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“Without requirements and design, 
programming is the art of adding 
bugs to an empty text file.”

― Louis Srygley

Prof. Philip Koopman
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Coding Is Essentially 0% of Creating Software

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html



3© 2020 Philip Koopman

 Effective for well understood domains
 Works best if you don’t make many big 

mistakes
– Variations on existing systems
– Expensive to fix things that escape to 

test steps
 Any problem encountered requires 

backtracking
– Note: original waterfall paper had these 

backward arrows! It was never just a 
unidirectional process

Old-School Waterfall Development Cycle
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

CREATE SW
ARCHITECTURE

DESIGN
MODULES

TEST & 
VALIDATE

DEPLOY & 
MAINTAIN

IMPLEMENT

Product
Requirements

Software
Requirements

High Level
Design

Detailed
Design

Source
Code

Production
System

Bugs

Bugs

Bugs

Bugs

Bugs

Bugs



4© 2020 Philip Koopman

Dividing up into subsystems is critical
 Bad architecture will doom a project

Process formality is a good investment
 Traceability, formal reviews, etc.
 Skipping steps costs more in the end

Requirements change
 Suggests using an iterated approach

 Finding bugs early is important
 Traceability from high to low levels
 Layered testing
 Peer reviews most cost effective for this

What We’ve Learned in 50+ Years of Software
 If the second 

half of the 
project is 
“debugging”
that must 
mean the first 
half is 
“bugging”

– Jack Ganssle
http://www.ganssle.com/rants/on
testing.htm (paraphrase)
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Finding Bugs Before Product Test
Product Testing
 Late & Expensive
 Many field escapes

Software Testing
 Unit & Integration test

Code Peer Review
 Earlier & Cheaper

Design Peer Review
 Earlier & Cheaper

FIRST
50%-75%
BUGS FOUND

LAST
5%-10%
BUGS
FOUND
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 Emphasizes 
traceability
 Supports 

subsystem 
decomposition

 Peer Reviews of 
work products

V (or “Vee”) Development Cycle
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 Implementation: the code itself
 Comments describe the implementation; they aren’t the design

Detailed Design (DD) 
 Flowcharts
 Statecharts
 Algorithms, control diagrams, etc.

High Level Design (HLD): architecture, component defs.
 Pieces of the system (e.g., classes, subsystems)
 Functional allocation to the pieces
 Interfaces between the systems

A Design Is Not The Code

https://pixabay.co
m/en/flowchart-
diagram-drawing-
concept-311347/ 
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 Software Requirements Specification (SRS)
 Says “what” the software does, not “how” it does it

– If it’s not in the SRS, the software shouldn’t do it
– Avoids details unless mandatory due to marketing reqts.

 Often paired with a Hardware Requirements Spec.

Product Requirements Specification (PRS)
 Market-facing product requirements

– What the system does from a user point of view
 Point of interface between software group and others

– Might just be a feature list
– Might be in form of customer-specified acceptance test

Requirements on Top Left of Vee
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If you think
good design is 
expensive, you 

should look at the 
cost of

bad design!

https://goo.gl/ZVRH9Y

https://youtu.be/j-zczJXSxnw


Philip Koopman
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 Unit Test: Traces to DD
 Test individual subroutines, procedures, “modules”

 Integration Test: Traces to HLD
 Test module interactions (e.g., sequence diagrams)

 Software Test: Traces to SRS
 Test functionality knowing how software is built

 Acceptance Test: Traces to PRS
 Test customer-facing functionality

 Other activities:
 Software Quality Assurance (SQA): did you follow the steps?
 Peer Reviews: check quality of every step
 Regression Test: test after bug fix to make sure bugs stay dead

Verification & Validation on Right Side of Vee
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Old military development saying:
 Deploy when the paper is heavier than

the system.  (Even aircraft carriers!) 

Does all this mean you need to be
buried in paper?   No.
 Paper required to check process health

– Be clever about minimizing paper bulk
– But if code has no paperwork, throw the code out

 Put things on paper as you go through the Vee
– “Documentation” after writing code is really inefficient
– If you aren’t going to maintain paper, throw it out

How Much “Paper” Is Enough?
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Review: How Do the Pieces Fit Together?
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 Agile generally values:
 Individuals and Interactions over processes and tools
 Working Software over comprehensive documentation
 Customer Collaboration over contract negotiation
 Responding to Change over following a plan

 Example: Scrum
 Daily “stand up” (“scrum”) meetings for face-to-face 

collaboration
 2-4 week long sprints to incrementally add functionality

– Each sprint implements items from a backlog
– Demo at end of sprint; theoretically a shippable product

 User stories serve as requirements
 Scrum challenges

– Geographically split teams with informal communication
– External dependencies (e.g., other parts of system change)
– No time for extensive testing, especially embedded hardware

Agile Methods

http://agilemanifesto.org/principles.html
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Please watch this video:
https://youtu.be/9TycLR0TqFA

https://youtu.be/9TycLR0TqFA
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https://goo.gl/CkrCzR

Scrum Process Example
 Heavy on implicit knowledge
 Where are the: requirements,  design, test plan, acceptance test
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Agile:
 Small teams; small products
 “Everyday” software quality
 Fast requirements change
 High-skill experts throughout 

project
– Including life-cycle 

maintenance
 Developers can handle being 

empowered; usually senior

Plan-Driven (waterfall; V)
 Large teams; large products
 Mission-critical products
 Stable requirements
 High skill primarily in design 

phase
– Major versions require expert 

design
 Most developers are not  

empowered; usually junior

When Is Agile a Good Fit?
Source: Boehm & Turner 2004, Balancing Agility and Discipline
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 Significant benefit is that it makes (good) developers happier
 If done well can help with evolving requirements
 But, but you need to manage and moderate the risks

 Issue: “Agile” is not just cowboy coding 
 Undefined, undisciplined processes are bad news
 Yes, Agile teams should follow a rigorously defined process

 Issue: “No-paper” Agile unsuitable for long-lived systems
 Implicit knowledge is efficient, but evaporates with the team
 10+ year old undocumented legacy systems are a nightmare

 Issue: Agile assumes 100% automated acceptance test
 100% automated system test is often impractical for physical interfaces
 Often implicitly assumes that defect escapes are low cost because a new version is 2-4 weeks away

 Issue: Agile typically doesn’t have independent process monitoring (SQA)
 Software Quality Assurance (SQA) tells you if your process is working
 Agile teams may be dysfunctional and have no idea this is happening

– Or they may be fine – but who knows if they are really healthy or not?

Agile Methods + Embedded (?)
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 Follow a defined process
 Must include all aspects shown on Vee

– And SQA, Peer Reviews
 It’s OK to rename and reorganize steps

– All the steps have to get done
– Common to see “AgileFall” etc.
– Also common to see bad process

dressed up with the latest buzzwords

 Software Process Pitfalls
 Skipping steps to get to testing faster means more bugs in test

– Finding bugs is more expensive in testing
 Using the wrong process for the wrong purpose

– 3-Week product life and 30 year product life are different situations

Best Practices For Software Process



https://xkcd.com/844/
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