C o Electrlcal&Com uter
M%II.{:)% gle «) ENGINEERING

University

Code Style
for Compilers

Prof. Philip Koopman

“Programming can be fun, so can
cryptography; however they should
not be combined.”

— Kreitzberg and Shneiderman

© 2020 Philip Koopman 1

Coding Style: Language Use

® Anti-Patterns:
e Code compiles with warnings

e Warnings are turned off or over-ridden
e Insufficient warning level set
[

Language safety features over-ridden

- =
o= e

J
7 1
20
1
[]
[
0
1
0
0
0
0

Iy - © =

e A warning means the compiler might not do what you think
— Your particular language use might be “undefined”

e A warning might mean you're doing something that's likely a bug
— It might be valid C code, but should be avoided

e Don't over-ride features designed for safe language use

© 2020 Philip Koopman 2

The C Language Doesn't Always Play Nice

m Defined, but potentially dangerous
o) i w (A = s D) o w i) // a is modified
e while (x > 0); {x = x-1;} // infinite loop

BAD

® Undefined or unspecified = dangerous CODE!

e You might think you know what these do ...
... but it varies from system to system

e int,*py="NULLY. ;% =L*p. // null pointer dereference
e int b; c-='b; // uninitialized wvariable
o n £ e[10 %18 A Bh=Nx 0] ; // access past end of array
e x = (i++) + a[i]; // when is i incremented?

© 2020 Philip Koopman 3

Language Use Guidelines & Tools

16 MANDATORY RULES

30
ADVISORY
RULES 10 REQUIRED
‘ DIRECTIVES

7 ADVISORY
DIRECTIVES

m MISRAC, C++
e Guidelines for critical systems in C (e.g., no malloc)
e Portability, avoiding high risk features, best practices
m CERT Secure C, C++, Java
e Rules to reduce security risks (e.g., buffer overflows)
e Includes list of which tools check which rules

MISRA C:2012 with Security
m Static analysis tools
e More than compiler warnings (e.g., strong type warnings)
e Many tools, both commercial and free. Start by going far past “—Wall” on gcc
® Dynamic Analysis tools
e Executes the program with checks (e.g., memory array bounds)

e Again, many tools. Start by looking at Valgrind tool suite
© 2020 Philip Koopman 4

Rule 13.4 The result of an assignment operator should not be used
C90 [Unspecified 7, 8; Undefined 18], C99 [Unspecified 15, 18; Undefined 32]

Category Advisory [Koenig 6]
Analysis Decidable, Single Translation Unit

Amplification
This rule applies even if the expression containing the assignment operator is not evaluated.

Rationale
The use of assignment operators, simple or compound, in combination with other arithmetic operators

is not recommended because:
* |t can significantly impair the readability of the code;

* |t introduces additional side effects into a statement making it more difficult to avoid the
undefined behaviour covered by Rule 13.2.

Example
X = y7 /* Compliant */
al g 1] =al ==y 1: /* Non-compliant - the value of x =y
—— : .
* is used */

/*

* Non-compliant - wvalue of bool var = false is used but

* bool var == false was probably intended

*/
if (bool wvar = false)

{

) [MISRA C-2012 Guidelines; Fair Use]

MISRA C
2012
Example

© 2020 Philip Koopman

5

Let the Language Help!

®m Use enum instead of int
e enum color {black, white, red}; // avoids bad wvalues

m Use const instead of #define

e const uint64 t x = 1; // helps with type checking
uint64 t y = x << 40; // avoids 32-bit overflow bug

®m Use inline instead of #define
e If it's too big to inline, the call overhead doesn’t matter
e Many compilers inline automatically even without keyword

m Use typedef with static analysis

e typedef uint32 t feet; typedef uint32 t meters;
feet 2% =LaL5Y, A
meters y = x; // feet to meters assignment error

B Use stdint.h for portable types
e int32_t is 32-bit integer, uint16_t is 16-bit unsigned, etc. © 2020 Philip Koopman 6

Deviations & Legacy Code

m Use dewatlons from rules with care
e Use “pragma” deviations sparingly; comment what/why

® What about legacy code that generates
lots of warnings?

e Strategy 1: fix one module at a time
— Useful if you are refactoring/re-engineering the code
— Sometimes might need to keep warnings off for 374 party headers
e Strategy 2: turn on one warning at a time
— Useful if you have to keep a large codebase more or less in synch
e Strategy 3: start over from scratch
— If the code is bad enough this is more efficient ... if business conditions permit

© 2020 Philip Koopman 7

Or — You Can Use A Better Language!

m Desirable language capabilities:
e Type safety and strong typing (e.g., pointers aren't ints)
e Memory safety (e.g., bounds on arrays)
e Robust static analysis (language & tool support)
e In general, no surprises

procedure Increment (X : in out Counter_Type)
with Global => null,
Depends => (X => X),

B Spark Ada as a safety critical language

Pre => X < Counter_Type'lLast,
e Formally defined language; verifiable programs Post => X = X'0ld + 1;
3, , 2 e B . . Wikipedia
The language doesn’t have aml?lgumes or undefined behaviors N s W
e You can prove that a program is correct
: ki Spark Ada is a subset
- E.g., can prove absence of: array index out of range, division by zero of the Ada
— (In practice, this makes you clean up your code until proof succeeds) Pr;iz‘:;g‘éng

e Key idea: design by contract
— Preconditions, post-conditions, side effects are defined © 2020 Philip Koopman 8

Language Style Best Practices

m Adopt a safe coding style (or a safe language)
e MISRA C & CERT C are good starting points

e Specify a static analysis tool and config settings
— To degree practical, let machines find the style problems
e When static analysis is set up, add dynamic analysis

® The point of good style is to avoid bugs

e Let the compiler find many bugs automatically
e Reduce chance of compiler mistaking your intention

® Coding style pitfalls:
e “The code passes tests, so warnings don't matter”
e Real bugs lost in a huge mass of warnings
e Making it too easy to deviate from style rules © 2020 Philip Koopman

|
Its only a clever hack if you're the one who wrote it

Essential

Hating Other
People’s Code

O RLY? @ ThePracticalDev

https://goo.gl/pvDMHX CC BY-NC 2.0

e —
Maybe theyll just go away on their own.

[gnoring
‘Deprecation
Warnings

A Practical Guide

O RLY? @ThePracticalDev

https://goo.gl/pvDMHX CC BY-NC 2.0

https://xkcd.com/1695/

UGH, IT'S LIKE YoU RAN OCR ON
IHNE | |APHOD OF A SCRABBLE
READING | | BOARD FROM A GAME LHERE
YOURCODE. | | JAVASCRIPT RESERVED LIORDS
I know, | | COUNTED FOR TRIPLE PONTS.

IT LOOKS LIKE SOMEONE
TRANSCRIBED A NAVAL WEATHER
FORECAST WHILE. LWOODPECKERS
HAMMERED THEIR SHIFT KEYS,
THEN RANDOMLY INDENTED [T.

\

TS LIKE AN EE CUMIINGS | | THIS LOOKS LIKE THE OUTPUT OF A MARKOV
POEM URITTEN USING ONLY | | BOT THAT'S BEEN FED BUS TIMETABLES FROM
THE USERNAMES A WEBSITE | | A GITY UHERE THE BUSES CRASH (ONSTANTLY,

SUGGESTS WHEN THE ONE
YOU WANT IS TAKEN.

k @) BURNING BuS K

LJHATEVER IT RUNS FINE. FOR NOU.

N

© 2020 Philip Koopman 11

	Code Style�for Compilers���
	Coding Style: Language Use
	The C Language Doesn’t Always Play Nice
	Language Use Guidelines & Tools
	MISRA C 2012 Example�
	Let the Language Help!
	Deviations & Legacy Code
	Or – You Can Use A Better Language!
	Language Style Best Practices
	Slide Number 10
	Slide Number 11
	Slide Number 12
	2012 Open Source Coverity Scan
	Discussion Questions
	Exercises

