Lecture #15

Interrupt & Cyclic
Task Response Timing

18-348 Embedded System Engineering
Philip Koopman
Monday, 14-March-2016

() Electrical &Com ter Cal' Ilegle

Y ENGINEERING _ Mellon



777 Flight Control

¢ First Boeing “fly by wire” aircraft
* Only computer networks between pilot sticks and control surfaces

Single
] Rudder
/ Partial Span
- ' Tab
\
_ A
Spoilers W ‘/Ele ator

i H o _—

Slats %;;ljﬁgf J:f?%é%ﬁb*““ffﬁ- e chgzL,xffff/fx

[ goo?
J.L-i” [|:I :]ﬂ
Dnuble Slotted Flap

: | \
(7 Per SII:IE}“‘“»Y\‘E(\HH ‘/{Smgle Span)
s = /’/‘:Z T

[,f’

a— Flaperon

1000000 = e =
oo n /,_,,_-f 6{ P - __—Aileron

FIGURE1 777 FLIGHT CONTROL SURFACES
[Yehog]



777 Triplex Redundancy — 3 PFCs; 3 Networks

¢ Note “feel units’

CARDFILES
YOIM, Wow |

ELMS

[| SYSTEM
=[] ARINC
1 629 (4)

—

)
==

g

’ to simulate feedback from mechanical flight surfaces

SUPPORTING SYSTEMS

Il

TAC o I N N T N e
SWITCH E—‘ _ —— "’"—D—D_——- — L H J== F:-G’“—
PFC =
w i CONTROL
D'SCD;.:.I.MWEEL Q SPEEDBRAKE DATABUSES
3)
@'J_Imj} LEVER SPEEDBRAKE (
-'IITII— ACTUATOR PECS
|| TRANSDUCERS
'T.u”ﬁ\ SPRING € COLUMN PDSITION
AT TR p. ¢ COLUMN FORCE (EACH
I ——— wiTd 2 QUTRUT SIGNALS)
||[ BREAKOU (0 M E WHEEL POSITION I
|: g‘ i EUHJEDEELR FFCERDI:AEL POSITION s PCUS
Ml -
4 SPEEDSRAKE POSITION =
' i RUDDER TRIN POSITION ACES M| 131) -f/
I
| DYNAMIC LoAD AP BACKDRIVE 1 N I i IR
% DAMPER ACTUATORS = AFDC .".'J];'_.F |:._'T -.-_LJ-IIFI "EE'__-]:':'E C'_.M_JTE"E I
i | Ao Moo e T escs
1-AILERON 2-ELEVATOR T & ClERTRINA | o nvEr vaT
 RUBDER : 2-RUDDER FEDAL ELMS ELECTRICAL LOAD WANAGEMENT SYSTEM
VARIABLE MFD  MULTIPLE FUNCTION DISPLAY
AILERON 4 :':tsgg:-:li‘:; || ELEVATOR FEEL PSA  POWER SUPPLY ASSEMBLY
TRIM - . ACTUATORS FEEU FLAP SLAT ELECTROMICS UNIT
CMDS AIMS  AIRPLANE INFORMATION MANAGEMENT 3YSTEM
| - e N
TRIE SWITCHES PFC  PRIMARY FLIGHT COMPUTER
L' PITCH & RUDDER TRIN CNDS PSEL PROXIMITY SWITCH ELECTRONICS UNIT
Ri& RADIO ALTIMETER

I GUST SUPPRESSION XDUCRS

ADIRU AIR DATA INERTIAL REFERENCE UNIT

SAARU SECONDARY ATTITUDE AND AIR DATA REFERENCE URIT
ACE ACTUATOR CONTROL ELECTROMICS

FCU  POWER CONTROL UNITS, ACTUATORS

HYDIM HYDRAULIC INTERFACE MODULE

WOW  WEIGHT ON WHEELS

WES  WARNING ELECTRONICS S¥YSTEM

[Yehos]



Where Are We Now?

¢ Where we’ve been:
e Interrupts

¢ Where we’re going today:
» Looking at the timing of interrupts (and non-preemptive tasks)

¢ Where we’re going next:
* More Interrupts, Concurrency, Scheduling
* Analog and other I/O
o Test#2



Preview

¢ How do we organize multiple activities in an application?
o Especially if some of them are time sensitive?

¢ Cyclic executive
» Put everything in one big main loop

¢ ISRs only
» Use a bunch of ISRs to do all the work
e Math to compute response time can get a bit hairy

¢ Hybrid Main Loop + ISRS
* Many real systems are built this way

¢ Overall — pay attention to the math
* More importantly, the insight behind the math!
* There is an equation we expect you to really understand



Definition of Concurrency

¢ A major feature of computation is providing the illusion of multiple
simultaneously active computations

Accomplished by switching among multiple computations quickly and frequently

¢ Concurrency is when more than one computation is active at the same time

Only one actually runs at a time, but many can be partially executed = “active”
ISR active when main program executing

Multiple threads active

Multiple tasks active

... In this course we’re only worried about single-CPU systems ...

¢ Gives rise to inherent problems

Race conditions — if multiple computations access shared resources
Timing problems — if one computation affects timing of another
Memory problems — if computations compete for memory space

Attempting to fix the above problems leads to other problems, such as:
— Deadlocks
— Starvation



How Do You Achieve Concurrency?

¢ Many techniques possible

In big systems usually pre-emptive multitasking
But in embedded systems many other techniques are used

¢ Why not just use a multitasking real time operating system?

Sometimes this is the right choice, but it can be:

Too big (memory footprint might not fit on small CPU)

Too slow (overhead for task scheduling)

Too expensive (runtime license fee of $10 not reasonable on a $0.50 CPU)
Too complex (especially to guarantee deterministic timing)

Too hard to certify as safe (what if the RTOS has bugs?)
— Only recently have some Real Time OS implementations been certified “safe”

¢ S0, let’s see techniques for concurrency and understanding task timing

Today — concentrate on understanding timing of cyclic execs and ISRs



Simplest Approach — Cyclic Executive

¢ Create a main loop that executes each task in turn
* Run the loop so fast that all tasks appear to be active

» Assume one task is catching bytes from the UART/SCI without being over-run
by data rate

o Other tasks just do various computations — really just subroutines in this version
e No interrupts — only polled operation!

// main program loop
for(;;)
{ poll _uart();

do _taskl(Q);

do _task2();

}

¢ “Executive”

* The main loop is the “executive” directing task execution ... a very primitive
scheduler



Cyclic Exec Tradeoffs

¢ If you run main loop fast enough, implements concurrency

MAIN LOOP
» Assume all registers saved/restored within each task
» Ensure loop executes fast enough for poll_uart() to not miss any bytes
o Simple timing analysis
- FI)—Iard to ggt wronij as long as it “simple” and fast enough Ao
* Frequently used in safety critical applications l
— Timing is pretty much the same every time through loop TASK 1
» (assuming tasks are well behaved) ¢
¢ Obvious limitations l
 All tasks have to fit within one sample of 1/0O TASK NoA
« All code executed each time through loop, even if not
really necessary Jr
« Have to make code “simple” so timing is easy to understand Wait

¢ Can do ad hoc conditional execution, but resist the temptation
e [tturnsintoamess!!! Insiston a *“clean” approach; more ideas follow



{Netrino °
Bad Code on an RTOS

1l wvoid Taskl00OMsec(void)

2

3 initListeners():

4 while(22)

5 {

6 // Run every 100ms

7 RTOSTimeDly (MSEC 100):

8 processIncomingPackets();
9 }

10 }

"How could we fix this?”

Thia Code Stinks! | Septembsr 22, 2008



Simple Multi-Rate Cyclic Executive

¢ What if a single main loop is too slow?

In previous example, all code runs completely each
time through loop

Possible the UART will get over-run before taskl
and task2 complete

Solution — break tasks down into self-contained
parts

Embellishment; “Multi-rate” — some functions
called more often than others

¢ Notes on example:

Each task part has to finish fast enough to meet
minimum UART polling time

Each task has to save all its state somewhere (can’t
carry live variables across task parts)

Can also have lists of pointers to tasks, etc.
— Actual implementation varies but idea is the same

¢ Q: Where should you kick the watchdog?
¢ Q: Why is the “waitForTimer” important?

// main program loop

for(;:;)

{ poll _uart();
do_taskl partl();
poll _uart();
do_taskl part2();
poll _uart();
do_taskl part3();

poll _uart();
do_task2 partl();
poll _uart();
do_task2 part2();
poll _uart();
do_task2 part3();
wattForTimer();

11



General Multi-Rate Cyclic Exec Tradeoffs

¢ More flexible than simple cyclic executive
» Execute different tasks at different frequencies as needed
* But, each task executes an integer number of times per main loop

¢ Timing still restrictive

» Each task or part of task has to be short enough to finish before fastest task
needs to execute again

— Breaking up a long task into short pieces can be very painful
— If time for fastest task changes, might have to rewrite code in other tasks

« Hand-schedule to cover worst case delay between executions of fastest task

¢ But, still simple to analyze
» Each loop through tasks can be the same as every other loop

» Worst case is each line in main loop executes exactly once
— poll_uart() 6 times per loop; everything else once

e Again - resist urge to do ad hoc adaptive scheduling — always creates a mess!
— By this, we mean don’t use an “if”” to decide whether a task should run

12



Concept — Latency and Response Time

¢ Latency is, generically, the waiting time for something to happen
» For real time computing, it’s all about latency!
* Non-interrupts — time between executions of a task (worst case wait)

 Interrupts — time between interrupt request asserted and ISR executing
(worst case wait)

o “Low” latency = Short wait (“good”); “High” latency = Long wait (“bad”)
« Response time is more precise — max time until computation starts running

¢ For simple cyclic execution:
» Response time for any task is one time through main loop

¢ For multi-rate cyclic exec:

* Response time is time between repeated executions of a particular task
— In this example, six times faster for UART polling than for other tasks
— In general, depends on how tasks are listed in the main loop

¢ What if low latency really only matters for one task, and it is short?
e« Thenusean ISR...

13



Cyclic Exec Plus Interrupts

¢ Process non-time-critical routines in // main program loop
foreground for(::)
* Repeated periodically { do_taskl();

& Process one (or a few) time critical do_task2();

functions in background }
 UART serviced on interrupt instead of
polled void interrupt 20
handle uart(void)
 UART can run at speed independent //-(20*2)-2 = $FFD6 for REI

of other tasks!

e Other tasks don’t have to be broken
down into pieces as long as each task ¥
can wait for its turn in loop

{ .. <service UART/SCI> ..

¢ But, it’s not a free lunch!
« What’s the latency for task1?

e Time to execute whole loop plus
some number of executions of ISRs

14



Latency With Interrupts — Simple Version

¢ For previous example, latency of handle _uart() is: MAIN LOOP ISRs
« Can run back-to-back as many times as needed
e S0, very low latency

TASK 0 ‘ 1 ISRN

¢ What’s guaranteed worst case latency of
do_task1()?

« Potentially infinite ... if handle_uart() runs
back-to-back forever

TASK 1 7 1SRN+

TASK N-1

!

¢ What’s expected latency of tasks in main loop? war |1

« How many times can UART receive a byte
in main loop? call it N
e Worst case execution time of main loop (simple version) is:
execution time of do_task1()
+ execution time of do_task2()
+ N * execution time of handle_uart()
» Fortunately, bounded by speed of serial port

— But, main loop slows down as baud rate goes up, giving time for more interrupts
(this is an essential property of interrupt scheduling; more detail in a few slides)

/ISR N+M-1

15



Latency With Multiple Interrupts — Main Loop

¢ There’s never just one interrupt in the worst case
o What if multiple interrupts can occur?
« Latency is number of times each interrupt can occur (simple version)
— Assume M of ISR1
— N of ISR2
— P of ISR3
— (in practice could be 10+ different interrupts; but 3 works for an example)

» Worst case execution time of main loop (simple incorrect version) is:
execution time of do_task1()
execution time of do_task2()

M * execution time of ISR1()

N * execution time of ISR2()

P * execution time of ISR3()

+
+
+
+

« So worst case for main loop gets worse as interrupts are added

— What did we mean by “simple version?” ...
we mean that it is actually incorrect — the correct version is more complex

16



Cyclic+ISR Main Latency — The Correct Version

¢ As ISRs execute, time for main loop Is extended
» Astime is extended, there is time for more ISRs to take place
» As more ISRs take place, time is further extended...
« Final time is recursive infinite summation

¢ Consider this example:
» taskl takes 100 msec
» task2 takes 150 msec
» [SR1 takes 1 msec; repeats at most every 10 msec
» [ISR2 takes 2 msec; repeats at most every 20 msec
» [SR3 takes 3 msec; repeats at most every 30 msec

* How long is worst case main loop execution time (i.e., taskl and task2 latency?)
— main loop with no ISRs is 250 msec
— In 250 msec, could have 26 @ ISR1; 13 @ ISR2; 9 @ ISR3 = 250+79 msec = 329
— In 329 msec, could have 33 @ ISR1; 17 @ ISR2; 11 @ ISR3 = 250+100 msec = 350
— In 350 msec, could have 36 @ ISR1; 18 @ ISR2; 12 @ ISR3 = 250+108 msec = 358
— In 358 msec, could have 36 @ ISR1; 18 @ ISR2; 12 @ ISR3 = 250+108 msec = 358 msec
» (process converges when you get same answer twice in a row)

17



Cyclic + ISR Main Latency — The Math

¢ Given:
« Main loop with no ISRs executes in MainLoopOnly
e ISR, takes ISRtime,, to execute and runs at most every ISRperiod,,

MainTime, = MainLoopOnly
MainTime,

MainTime,,, = MainTime, + ) +1 |ISRtime;
ViSRS, ISRperlod

* Note that this uses a FLOOR FUNCTION - not square brackets “[ ]”
« This is really just the calculation we worked out on the previous slide

¢ \Worst case main loop execution time is
e Take floor of number of times each ISR can execute+1 times execution time

» This extends main loop latency ....
.. meaning each ISR might be able to execute more times

 Continue evaluation until latency; converges to a fixed value
« This is why we kept saying “easier to evaluate” for non-I1SR schedules!



What About Latency For Interrupts Themselves?

¢ Interrupts are usually the high priority, fast-reaction-time routines

« With only one ISR, latency is just waiting for interrupt mask to turn off
— Same ISR might already be running — wait for RTI
— | flag might be set (SEI) — wait for next CLI

« But with multiple ISRs in system, it gets more complex
— Wait for interrupt mask to be turned off
— Wait for other ISRs to execute

¢ Let’s take the case of prioritized interrupts
* When multiple interrupts are pending, one of them gets priority over others

19



Lower <

» Higher

jority

Pr

Vector Address Interrupt Source ﬁ:sl::( Local Enable H::; Héi‘\::::e
External reset, power on reset,
OxFFFE, OxFFFF (see CHéri:zgsv:;;&ilgteerr?s?elermine None None o
reset source)

OxFFFC, OxFFFD Clock monitor fail reset None COPCTL (CME, FCME) —
OxFFFA, OxFFFB CORP failure reset None COP rate select —
OxFFF8, OxFFF9 Unimplemented instruction trap None None —
OxFFF6, OxFFF7 SWI None None —
OxFFF4, OxFFF5 XIRQ X-Bit None —
OxFFF2, OxFFF3 IRQ | bit INTCR (IRQEN) 0x00F2
OxFFFO, OxFFF1 Real time Interrupt | bit CRGINT (RTIE) 0x00F0
OxFFEE, OxFFEF Standard timer channel 0 | bit TIE (COI) Ox00EE
OxFFEC, OxFFED Standard timer channel 1 | bit TIE (CH1I) 0x00EC
OxFFEA, OxFFEB Standard timer channel 2 | bit TIE (C21) Ox00EA
OxFFES8, OxFFE9 Standard timer channel 3 | bit TIE (C3l) Ox00ES8
OxFFES6, OxFFE7 Standard timer channel 4 | bit TIE (CA4l) Ox00E6
OxFFE4, OxFFES Standard timer channel 5 | bit TIE (C5Il) Ox00E4
OxFFEZ2, OxFFE3 Standard timer channel 6 | bit TIE (Cé6l) 0x00E2
OxFFEO, OxFFE1 Standard timer channel 7 | bit TIE (C71) Ox00EQO
OxFFDE, OxFFDF Standard timer overflow | bit TMSK2 (TOI) 0x00DE

NnwEEDE NwvEENND

Diilea amaiimiailatar A ~svavfloaag

I it

PACTIE (DA

Mwninimir




Latency For Prioritized Interrupts

¢ Have to wait for other interrupts to execute

* One might already be executing with lower priority (have to wait)
— Or, interrupts might be masked for some other reason (“blocking”)
« All interrupts at higher priority might execute one or more times

* Worst case — have to assume that every possible higher priority interrupt is
queued AND longest possible blocking time (lower priority interrupt)

¢ Example, (same as previous situation):
o [SR1 takes 1 msec; repeats at most every 10 msec
o [SR2 takes 2 msec; repeats at most every 20 msec
o [SR3 takes 3 msec; repeats at most every 30 msec

* For ISR2, latency is:
— ISR3 might just have started — 3 msec
— ISR1 might be queued already — 1 msec

— ISR2 will run after 3+ 1 =4 msec

» This is less than 10 msec total (period of ISR1), so ISR1 doesn’t run a second time ’1



Example — ISR Worst Case Latency

¢ Assume following task set (ISRO highest priority):
* [SRO takes 5 msec and occurs at most once every 15 msec
o [SR1 takes 6 msec and occurs at most once every 20 msec
o ISR2 takes 7 msec and occurs at most once every 100 msec
» [SR3 takes 9 msec and occurs at most once every 250 msec
* [SR4 takes 3 msec and occurs at most once every 600 msec

ISR3
ISRO ISRO
ISR1 ISRO ISRO ISRO ISR1
A N o
V|SR3 Pending @ 9 msec: ISRO, ISR1, ISR2
‘ T 177 ‘ T T ‘ T 177 ‘ T 17 ‘ T 17 ‘ T 177 ‘ T 17 ‘ T 17 ‘ T 177 ‘ T 17 ‘ T 17 ‘ T 17 ‘ I ’
0 5 10 15 20 25 30 35 40 45 50 55 60

TIME (msec)

22



Wil ISR2 Execute Within 50 msec?

¢ Worst Case Is ISR3 runs just before ISR2 can start
 Why this one? —has longest execution time of everything lower than ISR2

¢ Then ISR0O & ISR1 go because they are higher priority
e But walt, they retrigger by 20 msec — so they are pending again

ISR3
ISRO ISRO
ISR1 ISRO ISRO ISRO ISR1
AR S v
VISR3 ISRO [ISR1 Pending @ 20 msec: ISRO, ISR1, ISR2
‘ T 17 ‘ T T ‘ T 17 ‘ T T ‘ T 17 ‘ T 17 ‘ T 17 ‘ T 17 ‘ T 17 ‘ T 17 ‘ T 17 ‘ T 17 ‘ I ’
0 5 10 15 20 25 30 35 40 45 50 55 60

TIME (msec)

23



ISRO & ISR1 Retrigger, then ISR2 goes

ISR3
ISRO ISRO
ISR1 ISRO ISRO ISRO ISR1
F Tr T el
ISR3 ISRO |ISR1 ISRO [ISR1 Pending @ 31 msec: ISRO, ISR2
‘ T T ‘ T 17 ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ I ’
0 5 10 15 20 25 30 35 40 45 50 55 60
TIME (msec)
ISR3
ISRO ISRO
ISR1 ISRO ISRO ISRO ISR1
F T T ol ]
ISR3 ISRO |ISR1 ISRO [ISR1 ISRO |ISR2 Pending @ 43 msec: ISR1
‘ T T ‘ T 17 ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ T T ‘ I ’
0 5 10 15 20 25 30 35 40 45 50 55 60

TIME (msec) o



ISR Latency — The Math

¢ Ingeneral, higher priority interrupts might run multiple times!

o Assume N different interrupts sorted by priority (0 is highest; N-1 is lowest)
 Want latency of interrupt m

Ilatency, =0

- : Ilatency,
ilatency,,, = max(ISRtlmej )+ > Y
j>m

——+1 |ISRtime;
SR, | ISRperiod

* Very similar to equation for main loop
— What it’s saying is true for anything with preemption plus initial blocking time:
1. You have to wait for one worst-case task at same or lower priority to complete
2. You always have to wait for all tasks with higher priority, sometimes repeated

25



Another Approach — Everything in Interrupts

¢ What if everything in our system is time sensitive? Tasks
e Another way to organize things is put everything in
interrupts & | Tasko | Priority 0

— You don’t really want to do this!!! (we’ll see why soon) A0

— BUT, it gives insight into the scheduling math and various 5\

options QS?

1 Task 1 Priority 1

Scheduler

«v ¥

.set up Interrupts here..
// main program loop .
for ( 2 3 ) | Task N-1 Priority N-1
{ // could just do nothing!

+
// interrupt priority is in device order (#20 i1s ISR,)

void interrupt 20 handle _deviceO(void) { ... }
void interrupt 21 handle devicel(void) { ... }
void interrupt 22 handle _device2(void) { ... }
void interrupt 23 handle _device3(void) { ... }

26



General Latency For Prioritized Tasks

¢ This is for the non-preemptive case (tasks can’t be pre-empted)
e True of interrupts that don’t clear the I bit
* True of main loop as well — it is effectively the lowest priority task (task N)

¢ Notation:
e Each task 1s numbered i;

Ri,O = maX(Cj)

i<j<N

m=i—-1

Ri,k+1 = Ri,O + Z
m=0

1=0 is highest priority; 1=N-1 is lowest

« You know how long each task takes to execute (at least in worst case) — C;
* You know period of interrupt arrival (worst case) — P

 Interrupts are never disabled by main program

 Interrupts are non-preemptive (once an ISR starts, it runs to completion)

1<N-1

R

—k41|C, i>0
P,

« R, Is response time time until i starts execution, same as previous latency
equation; just cleaner notation

27



Example Response Time Calculation

¢ What’s the Response Time for task 27? Task# | Period | Execution
 Note: N=4 (tasks 0..3) i (P) | Time (C))
» Have to wait for task 3 to finish 0 8 1

— (longest execution time)

 Have to wait for two execution of task 0 1 12 2
 Have to wait for one execution of task 1 y) 20 3
3 25 6
R,,=max(C;)=C,=6
Ryt =Roo+ D || 22+1[C, |=6+ S|+ | 2412 |=6+14+2=0
’ ’ =P 8 12

naf| R
Ry2=Roo+ 2, ﬂ L 4+11C =6+( :+11)+ 91 2)=6+2+2=10



Math Differences For Combined System

¢ “combined” (informal term) = “interrupts + main loop”

¢ Back to the cyclic executive plus ISRs
« Main loop can be pre-empted (interrupted) by ISRs — consider this task N

* |ISRs don’t have to wait for main loop completion...
... but main loop does have to wait for ISRs!

¢ Math for Response time

* ISR math — almost unchanged — but now have to worry about blocking time B
— Main loop has to finish current instruction (what if it is a multiply instruction?)
— Main loop might have interrupts disabled; B = maximum time for this to happen

R o= max{max(Cj), B} ‘1<N-1

i<j<N

m=i—1 R.
Ria=Ro+ Y P;'k+1 C. i>0
m=0 \ [ "m .

29




Back To Main Loop Response Time...

¢ Response time for main loop is time to complete a cycle

 [f data changes just after “do_task1()” starts executing, have to assume wait
until next start of “do_task1()” to do the new computation

* In general, if we assume main loop is task N, response time is one main loop

RN,O :CN
R —Rr o+ 5 || Pl
N k+1l — N,O P m
m=0 B m |

« This Is same equation as earlier, but with cleaned up notation

30



Back To The Big Picture

¢ We’ve been building up a framework for
. non-preemptive scheduling ...

« Tasks run to completion; also called cooperative task scheduling
* When one task completes, task at next higher priority executes

* Any time you have ISRs, probably this is the type of scheduling you need to
know!

¢ Scheduling summary for response time R,

* You always have to wait for one initial blocking period
— Often is the longest execution lower-priority task
— Could be something else that sets interrupt mask flag
* You have to wait for all higher priority tasks
— And, even worse, some might execute multiple times!
o Assumptions!
— System doesn’t get overloaded — task m completes before next time task m executes
— Tasks are periodic and you know the worst-case period P;
— You know the worst-case compute time for each task  C,

— You’re willing to schedule for the worst case, perhaps leaving CPU idle in other

cases
31



Why Do We Need More Than This?

¢ Cyclic Exec can be enough

Mostly used when CPU is so fast, everything can be run faster than external

world changes

¢ Background task plus ISRs commonly used
* Works as long as each ISR can be kept short
« Works as long as everything that needs to be “fast” can be put in ISR

¢ But, here’s the rub — Low Priority ISRs and Blocking Time

Response time dominated by longest ISR, even if low priority
Response time dominated by | mask being set in main program (“blocking”)
So this only really works if interrupts are short — and main program can be slow

Problem if you need a complex ISR!
Problem if you need to disable interrupts!

But for now, let’s look at how people usually make this work

32



Real Time System Pattern — Main Plus ISR

¢ ISR does minimum possible work to service interrupt
e Main program loop processes data later, when there is time

// main program loop

for(;:;)

{ <detairled service for device 0>
<detailed service for device 1>

<detailed service for device N-1>
<other background tasks>

ks
// interrupt priority is in device order (#20 i1s ISR,)

void interrupt 20 handle _deviceO(void) { ... }
void interrupt 21 handle devicel(void) { ... }

void interrupt 23 handle device<N-1>(void) { ... }

33



Example — Keeping Time Of Day

¢ System might need time of day in hours, minutes, seconds

 Naive approach — do the computation in the ISR
— Requires division and modular arithmetic
— The problem is that this slows ISR, increasing max response time

e Here’s the “big-ISR” approach
— (we’re going to ignore setup for TOI — you’ve seen this before)

// current time

volatile uint64 timer_val; // assume initialized to current time
volatile uint8 seconds, minutes, hours;

volatile uintl6 days;

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6; // 16 bits fraction; 48 bits Intgr
seconds = (timer_val>>16)%60;
minutes = ((timer_val>>16)/60)%60;
hours = ((timer_val>>16)/(60*60))%24;
days = (timer_val>>16)/(60*60*24);

34



Keeping The Time Of Day ISR “Skinny”

volatile uint64 timer_val; // assume initialized to current time
volatile uint8 seconds, minutes, hours;
volatile uintl6 days;

void main(void)
{ .. inttialization ..
for(;;)
{ update_tod();
do_taskl();
do_task2();

+
by
void update_tod() Want this here instead of
{ Disablelnterrupts(); // avoid concurrency bug .
timer_temp = timer_val>>16; at_end_of SUbrOl:Itme -tO
Enablelnterrupts(); minimize Blocking Time B
seconds = (timer_temp)%60;
minutes = ((timer_temp)/60)%60;
hours = ((timer_temp)/(60*60))%24;
days = (timer_temp)/(60*60*24) ;
+

void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6; // 16 bits fraction; 48 bits iIntgr
} 7/ blocking time of ISR no longer includes division operations!

35



Skinny ISRs

¢ General idea
* Move everything you can to a periodically run main routine
o Keep only the bare minimum in the ISR
« Usually amounts to storing info somewhere for main loop to process later

¢ Advantages:
* Reduces blocking time of that ISR, improving response time

¢ Disadavantages; Issues:
* [tonlytakes ONE long ISR to give bad blocking time for whole system!
— So all the ISRs have to be skinny!

|t feels like more work than writing long ISRs
— (if you think that is work, try debugging a system with random timing failures!)

36



Deprecated Alternative — ISRs with CLI

¢ If you have a long ISR, why not just re-enable interrupts?
void interrupt 16 timer_handler(void) // TOI
{ TFLG2 = 0x80;

timer_val += 0Ox10C6; // 16 bits fraction; 48 bits iIntgr
#asm

CLI ; re-enable interrupts ** BAD IDEA! **
#endasm

seconds = (timer_val>>16)%60;

minutes = ((timer_val>>16)/60)%60;

hours = ((timer_val>>16)/(60*60))%24 ;

days = (timer_val>>16)/(60*60*24) ;
+
¢ What does this do?

e CLI -enables interrupts (same as Enablelnterrupt() call)

* In GCC use keyword volatile — tells compiler “don’t move this instruction
around”!!!
37



Why Is CLI A Really Bad Idea?

¢ What it does if you are careful:

Re-enables interrupts while ISR is still executing

RTI re-re-enables interrupts (so this still works OK)

Blocking time is now from start of ISR until CLI executes — not whole ISR
So, it is as if you had a shorter ISR

Makes sure that TOD is updated immediately, even in middle of main loop

¢ SO Why ISIta prOblem? http://betterembsw.blogspot.com/2014/01/do-not-re-enable-interrupts-in-isr.html

Some current systems use just this approach, but it’s a bad idea

Problem 1. what if interrupt re-triggers before end of ISR?
— Need to make ISR re-entrant (more on this later) — notoriously easy to get wrong
— If ISR can occur in bursts, overflowing stack

Problem 2: what if ISR is changing memory locations used by another ISR?

— Very tricky to debug if multiple ISRs fight over resources and can be interrupted ...

and designers miss this kind of thing because ISRs aren’t in main flow of code
Problem 3: causes priority inversion if lower priority interrupt hits
— Lower priority ISR completes before higher priority ISR!
Bottom line — this approach has bitten designers too often; avoid it

38



Review

¢ Cyclic executive

» Put everything in one big main loop — OK if loop is fast and external world is
slow

» Scatter high-frequency tasks repeatedly throughout mainloop
* Response time for cyclic exec — wait for loop to go all the way around

¢ ISRs only

 Prioritized ISR response time includes: execute worst case blocking task, plus
possibly multiple instances of higher priority ISRs

¢ Hybrid Main Loop + ISRs

 Pretty much the same math, with main loop as task N
e Avoid CLI inan ISR if possible — it’s the Dark Side Of The Force

¢ Overall - yes, we expect you to know these equations on your own!
 |If you know the principles, the equations follow, but memorize if you have to

* These equations are a really Good Thing to put on your test notes sheet
39



These equations are important:

Ri, = max{max(Cj), B

i<j<N

m=i-1
Ri,k+1 = Ri,o + Z [
m=0




	Lecture #15�Interrupt & Cyclic�Task Response Timing
	777 Flight Control
	777 Triplex Redundancy – 3 PFCs; 3 Networks
	Where Are We Now?
	Preview
	Definition of Concurrency
	How Do You Achieve Concurrency?
	Simplest Approach – Cyclic Executive
	Cyclic Exec Tradeoffs
	Slide Number 10
	Simple Multi-Rate Cyclic Executive
	General Multi-Rate Cyclic Exec Tradeoffs
	Concept – Latency and Response Time 
	Cyclic Exec Plus Interrupts 
	Latency With Interrupts – Simple Version
	Latency With Multiple Interrupts – Main Loop
	Cyclic+ISR Main Latency – The Correct Version
	Cyclic + ISR Main Latency – The Math
	What About Latency For Interrupts Themselves?
	Slide Number 20
	Latency For Prioritized Interrupts
	Example – ISR Worst Case Latency
	Will ISR2 Execute Within 50 msec?
	ISR0 & ISR1 Retrigger, then ISR2 goes
	ISR Latency – The Math
	Another Approach – Everything in Interrupts
	General Latency For Prioritized Tasks
	Example Response Time Calculation
	Math Differences For Combined System
	Back To Main Loop Response Time…
	Back To The Big Picture
	Why Do We Need More Than This?
	Real Time System Pattern – Main Plus ISR
	Example – Keeping Time Of Day
	Keeping The Time Of Day ISR “Skinny”
	Skinny ISRs
	Deprecated Alternative – ISRs with CLI
	Why Is CLI A Really Bad Idea?
	Review
	Slide Number 40

