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Example: Electronic Parking Brake
http://www.conti-online.com/generator/www/de/en/continentalteves/continentalteves/themes/products/electronic_brake_systems/ 

parking_brake_1003_en.html

 “Software” parking brake
• Button on dash is a MCU input
• Lever in center is an MCU input
• Allows system to “Do The Right Thing”

– Avoid skidding or spinning
– Brake car to stop from high speed

 Possible EPB Functions:
• Normal parking brake function
• “Drive-away” automatic release on hills
• Emergency braking if primary brakes fail
• Vehicle immobilizer (car security system)

 Discussion questions:
Assume critical functionality is provided by software
• What are the worst potential hazards?
• What is a likely acceptable failure rate?
• Who is responsible for ensuring safe operation within design flow?
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Where Are We Now?
 Where we’ve been:

• Time and counters – a bit more nitty-gritty
– Keeping track of timer rollovers was painful, wasn’t it?
– Better approach – use interrupts!

 Where we’re going today:
• Interrupts

 Where we’re going next:
• Concurrency, scheduling
• Analog and other I/O
• Test #2
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Preview
 Really “getting” interrupts is an essential embedded system skill

• If I had to pick one job interview question to ask, this would be the topic

 Hardware interrupts
• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt?
• Trigger interrupt
• Save state
• Execute an Interrupt Service Routine
• Acknowledge the interrupt  (so it doesn’t retrigger)
• Resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C

 SWI as a system call
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Polling – What We’ve Done Until Now
 Polling is periodically checking to see if something is ready

• Waiting for data ready or ready to transmit on UART
• Watching timer for rollover
• Watching for a button to be pressed

 Polling can be a pain
• Need to continually check (difficult to weave checks into complex code)
• If timing analysis is wrong,

might poll too slowly
• Can waste a lot of CPU

time checking for very
infrequent events
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Interrupts To The Rescue
 Big idea:

Wouldn’t it be nice to be notified when something happens 
(interrupted) instead of having to check continually (polling)?

 In daily life:
• Wristwatch:

– Polling is checking watch every 5 minutes to see if class is over yet
– Interrupt is having an alarm ring at end of class

• Cell phone:
– Polling is checking your phone to see if text message icon is displayed
– Interrupt is having an audible alarm (or vibration) if text message is received

• Making tea:
– Polling is checking the kettle every minute to see if it is boiling
– Interrupt is having a the tea kettle whistle
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Remember SWI?

Jump to a predefined address

Subroutine call plus
automatic push of Y, X, D, 
CCR
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SWI Is A “Software Interrupt”
 Sort of like a subroutine call (JSR), but with some differences

 Interrupts flow of program control
• Jumps to a location specified by a “vector” instead of an address in the 

instruction
– That makes it an Inherent operand (“INH”) – the address is not in the instruction
– We’ll get back to the idea of a vector shortly

• Always the same address for any SWI invocation, regardless of how many

 Saves state
• Pushes the programmer visible register state on the stack
• Including the condition code register
• As long as SWI-processing routine doesn’t mess with stack or memory, return 

from SWI leaves CPU in exactly the same state as before the SWI
(see the RTI instruction)

 RTI is like RTS
• BUT with differences to corresponding to SWI placement of stack items



[Valvano]



10
• Inverse operation of SWI – puts everything back on the stack
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What Do We Need Beyond An SWI?
 Want to generate an interrupt based on when, not where

• SWI has to be placed as an explicit instruction at a specific location …
a synchronous interrupt – happens synchronized to program flow

• What we want are interrupts that occur without an actual instruction…
asynchronous interrupt – happens without regard to program flow

[Valvano]
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Simplified Execution Of A Hardware Interrupt
(More concrete example with details coming soon…)
 Some piece of hardware generates an interrupt

• Not an SWI instruction – happens asynchronously with and independent from the 
program execution

• So this means it can happen any time (with exceptions we’ll get to soon)
• You can think of this as hardware shoving an SWI into the instruction fetch queue … 

even though the SWI wasn’t actually in memory

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt opcode

(same effects of SWI, but without that instruction coming from memory)
• CPU jumps to a particular handling routine via a vector

 Interrupt handling software executes
• An Interrupt Sub-Routine  (ISR) executes   (subroutine to handle the interrupt)
• When completed, the ISR executes an RTI instruction

– This is a real RTI instruction, just like we saw with SWI

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted
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What Can Generate An Interrupt?
 General categories on any CPU – each has a different vector location

• Interrupt jumps to address at vector  (e.g., SWI jumps to [$FFF6])
• Various types of resets
• Various types of illegal situations (e.g., undefined opcode executed)
• Hardware signals from devices
• SWI
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More Specific Example – Time Of Day
 Remember the time of day example?   (statechart in an earlier slide)

• Needed to tightly loop monitoring the TCNT value, watching for zero crossing
• Better way – use an interrupt

 Recap of program at a high level:
• TCNT is the current timer value;  assume bus clock divided by 8
• Current_time is a uint32

– Add <fractional_value> to 32-bit value every TCNT rollover
– High 16 bits are current time in seconds

• Algorithm for the old approach (polled version):
for(;;)
{ <wait for TCNT roll-over (TCNT changes from $FFFF to $0000)>

timer_count += <fraction_value>;
<display (timer_count>>16) as seconds on LCD>

}
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New Time Of Day Approach Using Interrupts
 Main program – can do anything we want

for(;;)
{ <do anything else you want; doesn’t matter how long>
<display (timer_count>>16) as seconds on LCD>

}

• But wait, what is changing the timer_count value?    The ISR Does It

 ISR – (Interrupt Service Routine) – keeps track of TCNT rollovers
• This is what is changing current_time – main loop only displays it!
• Keeps a time of day clock updated
• Executes only when TCNT rolls over
• ISR: timer_count += <fractional_value>;

<return from interrupt>

• How do we know when to executed ISR?   
Ask Timer HW to generate an Interrupt!

 Following slides are how to do this step by step…
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Timer Register Setup Info
 TEN and PR[2:0] discussed in last lecture;  TOI and TFLG2 are new
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TOF
 TOF set whenever TCNT rolls over

• If TOI is set, causes an interrupt
• KEEPS causing an interrupt until it is cleared!!
• Clear by writing a “1” bit to every flag to be cleared (i.e., write $80)

– This is because TFLG1 has multiple bits and only want to clear some/one of them



18

Timer Register Setup
 TEN – Timer enable

• Bit 7 of TSCR1  -- set to enable timer
TSCR1 |= 0x80;

 PR[2:0] – Timer prescale
• Bits 2..0 of TSCR2 set prescale – set to bus clock / 8
• From last lecture, TCNT rollover every 0.167772  seconds

 TOI
• Bit 7 of TSCR2 set to one – generates interrupt every time TCNT rolls
• TCNT rollover is caught by the TOF – Timer Overflow Flag
// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80;
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Timer Main Program
volatile  uint32  timer_val=0;

void main(void)
{
// set TN = 1   Timer Enable   TSCR1 bit 7
TSCR1 |= 0x80;

// TSCR2[2:0] binary 011=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80; 

EnableInterrupts;
for(;;)  
{ // code goes here to copy (timer_val>>16) to display
} /* loop forever */
}
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What About The Interrupt?
 Need to initialize interrupt vector to point to ISR

• Usually done at load time, not run time
• For us it is in flash memory, so must be done at load time

 Need to import timer_val symbol from C code so it can be modified
• XREF timer_val      (means “this is a symbol defined in another module”)

 Need to clear TOF
• Or else hardware just re-triggers ISR forever

 Need to add a fractional part to 32-bit integer time counter
• 8 MHz bus clock with divider of 8  and 64K rollover:

(8*65536) / 8,000,000 =  0.065536  / (1/65536) scale factor = 4295 = $10C6
• Add 4295 to 32-bit integer each rollover to get high 16 bits as integer seconds

 Need to RTI to restore operation after ISR executes
• Don’t use “RTS” because it doesn’t restore registers and flags!



XREF timer_val ; import symbol from C code
MyCode:     SECTION
count_isr: ; this is the ISR routine

LDAA  #$80   ;  Clear TOF; top bit in TFLG2
STAA  TFLG2  ;  This acknowledges the rollover intrpt
; 32-bit add $10C6 to increment fractional second 
LDAA  timer_val+3 ; byte-wise 32-bit add
ADDA  #$C6
STAA  timer_val+3
LDAA  timer_val+2
ADCA  #$10
STAA  timer_val+2
LDAA  timer_val+1
ADCA  #$00
STAA  timer_val+1
LDAA  timer_val ; why isn’t this a loop here?
ADCA  #$00 ; (what if infinite loop here?)
STAA  timer_val
RTI               ; return to interrupted program

ORG $FFDE ; set interrupt vector for timer

DC.W count_isr
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Hardware Interrupt Recap
 Some piece of hardware generates an interrupt

• Happens asynchronously with and independent from the program execution
• So this means it can happen any time (with exceptions we’ll get to soon)

 CPU executes an interrupt handling process
• That interrupt causes CPU to execute a virtual interrupt instruction

– Happens between instructions, but anywhere in program
• CPU jumps to a particular handling routine via a vector

– Something has to set that vector to point to the ISR!

 Interrupt handling software executes
• An Interrupt Sub-Routine  (ISR) executes   (subroutine to handle the interrupt)

– Hardware saves registers
• When completed, the ISR executes an RTI instruction

– RTI restores the registers

 Normal program resumes operation
• CPU registers unchanged – program has no idea it was interrupted
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Leap Year Bug
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CW C Interrupt Syntax
 You can handle interrupts in C/C++ as well!
 Syntax:

void interrupt <n> <fn>(void)
{  }

 <n>   is the entry number in the interrupt vector list
• “2” is second entry, etc.  -- it’s the entry number, not byte address
• Be careful, these numbers count opposite to address direction!

This is #2
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Same Timer Example, In C
extern volatile unsigned long timer_val = 0;

void main(void)
{ // set TEN = 1   Timer Enable   TSCR1 bit 7
TSCR1 = TSCR1 | 0x80;

// TSCR2[2:0] binary 0=bus clock/8
// TSCR2[7] TOI set to interrupt on TOF (TCNT rollover)
TSCR2 = (TSCR2&0x78)|0x03|0x80; 
EnableInterrupts;
for(;;) {  
// code goes here to copy (timer_val>>16) to display

} /* loop forever */
}

void interrupt 16 timer_handler(void) //-(16*2)-2 = $FFDE for TOI
{ TFLG2 = 0x80;
timer_val += 0x10C6;

}
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Timer isn’t the only thing that uses interrupts
 128 interrupt 

vectors 
supported by 
course MCU
• Most or all of 

them can be 
used in the 
same program!

• Each vector 
gets its own 
ISR

• Higher vectors 
get higher 
priority (pick 
one with 
highest address 
to service next)
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For Example, The SCI/UART Does Interrupts
 Generates interrupts when you need to service the SCI

• Interrupts acknowledge (stop being asserted) when status flags reset
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Some Notes On Saving State
 Many processors don’t automatically save state!

• For example, a RISC with 32 registers usually doesn’t save them
• It is the ISR’s responsibility to save things it changes, then restore them

 In most systems, the flags are automatically saved
• Interrupt can happen after any instruction – so need to save the flags
• What if you get an interrupt partway through a multi-precision add?
• What if you get an interrupt between a TST and BEQ?

 Tricky part – what’s up with the “I” bit?
• Part of the flag bits

• … see next slide …
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Interrupt Masking
 When we’re in the ISR, what prevents TOF from interrupting us 

again?
• Interrupt processing saves the flag registers, including old I bit
• The I bit gets set by hardware while the ISR vector is fetched, masking 

interrupts (causes interrupts to be Ignored)
– No futher interrupts will be recognized in the ISR

• I bit gets restored as part of the RTI – re-enabling interrupts
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Software Can Set / Clear The I Bit Too
 Assembly language

• SEI – set I bit to 1
– Causes interrupts to be ignored (masked)

• CLI – clear I bit to 0
– Causes interrupts to be permitted

• These are not needed within interrupts themselves
– ISRs disable/enable automatically
– But sometimes you want to disable/enable outside an ISR for some reason

 In C
• EnableInterrupts();

– Put into your main; I bit set on system reset and you need to clear it this way
• Other obtuse syntax approaches as well … see CW C references
• Chip has a few other specialized interrupt masks as well…

– But don’t worry about them for this lecture

 We’re going to see more about the I bit when we discuss concurrency
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SWI As A System Call
 Totally different use of “interrupts” from everything else in this lecture

• So, first, any questions up to this point?
• The below technique is more common on larger systems, but still important

 Background – what does a BIOS do?
• BIOS = “Basic Input/Output Subsystem”
• Originated as a UV-EPROM on early microcomputers

– Knows how to get a keystroke input
– Knows how to write a character to the screen
– Knows how to write a sector to disk
– Keep real time clock

• In embedded, might also:
– Read/write serial port
– Read A/D; write D/A
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Simple But Fragile System Calls
 Old way – early personal computers (for example, Apple ][ )

• Write BIOS in assembly language
• Record start addresses of every service routine
• JSR to the service you want  (e.g.,   GetKey EQU $F75B

JSR GetKey  )

 What if you need to change the BIOS?
• Need to preserve the entry points, but new software might be in different places
• Once you publish an entry point, you have to support it forever
• Can’t just re-compile the applications; many are distributed as binary only
• Having a jump table at start of BIOS might help a bit

– Nth jump table entry is a vector to Nth BIOS service; updated with new version

 What if you want to establish some sort of protected mode for the OS
• What if someone just JSRs to an address other than the designated service 

address?
• Without protection, tasks can access any OS fragment they want
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Using SWI As A System Call
 Solution: use SWI as a system call (or “service” call)

• Put which OS function you want in A register
• Put parameters in B, X, Y registers
• Optionally can put other parameters on stack
• IBM PC BIOS used this approach

 When you want a service, load A register and execute SWI
• e.g.,    LDAB OutByte   ;  data to send to serial port

LDAA #7            ;  function 7 outputs byte to serial port 
SWI                     ;  BIOS call = send data byte in B to serial port

 Advantages to SWI
• SWI handler knows where services start

– Can change entry points with ease when recompiling the BIOS
• One place to handle all service calls

– CPU can change protection modes when it executes SWI
• Easier to protect BIOS code from malicious execution

– Use memory management unit to block JSRs into BIOS
• (Some CPUs don’t push all registers on interrupt, so can be very fast as well)
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Review
 Really “getting” interrupts is an essential embedded system skill
 Hardware interrupts

• Asynchronous, hardware-triggered cousin to SWI

 What happens in a HW interrupt?   (at a detailed level)
• Trigger interrupt and set I bit
• Save state
• Execute an Interrupt Service Routine specified by a vector
• Acknowledge or otherwise clear the interrupt  (so it doesn’t retrigger)
• Take care of any action needed (execute body of ISR)
• Clear I bit and resume execution of main program

 Timer example
• Real time clock from last lecture – but done with interrupts
• Complete example in both assembler and C – what do they do; how do they 

work?

 Basic idea of SWI as a service call
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