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Where Are We Now?

¢ Where we’ve been:
e Interrupts
« Context switching and response time analysis
e Concurrency

¢ Where we’re going today:
e Scheduling

¢ Where we’re going next:

Analog and other 1/0

System booting, control, safety, ...

In-class Test #2, Wed 20-April-2016

Final project due finals week. No final exam.



Preview

¢ What’s Real Time?

¢ Scheduling — will everything meet its deadline?
o Schedulability
o 5 key Assumptions

¢ Application of scheduling
 Static multi-rate systems
« Dynamic priority scheduling: Earliest Deadline First (EDF) and Least Laxity
o Static priority preemptive systems (Rate Monotonic Scheduling)

¢ Related topics
e Blocking time
o Sporadic tasks



Real Time Scheduling Overview

« Hard real time systems have a deadline for each periodic task
— With an RTQOS, the highest priority active task runs while others wait
— System fault occurs every time a task misses a deadline

— Mathematical analysis is accepted practice for ensuring deadlines are met
— We’ll build up to Rate Monotonic Analysis in this lecture
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Real Time Definitions

¢ Reactive:
Computations occur in response to external events

 Periodic events (e.g., rotating machinery and control loops)
— Most embedded computation is periodic

» Aperiodic events (e.g., button closures)
— Often they can be “faked” as periodic (e.g., sample buttons at 10 Hz)

¢ Real Time
e Real time means that correctness of result depends on both functional
correctness and time that the result is delivered

e Too slow is usually a problem
» Too fast sometimes is a problem




Flavors Of Real Time

¢ Soft real time

 Utility degrades with distance from deadline
¢ Hard real time

» System fails if deadline window is missed
¢ Firm real time

* Result has no utility outside deadline window, but system can withstand a few
missed results
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“Real Time” 1= “Really Fast”

¢ “Real Time” = “Really Fast”
* [t means not too fast and not too slow
o Often the “not too slow” part is more difficult, but it’s not the only issue
» Also, a whole lot faster than you need to go can be wasteful overkill

« Often, ability to be consistently on time is more important than “fast”

¢ Consider what happens when a CPU goes obsolete

* [sit OK to write a software simulator on a really fast newer CPU?
— Will timing be fast enough?
— Will it be too fast?
— Will it vary more than the old CPU?

* What do designers actually do about this?



Types of Real-Time Scheduling

Real-Time Scheduling

Soft Hard
Dynamic Static
Precemptive  Nonpreemptive Preemptive Nonpreemptive

Figure 11.1: Taxonomy of real-time scheduling algorithms.
[Kopetz]
¢ Dynamic vs. Static
« Dynamic schedule computed at run-time based on tasks really executing
 Static schedule done at compile time for all possible tasks

¢ Preemptive permits one task to preempt another one of lower priority



Schedulability

¢ NP-hard if there are any resource dependencies at all
» S0, the trick is to put cheaply computed bounds/heuristics in place

— Prove it definitely can’t be scheduled
— Find a schedule if it is easy to do so

— Punt if you’re in the middle somewhere

If the sufficient schedulability [f the necessary schedulability
test is positive, these tasks are test 1s negative, these tasks are
definitely schedulable definitely not schedulable
< Exact >
Sufficient Schcdu]ability test Ncccssary
schedulability test * schedulability lcﬂb

Increasing Task Set Complexity
Figure 11.2: Necessary and sufficient schedulability test.

[Kopetz]
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Periodic Tasks

¢ “Time-triggered” (periodic) tasks are common in embedded systems
« Often via control loops or rotating machinery

¢ Components to periodic tasks
* Period (e.g, 50 msec)

Offset past period (e.g., 3 msec offset/50 msec period -> 53, 103, 153, 203)

Jitter is random “noise” in task release time (not oscillator drift)

Release time Is when task has its “ready to run” flag set

Release time = (n*period) + offset + jitter ; assuming perfect time precision
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Scheduling Parameters

¢ Set of tasks {T;}
* Periods p;

* Deadline d;
(completion deadline after task is queued)

* Execution time c;
(amount of CPU time to complete)

« Worst case latency to complete execution W,
— This is something we solve for, it’s not a given

¢ Handy values:
* Laxityli = di—Ci

(amount of slack time before Ti must begin LARITY |
execution) lH /U )
« Utilization factor p; = ¢;/p; (portionc T

NoOW
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Major Assumptions

¢ Five assumptions are the starting point for this area:

1.

Tasks {T;} are periodic, with hard deadlines and no jitter

e PeriodisP;
Tasks are completely independent

« B=0; Zero blocking time; no use of a mutex; interrupts never masked
Deadline = period

* P;=D;

Computation time is known (use worst case)

« C;is always the same for each execution of the task

Context switching is free (zero cost)

« Executive takes zero overhead, and task switching has zero latency

¢ These assumptions are often not realistic

But sometimes they are close enough in practice

Significantly relaxing these assumptions quickly becomes a grad school topic
— We’re going to show you the common special cases that are “easy” to use

13



Easy Schedulability Test

¢ System is schedulable (i.e., it “works”) if for all i, W, <= D,
 In other words, all tasks complete execution before their deadline

¢ u is processor utilization (fraction of time busy) must be less than 1

C.
=) 1<1
: Zpi

e “You can’t use more that 100% of available CPU power!”

¢ This is necessary, but not sufficient
» Sometimes even very low percent of CPU power used is still unschedulable
e e.g., If blocking time exceeds shortest deadline, impossible to schedule system

e e.g., several short-deadline tasks all want service at exactly the same time, but
rest of time system is idle
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Remember this? Multi-Rate Round Robin Approach

¢ Simple brute force version
» Put some tasks multiple times in single round-robin list
« But gets tedious with wide range in rates

& More flexible version

e For each PCB keep:
— Pointer to task to be executed

— Period (number of times main loop is executed for each time task is executed)
I.e., execute this task every kth time through main loop.

— Current count — counts down from Period to zero, when zero execute task

typedef void (*pt2Function)(void);

struct PCB_struct
{ pt2Function Taskptr; // pointer to task code

uints8 Period; // execute every kth time
uints8 TimeLeft; // starts at k, counts down
uints ReadyToRun; // flag used later

};
PCB_struct PCB[NTASKS]; // array of PCBs

15



Remember this?

Time-Based Prioritized Cooperative Tasking

¢ Assume timer ticks is number of TCNT overflows recorded by ISR

struct PCE_struct

{ pt2Function Taskptr; // pointer to task code
uint8 Period; // Time between runs
uint8 NextTime; // next time this task should run

};

init PCB structures etc. ..

for(:;)
{ for (1 = 0; 1 < NTASKS; i++)

{ if (PCB[1] .NextTime < timer ticks)

{PCB[i] .NextTime += PCB[i].Period; // set next run time
// note — NOT timer ticks + Period !!

PCB[i] .Taskptr()
break;
}

}

// exit loop and start again at task 0

¢ This executes tasks in a particular order based on period and task #

But, there is no guarantee that you will meet your deadlines in the general case!

16



Static Multi-Rate Periodic Schedule

¢ Assume non-preemptive system with 5 Restrictions:

1.

ok WP

Tasks {T;} are perfectly periodic
B=0

P; =D;

Worst case C;

Context switching is free

¢ Consider least common multiple of periods p;

This considers all possible cases of period phase differences

Worst case is time that is LCM of all periods

- E.g.,LCM(5,10,35) = 5*2*7=70

If you can figure out (somehow) how to schedule statically this, you win
— Program in a static schedule that runs tasks in exactly that order at those times
— Schedule repeats every LCM time period (e.g., every 70 msec for LCM=10)
— This is a long-running computational problem for large task sets!

¢ Performance

Optimal if all tasks always run; can get up to 100% utilization (u= 1.00)

If it runs once, it should always work
17



Example Static Schedule — Hand Positioned Tasks

Task | Period | Compute
# (P) (Ci)
T1 5 1
T2 10 2
T3 15 2
T4 20 3
T5 25 4

Ensuring schedulability
requires hand-selecting
the start time of every
task (not the same as
the previous scheduler
code)!

Start Task # C Elapsed
Time Time For T,
0 T1 1
1 T5 4
5 T1 1 5-0=5
6 T2 2
8 T3 2
10 T1 1 10-5=5
11 T4 3
14 ldle 1 n/a
15 T1 1 15-10=5
16 T2 2 16-6=10
18 ldle 2 n/a
20 T1 1 20-15=5
21 ldle 2 n/a
23 T3 2 23-8=15
25 T1 1 25-20=5
26 T2 2 26-16=10

pne]



Preemptive, Prioritized Schedulability

¢ To avoid missing deadlines, necessary for all the tasks to fit
* Time to complete task T; Is W,

* (I.e., we need to find out if this task set is “schedulable?”)

v W <P
W < P
) - |
e [ftrue, we are schedulable: if false we aren’t

* Note that this iIs W = time to complete task
— It’s not R = time to start execution of task (response time)
— For cooperative scheduling, W, = R; + C,
— BUT, for preemptive scheduling W can be longer because of additional preemptions

¢ In other words, schedulable if task completes before its period
* Always true If time to complete task T; doesn’t exceed period
* True because we assumed that P; = D,

19



What’s Latency For Preemptive Tasks?

¢ For the same 5 assumptions

e And prioritized tasks (static priority — priority never changes)
— Note that equation includes execution time of task, not just response time

W,,=B +C,

Wm,i+1 =B+ Zj:)n - +1/C,

Note that in this math we are including the C term for task m in the summation
Highest priority task has only blocking time B as latency
Start the recursion with task 0, which could always execute first

Schedulable if: \v/j :Wj S Pj

¢ This math is complex, and easy to get wrong
 [s there an easier way to make sure we can’t mess this up? 20



Remember the Major Assumptions

¢ Five assumptions throughout this lecture
1. Tasks {T;} are perfectly periodic

B=0

P; = D;

Worst case C;

Context switching is free

o B~ W



EDF: Earliest Deadline First

¢ Assume a preemptive system with dynamic priorities, and
{ same 5 restrictions }

¢ Scheduling policy:

o Always execute the task with the nearest deadline
— Priority changes on the fly!
— Results in more complex run-time scheduler logic

¢ Performance

e Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)
— If it can be scheduled — but no guarantee that can happen!

— Special case where it works is very similar to case where Rate Monotonic can be
used:

» Each task period must equal task deadline
» But, still pay run-time overhead for dynamic priorities

« If you’re overloaded, ensures that a lot of tasks don’t complete

— Gives everyone a chance to fail at the expense of the later tasks
22



_east Laxity

¢ Assume a preemptive system with dynamic priorities, and
{ same 5 restrictions }

pepoLINE

LAXITY |
& Scheduling policy: lﬁ")i/////// )
» Always execute the task with the 1\ |
smallest laxity |y = d;—c; TimE
NoW

& Performance:

o Optimal for uniprocessor (supports up to 100% of CPU usage in all situations)

— Similar in properties to EDF
— If it can be scheduled — but no guarantee that can happen!

A little more general than EDF for multiprocessors

— Takes into account that slack time is more meaningful than deadline for tasks of

mixed computing sizes

* Probably more graceful degradations
— Laxity measure permits dumping tasks that are hopeless causes

23



EDF/Least Laxity Tradeoffs

¢ Pro:
o [f it works, it can get 100% efficiency (on a uniprocessor)
» Does not restrict task periods
» Special case works if, for each task, Period = Deadline

¢ Con:

|t is not always feasible to prove that it will work in all cases
— And having it work for a while doesn’t mean it will always work

e Requires dynamic prioritization

 EDF has bad behavior for overload situations (LL is better)

« The laxity time hack for global priority has limits
— May take too many bits to achieve fine-grain temporal ordering
— May take too many bits to achieve a long enough time horizon

¢ Recommendation:
* Avoid EDF/LL if possible
— Because you don’t know if it will really work in the general case!
— And the special case doesn’t buy you much, but comes at expense of dynamic
priorities

24



Remember the Major Assumptions

¢ Five assumptions throughout this lecture
1. Tasks {T;} are perfectly periodic

B=0

P; = D;

Worst case C;

Context switching is free

o B~ W

¢ Problems with previous approaches
« Static scheduling — can be difficult to find a schedule that works
e EDF & LL - run-time overhead of dynamic priorities

 Wanted: an easy rule for scheduling with:
— Static priorities
— Guaranteed schedulability



Rate Monotonic Scheduling

Sort tasks by period (i.e., by “rate”)

Highest priority goes to task with shortest period (fastest rate)
o Tie breaking can be done by shortest execution time at same period
Use prioritized preemptive scheduler

o Of all ready to run tasks, task with fastest rate gets to run

¢ Static priority

* Priorities are assigned to tasks at design time; priorities don’t change at run
time

¢ Preemptive

 When a high priority task becomes ready to run, it preempts lower priority
tasks

e This means that ISRs have to be so short and infrequent that they don’t matter

¢ Variation: Deadline Monotonic
* Use min(period, deadline) to assign priority rather than just period
« Works the same way, but handles tasks with deadlines shorter than their period

26



Rate Monotonic Scheduling (RMS)

¢ Assume a preemptive system with static priorities, N tasks, and
{ same 5 restrictions } +

u=Yt<N®2-1)  ;u < In@2)~ 0.693for large N
P;

(“CPU load less than about 70%")

¢ Why not 1009%?
« Two tasks with slightly different periods can drift in and out of phase
« At just the wrong phase difference, there may not be time to meet deadlines

& Performance:

* Provides a guarantee for schedulability with CPU load of ~70%
— Even with arbitrarily selected task periods
— Can do better if you know about periods & offsets

 BUT - if you load CPU more than 69.3%, you might miss deadlines!

27



Example of a Missed Deadline at 79% CPU Load

TOTAL CPU LOAD: 79%  for all tasks

Task 1 Task 2 Task 3 Task 4
Period: 19 24 29 34
Compute: 5 5 5 5
Utilization: 26.3% 20.8% 17.2% 14.7%

No Place To Schedule RUN 5
Task 5 Misses lts Deadline of 34

¢ Task 4 misses deadline
e This is the worst case launch time scenario

¢ Missed deadlines can be difficult to
find In system testing

* 5 time units per task Is worst case
— Average case is often a bit lighter load

» Tasks only launch all at same time once
every 224,808 time units
LCM(19,24,29,34) = 224,808
(LCM = Least Common Multiple)

=
=]
D
&'
w
=
[y

Task 2

Task 3

Task 4

.sleep.. RUN 1
.sleep.. | RUN 2
.sleep.. | RUN3

00~ O AW RO
)
c
2
7]

28 RUN 5

RUN 1
RUN 2
RUN 3
RUN 4

RUN 5777

Running
Task

=

W W W ww NN NNRERRRR B B &5 8B WWRLWWWNNNNNRER B 2
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Harmonic RMS

¢ In most real systems, people don’t want to sacrifice 30% of CPU
 Instead, use harmonic RMS

¢ Make all periods harmonic multiples
* P;isevenly divisible by all shorter P;
* This period set is harmonic: {5, 10, 50, 100}
— 10=5*2; 50 =10%*5; 100 =50*2; 100 = 10*5*2
» This period set iIs not harmonic: {3,5, 7, 11, 13}
— 5=3*1.67 (non-integer), etc.

¢ If all periods are harmonic, works for CPU load of 100%
* Harmonic periods can’t drift in and out of phase — avoids worst case situation

ﬂ:Z%ﬂ . V< 1P; evenly divides p; };
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Practical Harmonic Deadline Monotonic Scheduling

¢ This is what you should do in most smaller embedded control systems
e Assumes you need a preemptive scheduler

¢ Use Min(period,deadline) as the scheduling logical “period”
» Ensures that deadline will be met even if shorter than period
» But, set aside resources just as If tasks really were repeating at that period
* This is the part that makes it “deadline” monotonic

¢ Use harmonic multiples of logical period
» Every shorter period is a factor of every longer period (e.g., 1, 10, 100, 1000)
* Avoids worst case of slightly out-of-phase periods that all clump together at just
the wrong time
o Speed up some tasks if needed to get harmonic multiples

- E.g., {1,5,11, 20} => {1,5, 10, 20}
— Results in lower CPU requirement even though some tasks run faster!

¢ Watch out for blocking!

30



Example Deadline Monotonic Schedule

Task # | Period | Deadline | Compute Task # Priority n
(P (Dy) (C)

T1 5 15 1 T1 1 1/5=0.200
T2 16 23 2 T3 2 2/6 = 0.333
T3 | 30 g 2 T2 3 2/16 = 0.125
T4 60 60 3

T5 4 4/30 =0.133
T5 60 30 4

T4 5 3/60 = .05

TOTAL: 0.841

u=Y S <N®2-1) ;N=5
P N_ot Sche_dulable!
,U — 0841 (ﬂOt S) 0743 (might be OK with fancy math)



Example Harmonic Deadline Monotonic Schedule

Task # | Period | Deadline | Compute Task # Priority n
(P) (Dy) (C)
T1 5 15 1 T1 1 1/5=0.200
T2 15 23 2 T3 2 2/5 = 0.400
T3 | 30 5 2 T2 3 2/15 = 0,133
T4 60 60 3
T5 4 4/30 =0.133
T5 60 30 4
T4 5 3/60 = .05
TOTAL: 0.916
C. ] i
u=y +<1 , Harmonic periods {5, 15, 30, 60}
P

Schedulable, even though usage is higher!

u=0916 < 1



Handling Non-Zero Blocking

¢ Rate monotonic, but task blocking can occur
e B, Is time task k can be blocked (e.g., interrupts masked by lower prio task)

* For highest priority task
— Can ignore lower priority tasks, because we are preemptive
— But, need to handle blocking time (possibly caused by lower priority task)

Cl Bl 1
L = + < 1¥2-1)
)

e For 2" highest priority task
— Can ignore lower priority tasks, because we are preemptive
— Have to account for highest priority task preempting us

— Need to handle blocking time
» Possibly caused by lower priority task
» But, can’t be caused by higher priority task (since that preempts us anyway)
» Does this sound a lot like the reasoning behind ISR scheduling???

,lez(clj-l-(czj-l-Bz < 2@32-1
P, P.) P
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Rate Monotonic With Blocking

¢ Rate monotonic, but task blocking can occur
« B, Is blocking time of task k (time spent stalled waiting for resources)

VK e =D =Y Gy B k(2 -1) ~0.7 for large k
i<k i<k \_Pj Py
[Sha et al. 1991]
Worst case blocking time for each task counts as CPU time for scheduling
Note that B includes all interrupt masking (ISRs and tasks waiting for CL1I)
Harmonic periods make right hand side 100%, as before
Need on a per-task basis because blocking time can be different for each task

& Performance:

* In worst case, time waiting while blocked is counted as burning additional CPU
or network time

» This is yet another reason to use skinny ISRs!
 |If low priority task gets a mutex needed by a hi prio task, it extends B!

« |f RTOS takes a while to change tasks, that counts as blocking time too 5y



Applied Deadline Monotonic With Blocking

¢ Use min(period, deadline) for each task as logical period
» Use harmonic logical periods

» Assign tasks by priority
e Otherwise, same as for deadline monotonic

¢ For each task,

P.) P

U, = & + & +§<1
oy P.) P2

Uy = &4 + L +(C3]+B3£1
Py P, Ps Ps

o

VK; g =D 1 = Z('] +—% <1 ; for harmonic periods
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But Wait, There’s More

¢ WHAT IF:

1. Tasks {T;} are NOT periodic
— Use maximum fastest inter-arrival time

2. Tasks are NOT completely independent
— Worry about dependencies (another lecture)

3. Deadline NOT = period
— Use Deadline monotonic

4. Worst case computation time c; isn’t known
— Use worst case computation time, if known
— Build or buy a tool to help determine Worst Case Execution Time (WCET)
— Turn off caches and otherwise reduce variability in execution time

5. Context switching is free (zero cost)
— Gets messy depending on assumptions
— Might have to include scheduler as task
— Almost always need to account for blocking time B
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Review

¢ Real time definitions
e Hard, firm, soft

¢ Scheduling — will everything meet its deadline?
e u<l
« AW, <P,

¢ Application of scheduling
o Static multi-rate systems

« Rate Monotonic Scheduling
— wu<1 if harmonic periods; else more like 70%
— Works by assigning priorities based on periods (fastest tasks get highest prio

¢ Related topics
o Earliest Deadline First (EDF) and Least Laxity
» Blocking
o Sporadic server

37



Review

¢ Five Standard Assumptions
(memorize them in exactly these words — notes sheet too):
1. Tasks {T;} are perfectly periodic

B=0

P; =D;

Worst case C;

Context switching is free

o B~ W

¢ Statically prioritized task completion times:

38



Review
¢ Schedulability bound for Rate Monotonic with Blocking

1 ; for harmonic periods

39
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