
Code Style
for Humans

© 2020 Philip Koopman

“Any fool can write code that a
computer can understand. Good
programmers write code that
humans can understand.”

– Martin Fowler

Prof. Philip Koopman

2© 2020 Philip Koopman

Anti-Patterns:
 “Style doesn’t matter;

it passes all the tests”
 Code that is clever

instead of clear

Other people must understand your code
 Peer reviews won’t work if nobody can read your code

– Write code so that others can tell it is obviously correct
 If others can’t understand it, they will inject bugs
 If it’s not obviously correct, then it’s wrong.

Coding Style: Understandability
“There are two ways of constructing a software
design: one way is to make it so simple that
there are obviously no deficiencies and the
other way is to make it so complicated that
there are no obvious deficiencies.”

— C.A.R. (Tony) Hoare, 1980 Turing Award Talk

3© 2020 Philip Koopmanhttp://blog.aerojockey.com/post/iocccsim

 Consistent formatting
 Consistent indentation, braces
 Templated headers for files and functions
 Spaces and “()” to avoid precedence confusion
 Use space instead of tab

 Comments
 Explain what & why, not just code paraphrase
 Comments are not a design

 Naming
 Descriptive, consistent naming conventions

– E.g., variables are nouns; functions are verbs

 Avoid magic numbers (use const)
 Avoid macros (use inline)

Make Code Easy To Read
Obfuscated C

Winner:
Flight Simulator

4© 2020 Philip Koopman

 Modularity
 Many smaller .c/.cpp files (one per class)
 Externally visible declarations into .h file

 Conditional Statements
 Boolean conditional expression results; no assignments
 All switch statements have a default (usually error trap)
 Limited nesting (see also cyclomatic complexity)

 Variables
 Descriptive names that differ significantly
 Smallest practicable scope for variables; initialize at point of definition
 Use typedefs to define narrow types (also use uint32_t, use enum, etc.)
 Range checks & bounds checks (e.g., buffer overflow)

 Handle errors returned by called functions

Good Code Hygiene

5© 2020 Philip Koopman

"We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should
not pass up our opportunities in that critical 3%”
 Donald Knuth (December 1974). "Structured Programming

with go to Statements". ACM Journal Computing Surveys 6 (4): 268.

 Don’t optimize unless you have performance data
 Most code doesn’t matter for speed
 Use little or no assembly language. Get a better compiler.

 Optimization makes it hard to know your code is right
 Do you want correct code or tricky code?

– (Pick one. Which one is safer?)
 Buy a bigger CPU if you have to

Optimization

https://xkcd.com/1691/

6© 2020 Philip Koopman

 Pick a coding style and follow it
 Use tool support for language formatting
 Evaluate naming as part of peer review
 Comments are there to explain implementation

 The point of good style is to avoid bugs
 Make it hard for a reviewer to miss a problem

– Even better, make it easy for a tool to find problem
 Also need to have a good technical style

 Coding style pitfalls:
 Optimizing for the author instead of the reviewer
 Making it too easy to deviate from style rules

Coding Understandability Best Practices
Great style depends
upon point of view.

7© 2020 Philip Koopman

“Always code as if
the guy who ends up

maintaining your code
will be a

violent psychopath
who knows where you live.

Code for readability.”

(Author unclear)

https://goo.gl/pvDMHX CC BY-NC 2.0

8© 2020 Philip Koopman

https://xkcd.com/1513/

	Code Style�for Humans���
	Coding Style: Understandability
	Make Code Easy To Read
	Good Code Hygiene
	Optimization
	Coding Understandability Best Practices
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Discussion Questions
	Exercises

