C 0'1 Electrical & Computer
M%II.{:)% % «) ENGINEERING

University

Peer Reviews

Prof. Philip Koopman

“The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches
the programming task in full humility, and among other
things he avoids clever tricks like the plague.
— Edsger Dijkstra © 2021 Philip Koopman 1

X Carnegie
% Peer Reviews el

m Anti-Patterns:

e No peer reviews .
e Reviews too informal/too fast y Y

e Reviews find <50% of all bugs

® Fresh eyes find defects

e Code and other document benefit
from a second (and third) set of eyes

e Peer reviews find more bugs/$ than testing
— And, they find them earlier when bugs are cheaper to fix
e Everything written down can benefit from a review

© 2021 Philip Koopman 2

Al O
Carnegie

Most Effective Quality Practices Nellon

University

Ebert & Jones, “Embedded Software: Facts, Figures, and Future,” IEEE Computer, April 2009, pp. 42-52
Ranked by defect removal effectiveness in percent defects detectable at that stage that are removed.
“*" means exceptionally productive technique (more than 750+ function points/month)

* 87% static code analysis (“lint” tools, compiler warnings)
85% design inspection

85% code inspection

82% Quality Function Deployment (requirements analysis)
80% test plan inspection

78% test script inspection

* 77% document review (other documents)

75% pair programming (informal on-the-fly review)

70% bug repair inspection

* 65% usability testing

50% subroutine testing (unit test)

*45% SQA (Software Quality Assurance) review

7 40% acceptance teSting © 2021 Philip Koopman 3

Carnegie

Peer Reviews Are Effective + Efficient el

200 Defect Removal by Phase - Typical Project from 5 years earlier
222 _ _ Most bugs found
é 150 NO.I‘eVIeWS., no unit teSt, in System test! O Minor
2 100 no integration test, ... B Major
50
) System | Software | Arch | Det Design | Code | Unit Test | Integ Test | System
Rgmts Rgmts Design Test
5 years later... pefect Removal by Phase With Peer Reviews Almost no bugs left
228 Found more bugs total in system test!
8 200 N :
£ 150 O Minor
2 100 B Major
50
stem Software 'Arch Det Design Code Unit Test Integ Test System
ts Rgmts Design Test [Source'
Roger G.,
Aug. 2005]

Found many bugs up front, where fixes are cheaper ©2021 Philip Koopman 4

Al O
Carnegie

Gold Standard: Fagan Style Inspections D

®m Methodical, in-person review meetings
Pre-meeting familiarity with project
Producer explains item then leaves
Moderator keeps things moving

Reader (not author) summarizes as you go
Reviewers go over every line, using checklists (perspective-based)
Recorder takes written notes

Result: written list of defects. The Producer fixes code off-line
Re-inspection if the defect rate was too high

m Methodical reviews are the most cost effective
e Important to measure bug discovery rate to ensure review quality

© 2021 Philip Koopman 5§

Al LQ
Carnegie

Rules for Successful Peer Reviews Mellon

University

Inspect the item, not the author
e Don't attack the author. £
Don't get defensive

e Nobody writes perfect code. Get over it.
Find but don't fix problems

e Don't try to fix them,; just identify them.
Limit meetings to two hours

e People are less productive after that point. Fﬁﬂ Iﬁ ﬁn F # m ﬁ

No Playing& Jumping No Slapping

Keep a reasonable pace

e About 150 lines of code (or equivalent) per hour. Too fast and too slow are both bad.
Avoid “religious” debates on style

e Enforce conformance to your style guide. No debates on whether style guide is correct.
Inspect, early, often, and as formally as you can

e Keep records to document value (might take a while to mature). e e

Carnegie

Example Light-Weight Review Report Mellon

S

Date:
Artifact:
Reviewers:
Size:

Time Spent:
Issues:
Outcome:

Issue#
1

Qo = N f LM

Status Key:

University

Peer Review Template for Project X

4/17/2011
Xyzzy.cpp Functions: Foo(), Bar(), Baz()
Stella K., Joe B., Sam Q., Trish R.

?f; # issues found is the most aﬁ;s :}qst e’p.ter.
3 / important item! f!XG{d if fixed
Re-Review of Bug Fixes Required within

24 hours

Issue Description Statui ./
Issue 1 Fixed

Issue 2 Free f_orr_n text issue Bugzilla
Issue 34 descrlptlon Bugzilla

Issue 4.... Mot a Bug

Fixed (trivial fix by author; no need to enter in defect list)
Bugzilla (entered into project defect system)
Mot a Bug (Talse alarm)

© 2021 Philip Koopman 7

| O
Carnegie

Perspective-Based Peer Reviews Mellon

University

® Perspective-based Peer Reviews are 35% more effective

[https://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf]

® Mechanics of a Perspective-based review
e Divide a peer review checklist into three sections

e Assign each participant a different section of the checklist
— OK to notice other things, but primary responsibility is that section
- Multiple sets of eyes + perspective breadth

B Example perspectives for a review:
e Control flow issues
e Data handling issues
e Style issues

© 2021 Philip Koopman 8

Al O
Carnegie

Peer Review Checklist Template et

Before Review:

0

Peer Review Checklist: Embedded C Code

B Customize

as needed

Code compiles clean with extensive warning checks (e.g. MISRA C rules)

Reviewer #1:

1

2
3
4
5
6
7

Comm Reviewer #2:

Reviewer #3:

___ Stylec 8 ____ Singlepoint ;.
____Propet 9 ___ loopentryz
____ Noorg 10 _ Conditionals ;4
__ Condit 11 __ Allfunctions ,,
_____Parent 12 __ Useconstar ,,
~_Allswii 13 ___ Avoid use of 21

- 14 __ Strongtypin ,,

15 _ Allvariables

_ Minimum scope for all functions and variables; essentially no globals
_ Concurrency (locking, volatile keyword, minimize blocking time)

_ Input parameter checking (style, completeness)

__ Error handling for function returns

Handle null pointers, division by zero, null strings, boundary conditions
Floating point issues (equality, NaN, INF, roundoff); use of fixed point
__ Buffer overflow safety (hound checking, avoid unsafe string operations)

All Reviewers

23

Does the code match the detailed design (correct functionality)?

24 Is the code as simple, obvious, and easy to review as possible?

For TWO Reviewers assign items: Reviewer#1: 1-11; 23-24 Reviewer#2: 12-24
© 2021 Philip Koopman 9

30

20

Weekly Hours

10

Al O
Carnegie

Before (Ineffective Reviews) Mellon_
< Median
— Mean
12 Hrs/Wk
- = [T
1 90% T b
[T L
T+ I | 1
First L T i s
Two
Weeks Spring | | Finals
Summed 10% Break Week
Week (Zero hrs)
é £IL EIE 1IU 1I2 1I4 1I6
Week #

© 2021 Philip Koopman 10

Carnegie

University
. 1

< Median

— Mean
30.0 + — — — 12 Hrs/Wk

20.0 +

Weekly Hours

10.0 +

0 2 4 6 8 10 12 i -

© 2021 Philip Koopman 11

Review More Than Just The Code

Create
Requirements

Create System
Architecture

Architecture & HLD

TC

reate
Design

Detalled

LEGEND:
Artifacts

To Peer
Review

Coding

Carnegie

Mellon
University
-l Acceptance
Testing
Integration
Testing
» Subsystem
Testing
S/W Umt

© 2021 Philip Koopman 12

Al O
Carnegie

Economics Of Peer Review Mellon

University

m Peer reviews provide more eyeballs to find bugs in an affordable way
e Good embedded coding rate is 1-2 lines of code/person-hr
— (Across entire project, including reqts, test, etc.)
e A person can review 50-100 times faster than they can write code
— If you have 4 people reviewing, that is still >10x faster than writing!
e How much does peer review cost?
— 4 people * 100-200 lines of code reviewed per hour
- E.g., 300 lines; 4 people; 2 hrs review+1 hr prep = 25 LOC/person-hr
e Reviews are only about 5%-10% of your project cost
B Good peer reviews find at least half the bugs!
e And they find them early, so total project cost can be reduced

m Why is it folks say they don't have time to do peer reviews?

© 2021 Philip Koopman 13

Carnegie

Peer Review Best Practices Mellor

University

® Formal reviews (mspectlons) optimize bugs/$
e Target 10% of project effort to find 50% of bugs
— You can review 100x faster than write code; it's cheap
e Review everything written down, not just code
e Use a perspective-based checklist to find more bugs

® Review pitfalls
e If your reviews find <50% of defects, they are BROKEN
— The 80/20 rule does NOT apply to review formality! Formal reviews are best.
— You can't review at end; need to review throughout project
® Review tools
e On-line review tools are OK, but not a substitute for in-person meeting
e Static analysis tools are great — but not a review!

© 2021 Philip Koopman 14

YOUR CODE LOOKS LIKE
SONG LYRICS WRITTEN
USING ONLY THE STUFF
THAT COMES AFTER THE
QUESTION MARK IN A URL.

SORRY.
S

IT'S LIKE A J5ON
TABLE OF MODEL
NUMBERS FOR
FLASHLIGHTS
WITH “TACTICAL
IN THEIR NAFES.

\

()

LIKE YOU READ TURINGS
1936 PAPER ON COMPUTING
AND A PAGE OF JAVASCRIPT
EXAMPLE CODE AND GUESSED
AT EVERYTHING IN BETLEEN.

\

ITS LIKE A LEET-SPEAK TRANSLATION
OF A MANIFESTD BY A SURVIVALIST CULT
LEADER WHO'S FOR SOME REASON
OBSESGED WITH MEMORY ALLOCATION.

T (AN GET SOMEONE
ELSE TO REVIEW MY (ODE.

NOT MORE THAN ¢
ONCE, T BET. -

N

https://www.xkcd.com/1833/

© 2021 Philip Koopman 15

	Peer Reviews�� ���
	Peer Reviews
	Most Effective Quality Practices
	Peer Reviews Are Effective + Efficient
	Gold Standard: Fagan Style Inspections
	Rules for Successful Peer Reviews
	Example Light-Weight Review Report
	Perspective-Based Peer Reviews
	Peer Review Checklist Template
	Before (Ineffective Reviews)
	With Weekly Defect Reporting
	Review More Than Just The Code
	Economics Of Peer Review
	Peer Review Best Practices
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Discussion Questions
	Exercises
	Recommended Reading

