
1© 2020 Philip Koopman

Code Style
for Compilers

“Programming can be fun, so can 
cryptography; however they should 
not be combined.”

– Kreitzberg and Shneiderman

Prof. Philip Koopman



2© 2020 Philip Koopman

 Anti-Patterns:
 Code compiles with warnings
 Warnings are turned off or over-ridden
 Insufficient warning level set
 Language safety features over-ridden

Make sure the compiler understands what you meant
 A warning means the compiler might not do what you think

– Your particular language use might be “undefined”
 A warning might mean you’re doing something that’s likely a bug

– It might be valid C code, but should be avoided
 Don’t over-ride features designed for safe language use

Coding Style: Language Use



3© 2020 Philip Koopman

Defined, but potentially dangerous
 if (a = b) { … }       // a is modified
 while (x > 0);  {x = x-1;} // infinite loop

Undefined or unspecified  dangerous
 You might think you know what these do …

… but it varies from system to system
 int *p = NULL;  x = *p;    // null pointer dereference
 int b;   c = b;             // uninitialized variable
 int x[10]; …  b = x[10];    // access past end of array
 x = (i++) + a[i];   // when is i incremented?

The C Language Doesn’t Always Play Nice

BAD
CODE!



4© 2020 Philip Koopman

 MISRA C, C++
 Guidelines for critical systems in C (e.g., no malloc)
 Portability, avoiding high risk features, best practices

 CERT Secure C, C++, Java
 Rules to reduce security risks (e.g., buffer overflows)
 Includes list of which tools check which rules

 Static analysis tools
 More than compiler warnings (e.g., strong type warnings)
 Many tools, both commercial and free.  Start by going far past “–Wall” on gcc

 Dynamic Analysis tools
 Executes the program with checks (e.g., memory array bounds)
 Again, many tools.   Start by looking at Valgrind tool suite

Language Use Guidelines & Tools



5© 2020 Philip Koopman

MISRA C 
2012 

Example

[MISRA C-2012 Guidelines; Fair Use]



6© 2020 Philip Koopman

 Use enum instead of int
 enum color {black, white, red}; // avoids bad values 

 Use const instead of #define
 const uint64_t x = 1; // helps with type checking

uint64_t y = x << 40; // avoids 32-bit overflow bug

 Use inline instead of #define
 If it’s too big to inline, the call overhead doesn’t matter
 Many compilers inline automatically even without keyword 

 Use typedef with static analysis
 typedef uint32_t feet; typedef uint32_t meters;

feet   x = 15;        
meters y = x;  // feet to meters assignment error

 Use stdint.h for portable types
 int32_t is 32-bit integer,  uint16_t is 16-bit unsigned, etc.

Let the Language Help!

https://goo.gl/6SqG2i



7© 2020 Philip Koopman

 Use deviations from rules with care
 Use “pragma” deviations sparingly; comment what/why

What about legacy code that generates
lots of warnings?
 Strategy 1: fix one module at a time

– Useful if you are refactoring/re-engineering the code
– Sometimes might need to keep warnings off for 3rd party headers

 Strategy 2: turn on one warning at a time
– Useful if you have to keep a large codebase more or less in synch

 Strategy 3: start over from scratch
– If the code is bad enough this is more efficient … if business conditions permit

Deviations & Legacy Code



8© 2020 Philip Koopman

 Desirable language capabilities:
 Type safety and strong typing (e.g., pointers aren’t ints)
 Memory safety (e.g., bounds on arrays)
 Robust static analysis (language & tool support)
 In general, no surprises

 Spark Ada as a safety critical language
 Formally defined language; verifiable programs

– The language doesn’t have ambiguities or undefined behaviors
 You can prove that a program is correct

– E.g., can prove absence of: array index out of range, division by zero
– (In practice, this makes you clean up your code until proof succeeds)

 Key idea: design by contract
– Preconditions, post-conditions, side effects are defined

Or – You Can Use A Better Language!

Wikipedia
https://goo.gl/3w6RF6

Spark Ada is a subset
of the Ada

programming
language.



9© 2020 Philip Koopman

 Adopt a safe coding style (or a safe language) 
 MISRA C & CERT C are good starting points
 Specify a static analysis tool and config settings

– To degree practical, let machines find the style problems
 When static analysis is set up, add dynamic analysis

 The point of good style is to avoid bugs
 Let the compiler find many bugs automatically
 Reduce chance of compiler mistaking your intention

 Coding style pitfalls:
 “The code passes tests, so warnings don’t matter”
 Real bugs lost in a huge mass of warnings
 Making it too easy to deviate from style rules

Language Style Best Practices



https://goo.gl/pvDMHX  CC BY-NC 2.0 https://goo.gl/pvDMHX  CC BY-NC 2.0



11© 2020 Philip Koopmanhttps://xkcd.com/1695/


	Code Style�for Compilers���
	Coding Style: Language Use
	The C Language Doesn’t Always Play Nice
	Language Use Guidelines & Tools
	MISRA C 2012 Example�
	Let the Language Help!
	Deviations & Legacy Code
	Or – You Can Use A Better Language!
	Language Style Best Practices
	Slide Number 10
	Slide Number 11
	Slide Number 12
	2012 Open Source Coverity Scan
	Discussion Questions
	Exercises

