
Lecture #15

Interrupt & Cyclic
Task Response Timing

18-348 Embedded System Engineering
Philip Koopman

Monday, 14-March-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

777 Flight Control
 First Boeing “fly by wire” aircraft

• Only computer networks between pilot sticks and control surfaces

[Yeh98]

3

777 Triplex Redundancy – 3 PFCs; 3 Networks
 Note “feel units” to simulate feedback from mechanical flight surfaces

[Yeh98]

4

Where Are We Now?
 Where we’ve been:

• Interrupts

 Where we’re going today:
• Looking at the timing of interrupts (and non-preemptive tasks)

 Where we’re going next:
• More Interrupts, Concurrency, Scheduling
• Analog and other I/O
• Test #2

5

Preview
 How do we organize multiple activities in an application?

• Especially if some of them are time sensitive?

 Cyclic executive
• Put everything in one big main loop

 ISRs only
• Use a bunch of ISRs to do all the work
• Math to compute response time can get a bit hairy

 Hybrid Main Loop + ISRs
• Many real systems are built this way

 Overall – pay attention to the math
• More importantly, the insight behind the math!
• There is an equation we expect you to really understand

6

Definition of Concurrency
 A major feature of computation is providing the illusion of multiple

simultaneously active computations
• Accomplished by switching among multiple computations quickly and frequently

 Concurrency is when more than one computation is active at the same time
• Only one actually runs at a time, but many can be partially executed = “active”
• ISR active when main program executing
• Multiple threads active
• Multiple tasks active
• … in this course we’re only worried about single-CPU systems …

 Gives rise to inherent problems
• Race conditions – if multiple computations access shared resources
• Timing problems – if one computation affects timing of another
• Memory problems – if computations compete for memory space

• Attempting to fix the above problems leads to other problems, such as:
– Deadlocks
– Starvation

7

How Do You Achieve Concurrency?
 Many techniques possible

• In big systems usually pre-emptive multitasking
• But in embedded systems many other techniques are used

 Why not just use a multitasking real time operating system?
• Sometimes this is the right choice, but it can be:

• Too big (memory footprint might not fit on small CPU)
• Too slow (overhead for task scheduling)
• Too expensive (runtime license fee of $10 not reasonable on a $0.50 CPU)
• Too complex (especially to guarantee deterministic timing)
• Too hard to certify as safe (what if the RTOS has bugs?)

– Only recently have some Real Time OS implementations been certified “safe”

 So, let’s see techniques for concurrency and understanding task timing
• Today – concentrate on understanding timing of cyclic execs and ISRs

8

Simplest Approach – Cyclic Executive
 Create a main loop that executes each task in turn

• Run the loop so fast that all tasks appear to be active
• Assume one task is catching bytes from the UART/SCI without being over-run

by data rate
• Other tasks just do various computations – really just subroutines in this version
• No interrupts – only polled operation!

// main program loop
for(;;)
{ poll_uart();

do_task1();
do_task2();

}

 “Executive”
• The main loop is the “executive” directing task execution … a very primitive

scheduler

9

Cyclic Exec Tradeoffs
 If you run main loop fast enough, implements concurrency

• Assume all registers saved/restored within each task
• Ensure loop executes fast enough for poll_uart() to not miss any bytes
• Simple timing analysis

– Hard to get wrong as long as it “simple” and fast enough
• Frequently used in safety critical applications

– Timing is pretty much the same every time through loop
» (assuming tasks are well behaved)

 Obvious limitations
• All tasks have to fit within one sample of I/O
• All code executed each time through loop, even if not

really necessary
• Have to make code “simple” so timing is easy to understand

 Can do ad hoc conditional execution, but resist the temptation
• It turns into a mess!!! Insist on a “clean” approach; more ideas follow

10

11

Simple Multi-Rate Cyclic Executive
 What if a single main loop is too slow?

• In previous example, all code runs completely each
time through loop

• Possible the UART will get over-run before task1
and task2 complete

• Solution – break tasks down into self-contained
parts

• Embellishment: “Multi-rate” – some functions
called more often than others

 Notes on example:
• Each task part has to finish fast enough to meet

minimum UART polling time
• Each task has to save all its state somewhere (can’t

carry live variables across task parts)
• Can also have lists of pointers to tasks, etc.

– Actual implementation varies but idea is the same

 Q: Where should you kick the watchdog?
 Q: Why is the “waitForTimer” important?

// main program loop
for(;;)
{ poll_uart();

do_task1_part1();
poll_uart();
do_task1_part2();
poll_uart();
do_task1_part3();

poll_uart();
do_task2_part1();
poll_uart();
do_task2_part2();
poll_uart();
do_task2_part3();
waitForTimer();

}

12

General Multi-Rate Cyclic Exec Tradeoffs
 More flexible than simple cyclic executive

• Execute different tasks at different frequencies as needed
• But, each task executes an integer number of times per main loop

 Timing still restrictive
• Each task or part of task has to be short enough to finish before fastest task

needs to execute again
– Breaking up a long task into short pieces can be very painful
– If time for fastest task changes, might have to rewrite code in other tasks

• Hand-schedule to cover worst case delay between executions of fastest task

 But, still simple to analyze
• Each loop through tasks can be the same as every other loop
• Worst case is each line in main loop executes exactly once

– poll_uart() 6 times per loop; everything else once

• Again – resist urge to do ad hoc adaptive scheduling – always creates a mess!
– By this, we mean don’t use an “if” to decide whether a task should run

13

Concept – Latency and Response Time
 Latency is, generically, the waiting time for something to happen

• For real time computing, it’s all about latency!
• Non-interrupts – time between executions of a task (worst case wait)
• Interrupts – time between interrupt request asserted and ISR executing

(worst case wait)
• “Low” latency = Short wait (“good”); “High” latency = Long wait (“bad”)
• Response time is more precise – max time until computation starts running

 For simple cyclic execution:
• Response time for any task is one time through main loop

 For multi-rate cyclic exec:
• Response time is time between repeated executions of a particular task

– In this example, six times faster for UART polling than for other tasks
– In general, depends on how tasks are listed in the main loop

 What if low latency really only matters for one task, and it is short?
• Then use an ISR…

14

Cyclic Exec Plus Interrupts
 Process non-time-critical routines in

foreground
• Repeated periodically

 Process one (or a few) time critical
functions in background
• UART serviced on interrupt instead of

polled

• UART can run at speed independent
of other tasks!

• Other tasks don’t have to be broken
down into pieces as long as each task
can wait for its turn in loop

 But, it’s not a free lunch!
• What’s the latency for task1?
• Time to execute whole loop plus

some number of executions of ISRs

// main program loop
for(;;)
{ do_task1();

do_task2();
}

void interrupt 20
handle_uart(void)

//-(20*2)-2 = $FFD6 for REI
{ … <service UART/SCI> …
}

15

Latency With Interrupts – Simple Version
 For previous example, latency of handle_uart() is:

• Can run back-to-back as many times as needed
• So, very low latency

 What’s guaranteed worst case latency of
do_task1()?
• Potentially infinite … if handle_uart() runs

back-to-back forever

 What’s expected latency of tasks in main loop?
• How many times can UART receive a byte

in main loop? call it N
• Worst case execution time of main loop (simple version) is:

execution time of do_task1()
+ execution time of do_task2()
+ N * execution time of handle_uart()

• Fortunately, bounded by speed of serial port
– But, main loop slows down as baud rate goes up, giving time for more interrupts

(this is an essential property of interrupt scheduling; more detail in a few slides)

16

Latency With Multiple Interrupts – Main Loop
 There’s never just one interrupt in the worst case

• What if multiple interrupts can occur?
• Latency is number of times each interrupt can occur (simple version)

– Assume M of ISR1
– N of ISR2
– P of ISR3
– (in practice could be 10+ different interrupts; but 3 works for an example)

• Worst case execution time of main loop (simple incorrect version) is:
execution time of do_task1()

+ execution time of do_task2()
+ M * execution time of ISR1()
+ N * execution time of ISR2()
+ P * execution time of ISR3()

• So worst case for main loop gets worse as interrupts are added
– What did we mean by “simple version?” …

we mean that it is actually incorrect – the correct version is more complex

17

Cyclic+ISR Main Latency – The Correct Version
 As ISRs execute, time for main loop is extended

• As time is extended, there is time for more ISRs to take place
• As more ISRs take place, time is further extended…
• Final time is recursive infinite summation

 Consider this example:
• task1 takes 100 msec
• task2 takes 150 msec
• ISR1 takes 1 msec; repeats at most every 10 msec
• ISR2 takes 2 msec; repeats at most every 20 msec
• ISR3 takes 3 msec; repeats at most every 30 msec

• How long is worst case main loop execution time (i.e., task1 and task2 latency?)
– main loop with no ISRs is 250 msec
– In 250 msec, could have 26 @ ISR1; 13 @ ISR2; 9 @ ISR3 = 250+79 msec = 329
– In 329 msec, could have 33 @ ISR1; 17 @ ISR2; 11 @ ISR3 = 250+100 msec = 350
– In 350 msec, could have 36 @ ISR1; 18 @ ISR2; 12 @ ISR3 = 250+108 msec = 358
– In 358 msec, could have 36 @ ISR1; 18 @ ISR2; 12 @ ISR3 = 250+108 msec = 358 msec

» (process converges when you get same answer twice in a row)

18

Cyclic + ISR Main Latency – The Math
 Given:

• Main loop with no ISRs executes in MainLoopOnly
• ISRm takes ISRtimem to execute and runs at most every ISRperiodm

• Note that this uses a FLOOR FUNCTION – not square brackets “[]”
• This is really just the calculation we worked out on the previous slide

 Worst case main loop execution time is
• Take floor of number of times each ISR can execute+1 times execution time
• This extends main loop latency ….

… meaning each ISR might be able to execute more times
• Continue evaluation until latencyi converges to a fixed value
• This is why we kept saying “easier to evaluate” for non-ISR schedules!

j
ISRs j

i
i ISRtime

ISRperiod
MainTimeMainTimeMainTime

lyMainLoopOnMainTime

j

∑
∀

+











++=

=

101

0

19

What About Latency For Interrupts Themselves?
 Interrupts are usually the high priority, fast-reaction-time routines

• With only one ISR, latency is just waiting for interrupt mask to turn off
– Same ISR might already be running – wait for RTI
– I flag might be set (SEI) – wait for next CLI

• But with multiple ISRs in system, it gets more complex
– Wait for interrupt mask to be turned off
– Wait for other ISRs to execute

 Let’s take the case of prioritized interrupts
• When multiple interrupts are pending, one of them gets priority over others

Pr
io

ri
ty

Lo
w

er
H

ig
he

r

21

Latency For Prioritized Interrupts
 Have to wait for other interrupts to execute

• One might already be executing with lower priority (have to wait)
– Or, interrupts might be masked for some other reason (“blocking”)

• All interrupts at higher priority might execute one or more times
• Worst case – have to assume that every possible higher priority interrupt is

queued AND longest possible blocking time (lower priority interrupt)

 Example, (same as previous situation):
• ISR1 takes 1 msec; repeats at most every 10 msec
• ISR2 takes 2 msec; repeats at most every 20 msec
• ISR3 takes 3 msec; repeats at most every 30 msec

• For ISR2, latency is:
– ISR3 might just have started – 3 msec
– ISR1 might be queued already – 1 msec
– ISR2 will run after 3 + 1 = 4 msec

» This is less than 10 msec total (period of ISR1), so ISR1 doesn’t run a second time

22

Example – ISR Worst Case Latency
 Assume following task set (ISR0 highest priority):

• ISR0 takes 5 msec and occurs at most once every 15 msec
• ISR1 takes 6 msec and occurs at most once every 20 msec
• ISR2 takes 7 msec and occurs at most once every 100 msec
• ISR3 takes 9 msec and occurs at most once every 250 msec
• ISR4 takes 3 msec and occurs at most once every 600 msec

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

Pending @ 9 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

23

Will ISR2 Execute Within 50 msec?
 Worst Case is ISR3 runs just before ISR2 can start

• Why this one? – has longest execution time of everything lower than ISR2

 Then ISR0 & ISR1 go because they are higher priority
• But wait, they retrigger by 20 msec – so they are pending again

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 Pending @ 20 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

24

ISR0 & ISR1 Retrigger, then ISR2 goes

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 Pending @ 31 msec: ISR0, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR2ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 43 msec: ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

25

ISR Latency – The Math
 In general, higher priority interrupts might run multiple times!

• Assume N different interrupts sorted by priority (0 is highest; N-1 is lowest)
• Want latency of interrupt m

• Very similar to equation for main loop
– What it’s saying is true for anything with preemption plus initial blocking time:
1. You have to wait for one worst-case task at same or lower priority to complete
2. You always have to wait for all tasks with higher priority, sometimes repeated

() j
ISRs j

i
jmji ISRtime

ISRperiod
ilatencyISRtimeilatency

ilatency

mj

∑
<∀

>+











++=

=

1max

0

1

0

26

Another Approach – Everything in Interrupts
 What if everything in our system is time sensitive?

• Another way to organize things is put everything in
interrupts

– You don’t really want to do this!!! (we’ll see why soon)
– BUT, it gives insight into the scheduling math and various

options

…set up interrupts here…
// main program loop
for(;;)
{ // could just do nothing!
}
// interrupt priority is in device order (#20 is ISR0)
void interrupt 20 handle_device0(void) { …… }
void interrupt 21 handle_device1(void) { …… }
void interrupt 22 handle_device2(void) { …… }
void interrupt 23 handle_device3(void) { …… }

…

27

General Latency For Prioritized Tasks
 This is for the non-preemptive case (tasks can’t be pre-empted)

• True of interrupts that don’t clear the I bit
• True of main loop as well – it is effectively the lowest priority task (task N)

 Notation:
• Each task is numbered i; i=0 is highest priority; i=N-1 is lowest
• You know how long each task takes to execute (at least in worst case) – Ci
• You know period of interrupt arrival (worst case) – Pi
• Interrupts are never disabled by main program
• Interrupts are non-preemptive (once an ISR starts, it runs to completion)

• Ri is response time time until i starts execution, same as previous latency
equation; just cleaner notation

()

0;1

1;max

1

0

,
0,1,

0,

>















++=

−<=

∑
−=

=
+

<<

iC
P
R

RR

NiCR

im

m
m

m

ki
iki

ji
Nji

28

Example Response Time Calculation
 What’s the Response Time for task 2?

• Note: N=4 (tasks 0..3)
• Have to wait for task 3 to finish

– (longest execution time)
• Have to wait for two execution of task 0
• Have to wait for one execution of task 1

()

10

1022621
12
911

8
961

921621
12
611

8
661

6max

,2

1

0
1,

0,22,2

1

0
0,

0,21,2

30,2
42

=

=++=











 ++












 ++=
















++=

=++=











 ++












 ++=
















++=

===

∞

=

=

=

=

∑

∑

<<

R

C
P
R

RR

C
P
R

RR

CCR

m

m m
m

i

m

m m
m

i

j
j

Task#
i

Period
(Pi)

Execution
Time (Ci)

0 8 1

1 12 2

2 20 3

3 25 6

29

Math Differences For Combined System
 “combined” (informal term) = “interrupts + main loop”
 Back to the cyclic executive plus ISRs

• Main loop can be pre-empted (interrupted) by ISRs – consider this task N
• ISRs don’t have to wait for main loop completion…

… but main loop does have to wait for ISRs!

 Math for Response time
• ISR math – almost unchanged – but now have to worry about blocking time B

– Main loop has to finish current instruction (what if it is a multiply instruction?)
– Main loop might have interrupts disabled; B = maximum time for this to happen

()

0;1

1;,maxmax

1

0

,
0,1,

0,

>















++=

−<



=

∑
−=

=
+

<<

iC
P
R

RR

NiBCR

im

m
m

m

ki
iki

ji
Nji

30

Back To Main Loop Response Time…
 Response time for main loop is time to complete a cycle

• If data changes just after “do_task1()” starts executing, have to assume wait
until next start of “do_task1()” to do the new computation

• In general, if we assume main loop is task N, response time is one main loop

• This is same equation as earlier, but with cleaned up notation

∑
−=

=
+ 
















++=

=
1

0

,
0,1,

0,

1
Nm

m
m

m

kN
NkN

NN

C
P

R
RR

CR

31

Back To The Big Picture
 We’ve been building up a framework for

… non-preemptive scheduling …
• Tasks run to completion; also called cooperative task scheduling
• When one task completes, task at next higher priority executes
• Any time you have ISRs, probably this is the type of scheduling you need to

know!

 Scheduling summary for response time Ri

• You always have to wait for one initial blocking period
– Often is the longest execution lower-priority task
– Could be something else that sets interrupt mask flag

• You have to wait for all higher priority tasks
– And, even worse, some might execute multiple times!

• Assumptions!
– System doesn’t get overloaded – task m completes before next time task m executes
– Tasks are periodic and you know the worst-case period Pi
– You know the worst-case compute time for each task Ci
– You’re willing to schedule for the worst case, perhaps leaving CPU idle in other

cases

32

Why Do We Need More Than This?
 Cyclic Exec can be enough

• Mostly used when CPU is so fast, everything can be run faster than external
world changes

 Background task plus ISRs commonly used
• Works as long as each ISR can be kept short
• Works as long as everything that needs to be “fast” can be put in ISR

 But, here’s the rub – Low Priority ISRs and Blocking Time
• Response time dominated by longest ISR, even if low priority
• Response time dominated by I mask being set in main program (“blocking”)
• So this only really works if interrupts are short – and main program can be slow

• Problem if you need a complex ISR!
• Problem if you need to disable interrupts!

• But for now, let’s look at how people usually make this work

33

Real Time System Pattern – Main Plus ISR
 ISR does minimum possible work to service interrupt

• Main program loop processes data later, when there is time

// main program loop
for(;;)
{ <detailed service for device 0>

<detailed service for device 1>
…
<detailed service for device N-1>
<other background tasks>

}
// interrupt priority is in device order (#20 is ISR0)
void interrupt 20 handle_device0(void) { …… }
void interrupt 21 handle_device1(void) { …… }
…
void interrupt 23 handle_device<N-1>(void) { …… }

34

Example – Keeping Time Of Day
 System might need time of day in hours, minutes, seconds

• Naïve approach – do the computation in the ISR
– Requires division and modular arithmetic
– The problem is that this slows ISR, increasing max response time

• Here’s the “big-ISR” approach
– (we’re going to ignore setup for TOI – you’ve seen this before)

// current time
volatile uint64 timer_val; // assume initialized to current time
volatile uint8 seconds, minutes, hours;
volatile uint16 days;

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6; // 16 bits fraction; 48 bits intgr
seconds = (timer_val>>16)%60;
minutes = ((timer_val>>16)/60)%60;
hours = ((timer_val>>16)/(60*60))%24;
days = (timer_val>>16)/(60*60*24);

}

35

Keeping The Time Of Day ISR “Skinny”
volatile uint64 timer_val; // assume initialized to current time
volatile uint8 seconds, minutes, hours;
volatile uint16 days;

void main(void)
{ … initialization …

for(;;)
{ update_tod();

do_task1();
do_task2();

}
}

void update_tod()
{ DisableInterrupts(); // avoid concurrency bug

timer_temp = timer_val>>16;
EnableInterrupts();
seconds = (timer_temp)%60;
minutes = ((timer_temp)/60)%60;
hours = ((timer_temp)/(60*60))%24;
days = (timer_temp)/(60*60*24);

}

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6; // 16 bits fraction; 48 bits intgr

} // blocking time of ISR no longer includes division operations!

Want this here instead of
at end of subroutine to
minimize Blocking Time B

36

Skinny ISRs
 General idea

• Move everything you can to a periodically run main routine
• Keep only the bare minimum in the ISR
• Usually amounts to storing info somewhere for main loop to process later

 Advantages:
• Reduces blocking time of that ISR, improving response time

 Disadavantages; issues:
• It only takes ONE long ISR to give bad blocking time for whole system!

– So all the ISRs have to be skinny!
• It feels like more work than writing long ISRs

– (if you think that is work, try debugging a system with random timing failures!)

37

Deprecated Alternative – ISRs with CLI
 If you have a long ISR, why not just re-enable interrupts?
void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6; // 16 bits fraction; 48 bits intgr

#asm
CLI ; re-enable interrupts ** BAD IDEA! **

#endasm
seconds = (timer_val>>16)%60;
minutes = ((timer_val>>16)/60)%60;
hours = ((timer_val>>16)/(60*60))%24;
days = (timer_val>>16)/(60*60*24);

}

 What does this do?
• CLI – enables interrupts (same as EnableInterrupt() call)
• In GCC use keyword volatile – tells compiler “don’t move this instruction

around”!!!

38

Why Is CLI A Really Bad Idea?
 What it does if you are careful:

• Re-enables interrupts while ISR is still executing
• RTI re-re-enables interrupts (so this still works OK)
• Blocking time is now from start of ISR until CLI executes – not whole ISR
• So, it is as if you had a shorter ISR
• Makes sure that TOD is updated immediately, even in middle of main loop

 So why is it a problem?
• Some current systems use just this approach, but it’s a bad idea
• Problem 1: what if interrupt re-triggers before end of ISR?

– Need to make ISR re-entrant (more on this later) – notoriously easy to get wrong
– If ISR can occur in bursts, overflowing stack

• Problem 2: what if ISR is changing memory locations used by another ISR?
– Very tricky to debug if multiple ISRs fight over resources and can be interrupted …

and designers miss this kind of thing because ISRs aren’t in main flow of code
• Problem 3: causes priority inversion if lower priority interrupt hits

– Lower priority ISR completes before higher priority ISR!
• Bottom line – this approach has bitten designers too often; avoid it

http://betterembsw.blogspot.com/2014/01/do-not-re-enable-interrupts-in-isr.html

39

Review
 Cyclic executive

• Put everything in one big main loop – OK if loop is fast and external world is
slow

• Scatter high-frequency tasks repeatedly throughout mainloop
• Response time for cyclic exec – wait for loop to go all the way around

 ISRs only
• Prioritized ISR response time includes: execute worst case blocking task, plus

possibly multiple instances of higher priority ISRs

 Hybrid Main Loop + ISRs
• Pretty much the same math, with main loop as task N
• Avoid CLI in an ISR if possible – it’s the Dark Side Of The Force

 Overall – yes, we expect you to know these equations on your own!
• If you know the principles, the equations follow, but memorize if you have to
• These equations are a really Good Thing to put on your test notes sheet

()

0;1

1;,maxmax

1

0

,
0,1,

0,

>















++=

−<



=

∑
−=

=
+

<<

iC
P
R

RR

NiBCR

im

m
m

m

ki
iki

ji
Nji

∑
−=

=
+ 
















++=

=
1

0

,
0,1,

0,

1
Nm

m
m

m

kN
NkN

NN

C
P

R
RR

CR

These equations are important:

	Lecture #15�Interrupt & Cyclic�Task Response Timing
	777 Flight Control
	777 Triplex Redundancy – 3 PFCs; 3 Networks
	Where Are We Now?
	Preview
	Definition of Concurrency
	How Do You Achieve Concurrency?
	Simplest Approach – Cyclic Executive
	Cyclic Exec Tradeoffs
	Slide Number 10
	Simple Multi-Rate Cyclic Executive
	General Multi-Rate Cyclic Exec Tradeoffs
	Concept – Latency and Response Time
	Cyclic Exec Plus Interrupts
	Latency With Interrupts – Simple Version
	Latency With Multiple Interrupts – Main Loop
	Cyclic+ISR Main Latency – The Correct Version
	Cyclic + ISR Main Latency – The Math
	What About Latency For Interrupts Themselves?
	Slide Number 20
	Latency For Prioritized Interrupts
	Example – ISR Worst Case Latency
	Will ISR2 Execute Within 50 msec?
	ISR0 & ISR1 Retrigger, then ISR2 goes
	ISR Latency – The Math
	Another Approach – Everything in Interrupts
	General Latency For Prioritized Tasks
	Example Response Time Calculation
	Math Differences For Combined System
	Back To Main Loop Response Time…
	Back To The Big Picture
	Why Do We Need More Than This?
	Real Time System Pattern – Main Plus ISR
	Example – Keeping Time Of Day
	Keeping The Time Of Day ISR “Skinny”
	Skinny ISRs
	Deprecated Alternative – ISRs with CLI
	Why Is CLI A Really Bad Idea?
	Review
	Slide Number 40

