
Software Development
Processes

© 2020 Philip Koopman

“Without requirements and design,
programming is the art of adding
bugs to an empty text file.”

― Louis Srygley

Prof. Philip Koopman

2© 2020 Philip Koopman

Coding Is Essentially 0% of Creating Software

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

3© 2020 Philip Koopman

 Effective for well understood domains
 Works best if you don’t make many big

mistakes
– Variations on existing systems
– Expensive to fix things that escape to

test steps
 Any problem encountered requires

backtracking
– Note: original waterfall paper had these

backward arrows! It was never just a
unidirectional process

Old-School Waterfall Development Cycle
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

CREATE SW
ARCHITECTURE

DESIGN
MODULES

TEST &
VALIDATE

DEPLOY &
MAINTAIN

IMPLEMENT

Product
Requirements

Software
Requirements

High Level
Design

Detailed
Design

Source
Code

Production
System

Bugs

Bugs

Bugs

Bugs

Bugs

Bugs

4© 2020 Philip Koopman

Dividing up into subsystems is critical
 Bad architecture will doom a project

Process formality is a good investment
 Traceability, formal reviews, etc.
 Skipping steps costs more in the end

Requirements change
 Suggests using an iterated approach

 Finding bugs early is important
 Traceability from high to low levels
 Layered testing
 Peer reviews most cost effective for this

What We’ve Learned in 50+ Years of Software
 If the second

half of the
project is
“debugging”
that must
mean the first
half is
“bugging”

– Jack Ganssle
http://www.ganssle.com/rants/on
testing.htm (paraphrase)

5© 2020 Philip Koopman

Finding Bugs Before Product Test
Product Testing
 Late & Expensive
 Many field escapes

Software Testing
 Unit & Integration test

Code Peer Review
 Earlier & Cheaper

Design Peer Review
 Earlier & Cheaper

FIRST
50%-75%
BUGS FOUND

LAST
5%-10%
BUGS
FOUND

6© 2020 Philip Koopman

 Emphasizes
traceability
 Supports

subsystem
decomposition

 Peer Reviews of
work products

V (or “Vee”) Development Cycle

7© 2020 Philip Koopman

 Implementation: the code itself
 Comments describe the implementation; they aren’t the design

Detailed Design (DD)
 Flowcharts
 Statecharts
 Algorithms, control diagrams, etc.

High Level Design (HLD): architecture, component defs.
 Pieces of the system (e.g., classes, subsystems)
 Functional allocation to the pieces
 Interfaces between the systems

A Design Is Not The Code

https://pixabay.co
m/en/flowchart-
diagram-drawing-
concept-311347/

8© 2020 Philip Koopman

 Software Requirements Specification (SRS)
 Says “what” the software does, not “how” it does it

– If it’s not in the SRS, the software shouldn’t do it
– Avoids details unless mandatory due to marketing reqts.

 Often paired with a Hardware Requirements Spec.

Product Requirements Specification (PRS)
 Market-facing product requirements

– What the system does from a user point of view
 Point of interface between software group and others

– Might just be a feature list
– Might be in form of customer-specified acceptance test

Requirements on Top Left of Vee

9© 2020 Philip Koopman

If you think
good design is
expensive, you

should look at the
cost of

bad design!

https://goo.gl/ZVRH9Y

https://youtu.be/j-zczJXSxnw

Philip Koopman

10© 2020 Philip Koopman

 Unit Test: Traces to DD
 Test individual subroutines, procedures, “modules”

 Integration Test: Traces to HLD
 Test module interactions (e.g., sequence diagrams)

 Software Test: Traces to SRS
 Test functionality knowing how software is built

 Acceptance Test: Traces to PRS
 Test customer-facing functionality

 Other activities:
 Software Quality Assurance (SQA): did you follow the steps?
 Peer Reviews: check quality of every step
 Regression Test: test after bug fix to make sure bugs stay dead

Verification & Validation on Right Side of Vee

11© 2020 Philip Koopman

Old military development saying:
 Deploy when the paper is heavier than

the system. (Even aircraft carriers!)

Does all this mean you need to be
buried in paper? No.
 Paper required to check process health

– Be clever about minimizing paper bulk
– But if code has no paperwork, throw the code out

 Put things on paper as you go through the Vee
– “Documentation” after writing code is really inefficient
– If you aren’t going to maintain paper, throw it out

How Much “Paper” Is Enough?

12© 2020 Philip Koopman

Review: How Do the Pieces Fit Together?

13© 2020 Philip Koopman

 Agile generally values:
 Individuals and Interactions over processes and tools
 Working Software over comprehensive documentation
 Customer Collaboration over contract negotiation
 Responding to Change over following a plan

 Example: Scrum
 Daily “stand up” (“scrum”) meetings for face-to-face

collaboration
 2-4 week long sprints to incrementally add functionality

– Each sprint implements items from a backlog
– Demo at end of sprint; theoretically a shippable product

 User stories serve as requirements
 Scrum challenges

– Geographically split teams with informal communication
– External dependencies (e.g., other parts of system change)
– No time for extensive testing, especially embedded hardware

Agile Methods

http://agilemanifesto.org/principles.html

14© 2020 Philip Koopman

Please watch this video:
https://youtu.be/9TycLR0TqFA

https://youtu.be/9TycLR0TqFA

15© 2020 Philip Koopman

https://goo.gl/CkrCzR

Scrum Process Example
 Heavy on implicit knowledge
 Where are the: requirements, design, test plan, acceptance test

16© 2020 Philip Koopman

Agile:
 Small teams; small products
 “Everyday” software quality
 Fast requirements change
 High-skill experts throughout

project
– Including life-cycle

maintenance
 Developers can handle being

empowered; usually senior

Plan-Driven (waterfall; V)
 Large teams; large products
 Mission-critical products
 Stable requirements
 High skill primarily in design

phase
– Major versions require expert

design
 Most developers are not

empowered; usually junior

When Is Agile a Good Fit?
Source: Boehm & Turner 2004, Balancing Agility and Discipline

17© 2020 Philip Koopman

 Significant benefit is that it makes (good) developers happier
 If done well can help with evolving requirements
 But, but you need to manage and moderate the risks

 Issue: “Agile” is not just cowboy coding
 Undefined, undisciplined processes are bad news
 Yes, Agile teams should follow a rigorously defined process

 Issue: “No-paper” Agile unsuitable for long-lived systems
 Implicit knowledge is efficient, but evaporates with the team
 10+ year old undocumented legacy systems are a nightmare

 Issue: Agile assumes 100% automated acceptance test
 100% automated system test is often impractical for physical interfaces
 Often implicitly assumes that defect escapes are low cost because a new version is 2-4 weeks away

 Issue: Agile typically doesn’t have independent process monitoring (SQA)
 Software Quality Assurance (SQA) tells you if your process is working
 Agile teams may be dysfunctional and have no idea this is happening

– Or they may be fine – but who knows if they are really healthy or not?

Agile Methods + Embedded (?)

18© 2020 Philip Koopman

 Follow a defined process
 Must include all aspects shown on Vee

– And SQA, Peer Reviews
 It’s OK to rename and reorganize steps

– All the steps have to get done
– Common to see “AgileFall” etc.
– Also common to see bad process

dressed up with the latest buzzwords

 Software Process Pitfalls
 Skipping steps to get to testing faster means more bugs in test

– Finding bugs is more expensive in testing
 Using the wrong process for the wrong purpose

– 3-Week product life and 30 year product life are different situations

Best Practices For Software Process

https://xkcd.com/844/

	Software Development Processes���
	Coding Is Essentially 0% of Creating Software
	Old-School Waterfall Development Cycle
	What We’ve Learned in 50+ Years of Software
	Finding Bugs Before Product Test
	V (or “Vee”) Development Cycle
	A Design Is Not The Code
	Requirements on Top Left of Vee
	Slide Number 9
	Verification & Validation on Right Side of Vee
	How Much “Paper” Is Enough?
	Review: How Do the Pieces Fit Together?
	Agile Methods
	Slide Number 14
	Scrum Process Example
	When Is Agile a Good Fit?
	Agile Methods + Embedded (?)
	Best Practices For Software Process
	Slide Number 19
	Slide Number 20
	How Are Agile Methods Different?
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Discussion Questions
	Exercises
	Slide Number 27

