, Concise, Correct,

Coherent, Complete and Confirmable
 Also:
 Deal with extra-functional issues
 Relate requirements to design flow

– Associate with user stories or use cases
– Trace to corresponding test

 Requirements pitfalls
 Avoid unnecessary details and implementation
 If it’s missing from requirements, it won’t get done
 If it’s not testable, you won’t know if it got done

Best Practices for Requirements

https://goo.gl/6H3dxi



https://xkcd.com/2021/
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