
Lecture #13

Interrupts

18-348 Embedded System Engineering
Philip Koopman

Monday, 29-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example: Electronic Parking Brake
http://www.conti-online.com/generator/www/de/en/continentalteves/continentalteves/themes/products/electronic_brake_systems/

parking_brake_1003_en.html

 “Software” parking brake
• Button on dash is a MCU input
• Lever in center is an MCU input
• Allows system to “Do The Right Thing”

– Avoid skidding or spinning
– Brake car to stop from high speed

 Possible EPB Functions:
• Normal parking brake function
• “Drive-away” automatic release on hills
• Emergency braking if primary brakes fail
• Vehicle immobilizer (car security system)

 Discussion questions:
Assume critical functionality is provided by software
• What are the worst potential hazards?
• What is a likely acceptable failure rate?
• Who is responsible for ensuring safe operation within design flow?

3

Where Are We Now?
 Where we’ve been:

• Time and counters – a bit more nitty-gritty
– Keeping track of timer rollovers was painful, wasn’t it?
– Better approach – use interrupts!

 Where we’re going today:
• Interrupts

 Where we’re going next:
• Concurrency, scheduling
• Analog and other I/O
• Test #2

4

Preview
 Really “getting” interrupts is an essential embedded system skill

• If I had to pick one job interview question to ask, this would be the topic

 Hardware interrupts
• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt?
• Trigger interrupt
• Save state
• Execute an Interrupt Service Routine
• Acknowledge the interrupt (so it doesn’t retrigger)
• Resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C

 SWI as a system call

5

Polling – What We’ve Done Until Now
 Polling is periodically checking to see if something is ready

• Waiting for data ready or ready to transmit on UART
• Watching timer for rollover
• Watching for a button to be pressed

 Polling can be a pain
• Need to continually check (difficult to weave checks into complex code)
• If timing analysis is wrong,

might poll too slowly
• Can waste a lot of CPU

time checking for very
infrequent events

TCNT
High Bit

SET

TCNT
High Bit
CLEAR

TCNT
ROLL-
OVER

Top Bit of
TCNT = 0

Top Bit of
TCNT = 1

ALWAYS
Init

Timer

Top Bit of
TCNT = 1

Top Bit of
TCNT = 0

6

Interrupts To The Rescue
 Big idea:

Wouldn’t it be nice to be notified when something happens
(interrupted) instead of having to check continually (polling)?

 In daily life:
• Wristwatch:

– Polling is checking watch every 5 minutes to see if class is over yet
– Interrupt is having an alarm ring at end of class

• Cell phone:
– Polling is checking your phone to see if text message icon is displayed
– Interrupt is having an audible alarm (or vibration) if text message is received

• Making tea:
– Polling is checking the kettle every minute to see if it is boiling
– Interrupt is having a the tea kettle whistle

7

Remember SWI?

Jump to a predefined address

Subroutine call plus
automatic push of Y, X, D,
CCR

8

SWI Is A “Software Interrupt”
 Sort of like a subroutine call (JSR), but with some differences

 Interrupts flow of program control
• Jumps to a location specified by a “vector” instead of an address in the

instruction
– That makes it an Inherent operand (“INH”) – the address is not in the instruction
– We’ll get back to the idea of a vector shortly

• Always the same address for any SWI invocation, regardless of how many

 Saves state
• Pushes the programmer visible register state on the stack
• Including the condition code register
• As long as SWI-processing routine doesn’t mess with stack or memory, return

from SWI leaves CPU in exactly the same state as before the SWI
(see the RTI instruction)

 RTI is like RTS
• BUT with differences to corresponding to SWI placement of stack items

[Valvano]

10
• Inverse operation of SWI – puts everything back on the stack

11

What Do We Need Beyond An SWI?
 Want to generate an interrupt based on when, not where

• SWI has to be placed as an explicit instruction at a specific location …
a synchronous interrupt – happens synchronized to program flow

• What we want are interrupts that occur without an actual instruction…
asynchronous interrupt – happens without regard to program flow

[Valvano]

12

Simplified Execution Of A Hardware Interrupt
(More concrete example with details coming soon…)
 Some piece of hardware generates an interrupt

• Not an SWI instruction – happens asynchronously with and independent from the
program execution

• So this means it can happen any time (with exceptions we’ll get to soon)
• You can think of this as hardware shoving an SWI into the instruction fetch queue …

even though the SWI wasn’t actually in memory

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt opcode

(same effects of SWI, but without that instruction coming from memory)
• CPU jumps to a particular handling routine via a vector

 Interrupt handling software executes
• An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)
• When completed, the ISR executes an RTI instruction

– This is a real RTI instruction, just like we saw with SWI

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted

13

What Can Generate An Interrupt?
 General categories on any CPU – each has a different vector location

• Interrupt jumps to address at vector (e.g., SWI jumps to [$FFF6])
• Various types of resets
• Various types of illegal situations (e.g., undefined opcode executed)
• Hardware signals from devices
• SWI

14

More Specific Example – Time Of Day
 Remember the time of day example? (statechart in an earlier slide)

• Needed to tightly loop monitoring the TCNT value, watching for zero crossing
• Better way – use an interrupt

 Recap of program at a high level:
• TCNT is the current timer value; assume bus clock divided by 8
• Current_time is a uint32

– Add <fractional_value> to 32-bit value every TCNT rollover
– High 16 bits are current time in seconds

• Algorithm for the old approach (polled version):
for(;;)
{ <wait for TCNT roll-over (TCNT changes from $FFFF to $0000)>

timer_count += <fraction_value>;
<display (timer_count>>16) as seconds on LCD>

}

15

New Time Of Day Approach Using Interrupts
 Main program – can do anything we want

for(;;)
{ <do anything else you want; doesn’t matter how long>
<display (timer_count>>16) as seconds on LCD>

}

• But wait, what is changing the timer_count value?  The ISR Does It

 ISR – (Interrupt Service Routine) – keeps track of TCNT rollovers
• This is what is changing current_time – main loop only displays it!
• Keeps a time of day clock updated
• Executes only when TCNT rolls over
• ISR: timer_count += <fractional_value>;

<return from interrupt>

• How do we know when to executed ISR?
Ask Timer HW to generate an Interrupt!

 Following slides are how to do this step by step…

16

Timer Register Setup Info
 TEN and PR[2:0] discussed in last lecture; TOI and TFLG2 are new

17

TOF
 TOF set whenever TCNT rolls over

• If TOI is set, causes an interrupt
• KEEPS causing an interrupt until it is cleared!!
• Clear by writing a “1” bit to every flag to be cleared (i.e., write $80)

– This is because TFLG1 has multiple bits and only want to clear some/one of them

18

Timer Register Setup
 TEN – Timer enable

• Bit 7 of TSCR1 -- set to enable timer
TSCR1 |= 0x80;

 PR[2:0] – Timer prescale
• Bits 2..0 of TSCR2 set prescale – set to bus clock / 8
• From last lecture, TCNT rollover every 0.167772 seconds

 TOI
• Bit 7 of TSCR2 set to one – generates interrupt every time TCNT rolls
• TCNT rollover is caught by the TOF – Timer Overflow Flag
// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80;

19

Timer Main Program
volatile uint32 timer_val=0;

void main(void)
{
// set TN = 1 Timer Enable TSCR1 bit 7
TSCR1 |= 0x80;

// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80;

EnableInterrupts;
for(;;)
{ // code goes here to copy (timer_val>>16) to display
} /* loop forever */
}

20

What About The Interrupt?
 Need to initialize interrupt vector to point to ISR

• Usually done at load time, not run time
• For us it is in flash memory, so must be done at load time

 Need to import timer_val symbol from C code so it can be modified
• XREF timer_val (means “this is a symbol defined in another module”)

 Need to clear TOF
• Or else hardware just re-triggers ISR forever

 Need to add a fractional part to 32-bit integer time counter
• 8 MHz bus clock with divider of 8 and 64K rollover:

(8*65536) / 8,000,000 = 0.065536 / (1/65536) scale factor = 4295 = $10C6
• Add 4295 to 32-bit integer each rollover to get high 16 bits as integer seconds

 Need to RTI to restore operation after ISR executes
• Don’t use “RTS” because it doesn’t restore registers and flags!

XREF timer_val ; import symbol from C code
MyCode: SECTION
count_isr: ; this is the ISR routine

LDAA #$80 ; Clear TOF; top bit in TFLG2
STAA TFLG2 ; This acknowledges the rollover intrpt
; 32-bit add $10C6 to increment fractional second
LDAA timer_val+3 ; byte-wise 32-bit add
ADDA #$C6
STAA timer_val+3
LDAA timer_val+2
ADCA #$10
STAA timer_val+2
LDAA timer_val+1
ADCA #$00
STAA timer_val+1
LDAA timer_val ; why isn’t this a loop here?
ADCA #$00 ; (what if infinite loop here?)
STAA timer_val
RTI ; return to interrupted program

ORG $FFDE ; set interrupt vector for timer

DC.W count_isr

22

Hardware Interrupt Recap
 Some piece of hardware generates an interrupt

• Happens asynchronously with and independent from the program execution
• So this means it can happen any time (with exceptions we’ll get to soon)

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt instruction

– Happens between instructions, but anywhere in program
• CPU jumps to a particular handling routine via a vector

– Something has to set that vector to point to the ISR!

 Interrupt handling software executes
• An Interrupt Sub-Routine (ISR) executes (subroutine to handle the interrupt)

– Hardware saves registers
• When completed, the ISR executes an RTI instruction

– RTI restores the registers

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted

23

Leap Year Bug

24

CW C Interrupt Syntax
 You can handle interrupts in C/C++ as well!
 Syntax:

void interrupt <n> <fn>(void)
{ }

 <n> is the entry number in the interrupt vector list
• “2” is second entry, etc. -- it’s the entry number, not byte address
• Be careful, these numbers count opposite to address direction!

This is #2

25

Same Timer Example, In C
extern volatile unsigned long timer_val = 0;

void main(void)
{ // set TEN = 1 Timer Enable TSCR1 bit 7
TSCR1 = TSCR1 | 0x80;

// TSCR2[2:0] binary 0=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80;
EnableInterrupts;
for(;;) {
// code goes here to copy (timer_val>>16) to display

} /* loop forever */
}

void interrupt 16 timer_handler(void) //-(16*2)-2 = $FFDE for TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6;

}

26

Timer isn’t the only thing that uses interrupts
 128 interrupt

vectors
supported by
course MCU
• Most or all of

them can be
used in the
same program!

• Each vector
gets its own
ISR

• Higher vectors
get higher
priority (pick
one with
highest address
to service next)

28

For Example, The SCI/UART Does Interrupts
 Generates interrupts when you need to service the SCI

• Interrupts acknowledge (stop being asserted) when status flags reset

29

Some Notes On Saving State
 Many processors don’t automatically save state!

• For example, a RISC with 32 registers usually doesn’t save them
• It is the ISR’s responsibility to save things it changes, then restore them

 In most systems, the flags are automatically saved
• Interrupt can happen after any instruction – so need to save the flags
• What if you get an interrupt partway through a multi-precision add?
• What if you get an interrupt between a TST and BEQ?

 Tricky part – what’s up with the “I” bit?
• Part of the flag bits

• … see next slide …

30

Interrupt Masking
 When we’re in the ISR, what prevents TOF from interrupting us

again?
• Interrupt processing saves the flag registers, including old I bit
• The I bit gets set by hardware while the ISR vector is fetched, masking

interrupts (causes interrupts to be Ignored)
– No futher interrupts will be recognized in the ISR

• I bit gets restored as part of the RTI – re-enabling interrupts

31

Software Can Set / Clear The I Bit Too
 Assembly language

• SEI – set I bit to 1
– Causes interrupts to be ignored (masked)

• CLI – clear I bit to 0
– Causes interrupts to be permitted

• These are not needed within interrupts themselves
– ISRs disable/enable automatically
– But sometimes you want to disable/enable outside an ISR for some reason

 In C
• EnableInterrupts();

– Put into your main; I bit set on system reset and you need to clear it this way
• Other obtuse syntax approaches as well … see CW C references
• Chip has a few other specialized interrupt masks as well…

– But don’t worry about them for this lecture

 We’re going to see more about the I bit when we discuss concurrency

32

SWI As A System Call
 Totally different use of “interrupts” from everything else in this lecture

• So, first, any questions up to this point?
• The below technique is more common on larger systems, but still important

 Background – what does a BIOS do?
• BIOS = “Basic Input/Output Subsystem”
• Originated as a UV-EPROM on early microcomputers

– Knows how to get a keystroke input
– Knows how to write a character to the screen
– Knows how to write a sector to disk
– Keep real time clock

• In embedded, might also:
– Read/write serial port
– Read A/D; write D/A

33

Simple But Fragile System Calls
 Old way – early personal computers (for example, Apple][)

• Write BIOS in assembly language
• Record start addresses of every service routine
• JSR to the service you want (e.g., GetKey EQU $F75B

JSR GetKey)

 What if you need to change the BIOS?
• Need to preserve the entry points, but new software might be in different places
• Once you publish an entry point, you have to support it forever
• Can’t just re-compile the applications; many are distributed as binary only
• Having a jump table at start of BIOS might help a bit

– Nth jump table entry is a vector to Nth BIOS service; updated with new version

 What if you want to establish some sort of protected mode for the OS
• What if someone just JSRs to an address other than the designated service

address?
• Without protection, tasks can access any OS fragment they want

34

Using SWI As A System Call
 Solution: use SWI as a system call (or “service” call)

• Put which OS function you want in A register
• Put parameters in B, X, Y registers
• Optionally can put other parameters on stack
• IBM PC BIOS used this approach

 When you want a service, load A register and execute SWI
• e.g., LDAB OutByte ; data to send to serial port

LDAA #7 ; function 7 outputs byte to serial port
SWI ; BIOS call = send data byte in B to serial port

 Advantages to SWI
• SWI handler knows where services start

– Can change entry points with ease when recompiling the BIOS
• One place to handle all service calls

– CPU can change protection modes when it executes SWI
• Easier to protect BIOS code from malicious execution

– Use memory management unit to block JSRs into BIOS
• (Some CPUs don’t push all registers on interrupt, so can be very fast as well)

35

Review
 Really “getting” interrupts is an essential embedded system skill
 Hardware interrupts

• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt? (at a detailed level)
• Trigger interrupt and set I bit
• Save state
• Execute an Interrupt Service Routine specified by a vector
• Acknowledge or otherwise clear the interrupt (so it doesn’t retrigger)
• Take care of any action needed (execute body of ISR)
• Clear I bit and resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C – what do they do; how do they

work?

 Basic idea of SWI as a service call

	Lecture #13�Interrupts
	Example: Electronic Parking Brake
	Where Are We Now?
	Preview
	Polling – What We’ve Done Until Now
	Interrupts To The Rescue
	Remember SWI?
	SWI Is A “Software Interrupt”
	Slide Number 9
	Slide Number 10
	What Do We Need Beyond An SWI?
	Simplified Execution Of A Hardware Interrupt
	What Can Generate An Interrupt?
	More Specific Example – Time Of Day
	New Time Of Day Approach Using Interrupts
	Timer Register Setup Info
	TOF
	Timer Register Setup
	Timer Main Program
	What About The Interrupt?
	Slide Number 21
	Hardware Interrupt Recap
	Slide Number 23
	CW C Interrupt Syntax
	Same Timer Example, In C
	Timer isn’t the only thing that uses interrupts
	Slide Number 27
	For Example, The SCI/UART Does Interrupts
	Some Notes On Saving State
	Interrupt Masking
	Software Can Set / Clear The I Bit Too
	SWI As A System Call
	Simple But Fragile System Calls
	Using SWI As A System Call
	Review

