
EMBEDDED SOFTWARE
SECURITY, SAFETY &

QUALITY
Why it matters. What to do about it.

18-642 Overview
Fall 2021

© 2021 Philip Koopman

Prof. Philip Koopman

@PhilKoopman

2© 2021 Philip Koopman

One Software Mistake Is All It Takes
Bad software can tarnish the brand…or kill the company

https://goo.gl/T96ezC

Will “Diesel-Gate” Kill VW?

https://goo.gl/7dHOjO

3© 2021 Philip Koopman

 Software quality problems are pervasive
 Are you going to wait until you’re on

CNN to do something about it?

 Your company lives or dies by its
software quality
 Software is a core competency …

… whether you like it or not
 Embedded software requires unique skills &

technical approaches

 More product-level testing won’t make this problem go away
 Need good practices, development process, development skills

 Get serious about software quality
 Daily practices, process support, training, metrics

Overview

https://goo.gl/97fY8H

4© 2021 Philip Koopman

 Customers expect “perfect” embedded SW
 Everyday desktop quality software isn’t good enough
 Bugs can lead to class action lawsuits
 Upgrades can be painful to deploy

 Significant technical challenges
 Limited hardware resources
 Real-time operation
 Interaction with system-specific

sensors and actuators

 Most embedded software is Mission Critical
 Safety: someone gets killed or injured
 Mission Critical: failure results in

unacceptable loss (money, business,…)

Embedded Software Is Challenging

https://goo.gl/4bS5rd

5© 2021 Philip Koopman

Some Code Is Pervasively Bad

https://goo.gl/pX3qgb

https://goo.gl/BL95kF

https://goo.gl/v8CY62

6© 2021 Philip Koopman

 This is the bad line
of code for
Heartbleed:

memcpy(bp,pl,payload);

 Classic buffer overflow
vulnerability
– Copies “payload” bytes

from pl to bp
– Reads other user’s data,

including secret keys,
if payload value is too big

But It Only Takes One Bad Line of Code

https://goo.gl/1Joxy2

7© 2021 Philip Koopman

Large Scale Production = Big Problems

https://goo.gl/Hrr7ci

https://goo.gl/FYW7ZH

https://goo.gl/C9775V

https://goo.gl/RPv9V6

8© 2021 Philip Koopman

A steady stream of software
mishaps, recalls, etc.

There Are Too Many Examples

https://goo.gl/o2FuqZ

https://goo.gl/l2RWUv

https://goo.gl/4hbom9

9© 2021 Philip Koopman

This Goes Far Beyond Transportation

https://goo.gl/tHGiAO
https://goo.gl/l6QLEK

10© 2021 Philip Koopman

Act As If Your Products Live Or
Die By Their Software

Mechanical System
90% of BOM cost
Mostly commodity

Electronic Controller
10% of BOM cost

Mostly commodity

Software
0% of BOM cost
90% of product
differentiation

BOM = Bill Of Materials

11© 2021 Philip Koopman

 Testing bad software simply
makes it less bad
 Testing cannot produce good

software all on its own

One third of faults take more
than 5000 years to manifest
Adams, N.E., "Optimizing preventive service of software
product," IBM Journal of Research and Development,
28(1), p. 2-14, 1984. (Table 2, pg. 9, 60 kmonth column)

 Your customers will regularly
experience bugs that you will
not see during testing

 For most products, you can’t
even test 5000 years

Product Testing Won’t Find All Bugs
O

PE
R

AT
IO

N
AL

SC
EN

AR
IO

S

TIMING AND SEQUENCING

FAILURE

TYPES

TOO MANY
POSSIBLE

TESTS

12© 2021 Philip Koopman

 For YOUR product, what is the worst possible outcome:
 For a software bug?

– People killed or injured?
– Property damage?
– Cost to deploy a fix?
– Loss of brand reputation?

 For a malicious attack?
 Hint: The answer is the same

for both bugs and successful attacks
 Regulation is likely to increase
 IEC 60730 safety standard required for European appliances
 Security standards are already proliferating

How Bad Can It Possibly Be?

https://goo.gl/OSfG8i

https://goo.gl/IUFUPG

13© 2021 Philip Koopman

 Every system is assumed to be unsafe by default
 It is up to you to proactively show that it is safe

» Example: DEF STAN 00-55 Parts 1 & 2

1. Collect risks
 What can go wrong? What does “safe” really mean?

2. Assign risk severity
 What types of mishaps are most important to avoid?

3. Perform risk mitigation
 How can you avoid hazards and activation of hazards?

4. Develop software to acceptable level of integrity
 Ensure that risk mitigation is successful

Designing For Safety

14© 2021 Philip Koopman

Create a Hazard Log (list of hazards), including HAZOP
PHA (Preliminary Hazard Analysis) & Risk Table
 E.g. Consequence

– $100M loss
– $1M loss
– …
– $100 loss

 E.g. Probability
– Every minute
– Weekly
– …
– Every 10 years

 (4) .. (0)  See SIL on next slide

Risk Identification & Assessment

EXAMPLE

RISK

Probability
Very
High

High Medium Low Very
Low

Conse-
quence

Very
High

Very
High (4)

Very
High (4)

Very
High (4)

High
(3)

High
(3)

High Very
High (4)

High
(3)

High
(3)

Medium
(2)

Medium
(2)

Medium High (3) High (3) Med. (2) Med. (2) Low (1)

Low High (3) Medium
(2)

Medium
(2)

Low
(1)

Very
Low (0)

Very
Low

Medium
(2)

Low
(1)

Low
(1)

Very
Low (0)

Very
Low (0)

15© 2021 Philip Koopman

 SIL = Safety
Integrity
Level

 SIL4 = catastrophic
 SIL1 = minor injuries
 Used to determine

required level of
engineering rigor

 Example:
IEC 61508
 HR= Highly

Recommended
 R = Recommended
 NR = Not

Recommended
(don’t do this)

Higher SIL Invokes Engineering Rigor

[IEC 61508]

16© 2021 Philip Koopman

Head Count: Half Designers, Half Testers

[IEC 60730]IEC 60730 Appliance Safety

17© 2021 Philip Koopman

 Gold Standard: Fagan Style Inspection
 Pre-review meeting
 Formal meeting
 Written review report
 Follow-up and possible re-inspection
 The more formal the review, the higher the payoff

 Good reviews find 50%+ of defects for about 10% of project cost
 Defects are found early, when they are cheaper to fix and cause less disruption
 Why is it so many designers say they don’t have time to do peer reviews?

 Other technical issues are crucial for good embedded software
 Watchdog timers, mutexes, Rate Monotonic Scheduling, interrupts, exception handling,

reducing code complexity, secure update, timekeeping, performance optimization, …

Essential Practice: Peer Reviews

18© 2021 Philip Koopman

Security Matters for Industrial Systems!
https://goo.gl/CDsbV2

https://goo.gl/24Jp7j

 Attacks can affect the physical world

26% Buffer
Overflow or
Similar6% Crypto

Issues

https://goo.gl/rYgWFf

19© 2021 Philip Koopman

Industrial Controls Are Targets

“a big fat button lets you shut off a turbine”
(No login credentials required)

 The Bad Guys are after more than credit card numbers

https://goo.gl/tPrcB6

www.shodan.io

https://goo.gl/QGbJjs

20© 2021 Philip Koopman

 Security testing isn’t enough
 Bad code is especially vulnerable
 Testing mostly finds known problems

 Need to address:
 Security requirements
 Characterize threats & risks
 Security risk management plan
 Deploying security patches

 Myriad technical issues
 Secure update, cryptography, input

validation, least privilege, code quality,
passwords, privacy, web interface, error
handling, secure coding, …

Designing For Security
https://goo.gl/FQ4jcn

21© 2021 Philip Koopman

 You can’t test in quality, safety, or security

 In an ideal world,
throw it away and start over
 But, the world is not ideal …

 Incremental Reengineering
 Identify & fix high risk modules
 Clean sheet for each module; don’t try to derive design from code

 Improvement requires cultural change
 Requires commitment to good software at all levels of organization
 Commitment must survive a “but we have to ship next week” crisis

Testing Alone Won’t Fix Bad Software

https://goo.gl/i7Ue6N

22© 2021 Philip Koopman

1. Software time estimates are driven by external dates
2. Process steps skipped during schedule crunches
3. Software development is simply “coding” plus “testing”
4. Poor traceability from product test to requirements
5. Bugs due to poor code style & complexity
6. Bugs in software fault detection/recovery
7. No Security Plan; no Safety Plan
8. Tester:Developer ratio too far from about 1 : 1
9. More than about 5-10% of bugs are found in product test
10. Fewer than 50% of defects are found by peer review

Top 10 Embedded SW Warning Signs

!

23© 2021 Philip Koopman

The Path To Good Software

24© 2021 Philip Koopman

 Software is crucial for providing value
 But – even a single line of bad code can kill a product (or a company)
 Writing software is a high-stakes profession. Take it seriously.

 Good software requires process + technology + people
 Embedded software requires unique technical approaches
 You can’t test quality, safety, or security into software

 Good process enables good software
 Whether “V” or agile, need to actually follow a good process
 Typically need 1:1 head count for testers:developers
 Peer reviews find 50%+ of defects on the cheap – why aren’t you doing them?

 Safety and security are essential – don’t wait until there is a loss event
 Most embedded software is safety critical or mission critical
 Security is required in essentially all embedded software

Software Quality, Safety & Security

25© 2021 Philip Koopman

 Assess where you are
 How good is your code quality?
 How good are your software, process & technical skills?
 How good are your safety & security practices?

 Improve process, skills, technology
 Ensure you are doing effective peer reviews
 Formalize and follow a reasonable software process
 Adopt/adapt relevant safety & security standards
 Ensure developers have strong embedded software & process skills

 Cultural change
 Make software quality a first class company goal, not a sideline
 Daily practices, process support, training, metrics

What Happens Next?

	Slide Number 1
	One Software Mistake Is All It Takes
	Overview
	Embedded Software Is Challenging
	Some Code Is Pervasively Bad
	But It Only Takes One Bad Line of Code
	Large Scale Production = Big Problems
	There Are Too Many Examples
	This Goes Far Beyond Transportation
	Act As If Your Products Live Or Die By Their Software
	Product Testing Won’t Find All Bugs
	How Bad Can It Possibly Be?
	Designing For Safety
	Risk Identification & Assessment
	Higher SIL Invokes Engineering Rigor
	Head Count: Half Designers, Half Testers
	Essential Practice: Peer Reviews
	Security Matters for Industrial Systems!
	Industrial Controls Are Targets
	Designing For Security
	Testing Alone Won’t Fix Bad Software
	Top 10 Embedded SW Warning Signs
	The Path To Good Software�
	Software Quality, Safety & Security
	What Happens Next?

