
1© 2021 Philip Koopman

Embedded Software
Requirements

"In spite of appearances, people seldom know what
they want until you give them what they ask for. "

– Donald Gause and Gerald Weinberg,
Are Your Lights On?

Prof. Philip Koopman

2© 2021 Philip Koopman

YOU ARE HERE

3© 2021 Philip Koopman

 Anti-Patterns:
 Requirements aren’t written down
 Requirements incomplete, imprecise
 “Be like last version, except…”

 Requirements
 Requirements faults can defeat a

design before it is even built
 Describe what system does

– Also what it’s not supposed to do
 Precise, testable language

– Each requirement traces to system test

Requirements Overview

 2005:
$170M
FBI Virtual Case
File project
terminated

 Requirements issues:
 Requirements not defined when

development contract signed
 “We will know it when we see it”
 Repeated requirements changes
 Scope creep (new requirements

added) of 80%

4© 2021 Philip Koopman

 Precise and minimally constrained
 Describes what system should do, not how it does it
 Uses “shall” to require an action; “should” to state a goal
 If possible has a numeric target instead of qualitative term

– Has tolerance (e.g., 500 msec +/- 10%, “less than X”)

 Traceable & testable
 Each requirement has a unique label (e.g., “R-7.3”)
 Each requirement cleanly traces to an acceptance test
 Requirement satisfaction has a feasible yes/no test

 Supported within context of system
 Supported by rationale or commentary
 Uses consistent terminology
 Any conflicting requirements resolved or prioritized

Characteristics of Good Requirements

U1
U2
U3
U4
U5

R1
R2
R3
R4
R5

T1
T2
T3
T4
T5

5© 2021 Philip Koopman

 Untraceable (no label)
 System shall shut down when E-STOP is activated.

 Untestable
 R-1.1: System shall never crash

 Imprecise
 R-1.7: The system provides quick feedback to the user.

 No measurement tolerance
 R-2.3: LED shall flash with a period of 500 msec

 Overly complex
 R-7.3: Pressing the red button shall activate Widget X, while

pressing the blue button should cause LED Z to blink instead
of LED Y illuminating steadily, which would be accomplished via the yellow button.

 Describes implementation
 R-8.3: Pressing button W shall cause two 16-bit integer values to be added, then …

Problematic Requirements

6© 2021 Philip Koopman

Requirements Ambiguity
 A requirements engineer gets a text message:

“On the way home, please pick up one carton of milk.
And if they have eggs, get six.”

 The requirements engineer comes home with:
6 cartons of milk and no eggs.

 Spouse: “Why did you buy six cartons of milk?!”

 Requirements Engineer: “They had eggs.”

Adapted from: www.ganssle.com/jokes.htm.

7© 2021 Philip Koopman

 Emergent properties (things hard to attribute to one component)
 Performance, real-time deadlines
 Security, Safety, Dependability in general
 Size, Weight and Power consumption (“SWaP”)

– Often handled with an allocation budget across components
 Forbidden behaviors (“shall not do X”)

– Often in context of safety requirements
– “Safety function” is a way to ensure a negative

behavior, but some behaviors are emergent

 Design constraints
 Must meet a particular set of standards
 Must use a particular technology
 System cost, project deadline, project staffing

Extra-Functional Requirements

https://goo.gl/hT3nDU

8© 2021 Philip Koopman

 Product level requirements:
what the product does

 Example:
“PR6. The clock shall support a user-settable audible alarm.”

 Gives a feature list of what the product actually does
 Can be the interface between marketing and engineering

 Detailed functional/engineering requirements:
how the product actually works

 Example: “R5. Time set buttons shall change the alarm set time.”
 Embedded systems often have detailed requirements tied to operational modes

– “R5. In Alarm Set Mode the time set buttons shall change the alarm set time.”
– “R6. Pressing the “+” time set button shall increase time value by one minute per button

press according to the current set mode.”

Product vs. Engineering Requirements

9© 2021 Philip Koopman

 Text document with list of requirements
 Works best if domain experts already know reqts.
 Over time, this can converge to OK reqts.

 UML Use Cases
 Different activities performed by actors
 Requirements are scenarios attached

to each use case
 Agile User Stories

 Each story describes a system interaction

 Functional decomposition
 Start with primary system functions
 Make more and more detailed lists of sub-

functions (creates a “functional architecture”)
 Prototyping to elicit requirements

 Customers know it when they see it
 Sometimes a paper mock-up is enough

Requirements Approaches

UML Use Case Diagram

10© 2021 Philip Koopman

 Easy Approach to Requirements Syntax (Mavin et al.) e.g.: https://bit.ly/2CQSF37

 [While/Where <precondition>] [when/if <trigger> then]
<system> shall <response>

 Ubiquitous: The touch screen shall have a response time of less than 250 msec.
 State-driven: WHILE an external speaker is connected, the internal speaker shall mute.
 Event-driven: WHEN a card is inserted, the card reader shall verify credentials.
 Optional feature: WHERE a convertible roof is installed, a park/roof motion interlock

function shall be provided.
 Unwanted: IF an invalid value is entered THEN an error message shall be displayed.
 Complex: combinations of the above

 Requirements issues to avoid:
 Ambiguous, vague, complex, omitted, duplicated, wordy, implementation, untestable

Requirements Templates (EARS)

11© 2021 Philip Koopman

Example Software Requirements

https://goo.gl/qct5tL

12© 2021 Philip Koopman

 Six C-terms for Good Requirements
 Clear, Concise, Correct,

Coherent, Complete and Confirmable
 Also:
 Deal with extra-functional issues
 Relate requirements to design flow

– Associate with user stories or use cases
– Trace to corresponding test

 Requirements pitfalls
 Avoid unnecessary details and implementation
 If it’s missing from requirements, it won’t get done
 If it’s not testable, you won’t know if it got done

Best Practices for Requirements

https://goo.gl/6H3dxi

https://xkcd.com/2021/

	��Embedded Software Requirements�� ���
	YOU ARE HERE
	Requirements Overview
	Characteristics of Good Requirements
	Problematic Requirements
	Requirements Ambiguity
	Extra-Functional Requirements
	Product vs. Engineering Requirements
	Requirements Approaches
	Requirements Templates (EARS)
	Example Software Requirements
	Best Practices for Requirements
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Requirements Overview
	Discussion Questions
	Exercises

