
Lecture #8

Memory &
Processor Bus

18-348 Embedded System Engineering
Philip Koopman

Monday, 8-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Precision GPS for Agriculture
 Regular GPS has an accuracy of

perhaps 20 meters
• Works well if you can “snap” your position

to the nearest road
• Not good enough for precision agriculture

– Want to be within an inch

 Precision GPS uses augmentation
• Ground stations monitor received GPS

signals and broadcast correction
• WAAS only gives 1 meter accuracy
• Private correction service can give 1 inch

position accuracy
• Subscription service (how do you charge?)

 Precision navigation saves money
• Minimal overlap between passes
• Adaptive fertilizer, pesticide, irrigation
• Tractor auto-pilot for poor evening

operation and to reduce operator fatigue

http://precisionpays.com/topics/precision-in-practice/

[John Deere Inc]

3

Where Are We Now?
 Where we’ve been:

• Lectures on software techniques

 Where we’re going today:
• Memory bus (back to hardware for a lecture)

 Where we’re going next:
• Economics / general optimization
• Debug & Test
• Serial ports

• Exam #1
– Scope of coverage is indicated on course web page

4

Preview
 Memory types

• Different types of memory and general characteristics (RAM, PROM, …)
• Interfacing to memory (rows vs. columns)

 CPU memory bus
• Connects CPU to memory
• Connects CPU to I/O
• DMA – direct memory access
• Practicalities (fanout, etc.)

 Quick review of memory protection (15-213 material)

5

Reminder – the memory bus on a microcontroller
 Used to transfer data to and from processor

• Various types of memory
• I/O data as well
• Carries: address, data and control signals

[Valvano]

“Memory” Bus
also does I/O

6

Various Types of Memory
 RAM = Random Access Memory
 ROM = Read Only Memory

[Barr01]

7

[Barr01]

*

*

*

8

Memory Array Geometry
 2-D array composed of

identical memory cells
• Address decoder selects one row
• Sense amps detect and amplify

memory cell value
• Word select takes a subset of

columns that have the byte/word
of interest (mux = multiplexor)

 Memory cell construction
varies
• Speed vs. density
• Volatile vs. non-volatile

9

SRAM – Static RAM
 Uses “6T” cell design to reduce power consumption -- static CMOS

• Used for on-chip RAM and small off-chip RAMs
• Uses same process technology as CPU logic
• Faster, less dense, more expensive than DRAM

10

DRAM Cells
 DRAM optimized for small size, not speed

• Uses different process technology than SRAMs or CPUs
– Integrated DRAM + CPU chips can be inefficient to create – more process steps

11

Basics of DRAM Cells [18-240]
 The DRAM cell

• Dynamic memory — the memory element is not active
• Even with power on, the memory will … eventually …

forget

 Memory mechanism is a capacitor
• Charge is stored in it to represent a logic 1
• No charge represents a logic 0

• When you read it, you drain the capacitor — must rewrite it

• Real life hits! The capacitor has a leak — the logic 1
eventually decays to a logic 0

Select

Data
(inout)

Select

Data
(inout)

Select

Data
(inout)

Read

Write

Bit stored here
in capacitor

12

Dram refresh [18-240]
 The charge exponentially decays

• The capacitor must be refreshed (recharged), typically every 4 milliseconds
• Every bit of the memory must be refreshed!
• Typically one memory array row is refreshed at a time

Select

Data
(inout)

Vcap

0

High
Low

4 ms

13

DRAM Internal Organization

ROW ADDRESS

14

Multiplexed Addresses [18-240]
 SRAM chips have a pin for every address line

• Gives fast access, which is what SRAM is all about
• For example, 64K bit x 1 chip has 16 address lines
• For example, 256K bit x 8 (2 Mbit chip) has 18 address pins; 8 data pins

 DRAMS split the address in half (multiplex high and low bits)
• The top 8 bits were the row address
• Then bottom 8 bits selected one column (the column address)
• This organization reduces the DRAM pin count – same pins for both Row & Col

– 8 address bits can be sent at a time, in sequence
– Only 8 pins and two strobe signals
– vs. 16 pins and a strobe sigal
– Also ties in with the internal memory organization

Address row addr col addr

15

A 64K-bit DRAM Example [18-240]
 Aspect ratio of chip

• Needs to be closer to square —
here 256x256

• Thus rows contain more than
one “word”

 External
• One bit in/out (“word”)
• 16-bit address

 Internal storage
• Top eight bits of address select

the word
• 256:1 mux (bottom 8 bits of

address) selects bit to read/write
• 256 bits refreshed at a time

ro
w

 d
ec

od
er

256 x 256 array

Row latch, Mux

DinDout

8 bits
8-

bi
t r

ow
 a

dd
re

ss
 re

gi
st

er

16-bit address

[1
5:

8]

[7:0]

A “word” is how many bits
go in/out in at a time (1 here)

16

A 64K-bit DRAM — Read [18-240]

 Read access

ro
w

 d
ec

od
er

256 x 256 array

row latches,
muxes, …

DinDout

8 bits

8-
bi

t r
ow

 a
dd

re
ss

 re
gi

st
er

16-bit address

[15:8]

[7:0]
256:1 mux

One of 256
rows

selected

256 bits

1 bit out

The read is
destructive — it

drains the capacitor.

The 256 bits are later
written back into the
memory to refresh it

Select

Data
(inout)

se
le

ct

17

Timing Diagram Notation

[18-240]

18

DRAM Read Cycle
(Micron MT4LC16M4A7)

19

Address row addr col addr

validDout

ras_l

cas_l

Load row-address
register (latch),
read selected row
and store in row
latch.

Load column-
address register
(latch), output-
enable Dout.

Output
disable dout

Store row latch
into selected row

(like a refresh)

we_l not asserted

DRAM Read Cycle [18-240]
 Sequence of events for reading a memory

• Note – it is pretty complex
• Usually “small” embedded systems avoid DRAM to keep things simple

ras_l, row address strobe

20

Fast Page Mode
(Micron MT4LC16M4A7)

21

A 64K-bit DRAM — Write [18-240]

 Write access
• First read

256 bits
into latches
(like
previous
read)

• Change
single bit
in latches

 Write 256
bits back
into array

ro
w

 d
ec

od
er

256 x 256 array

row latches,
muxes, …

DinDout

8 bits

8-
bi

t r
ow

 a
dd

re
ss

 re
gi

st
er

16-bit address

[15:8]

[7:0] 256-wide demux

One of 256
words

selected

1 bit in

22

DRAM Write Cycle [18-240]

Address row addr col addr

validDin

ras_l

cas_l

Load row-address
register, read
selected row and
store in row latch

Load column-
address register,
merge Din into
selected column of
column latches.

Store row latches
into selected rowwe_l

Lots of details not shown!

23

DRAM Write Cycle
(Micron MT4LC16M4A7)

24

A 64K-bit DRAM — Refresh [18-240]

 Write access
• First read

256 bits
into latches

• Write 256
bits back
into array

• Then do
next word ro

w
 d

ec
od

er

256 x 256 array

row latches,
muxes, …

DinDout

8 bits

8-
bi

t r
ow

 a
dd

re
ss

 re
gi

st
er

16-bit address

[15:8]

One of 256
words

selected

Sometimes this is done by a controller on the chip, sometimes by an off-chip one.

25

Refresh Cycle [18-240]
 Each 4 ms, every word must be refreshed

• Every ~15 µsec a 256-bit word is refreshed (4ms/256)
• There is an on-chip controller to do this — it generates the row address and ras_l

 Notes
• More happens in this memory than is easily accountable for with two edges (load

register, load latches, write memory)!

Row Address valid

Load row-address register,
read selected row and store

in row latch

store row
latch

back into
selected

row

ras_l

Lots of details not shown!

26

Non-Volatile RAM Technologies
 Sometimes memory has to survive a power outage

• On desktop machines this is (mostly) done by hard disk
• Many embedded systems don’t have magnetic storage (cost, reliability, size)

 Battery backed SRAM (fairly rare now that EEPROM is cheap)
• Mold a battery right into the SRAM plastic chip case
• Just as fast & versatile as SRAM
• Typically retains data for 4-7 years (usually limited by battery shelf life)
• Cost includes both SRAM and a dedicated battery

 FRAM
• Relatively new technology – in the marketplace, but not mainstream (yet)
• Ferroelectric RAM
• Unlimited read/write cycles
• Intended as non-volatile drop-in replacement for SRAM (still expen$ive)

27

ROM – Read Only Memory
 Masked ROM – pattern of bits built permanently into silicon

• Historically the most dense (least expensive) NV memory
• BUT – need to change masks to change memory pattern ($$$$, lead time)
• Every change means building completely new chips!

– It also means throw the old chips away … they can’t be changed

 Masked ROM seldom used in low-end embedded systems
• Too expensive to make new chips every time a change is needed
• Takes too long (multiple weeks) to get the new chips

 Corollary: many high volume embedded systems don’t use ASICs!
(Application-Specific ICs and semi-custom chips)
• Design tools are too expensive and have too steep a learning curve
• Changes come frequently, obsoleting inventory
• ASICs usually only worthwhile for high-end embedded systems

($50 to $100 chips might be sensible ASICs – not $1 to $10 chips!)

28

PROM Types
 PROM: Programmable Read-Only Memory

• Generic term for non-volatile memory that can be modified

 OTPROM – “One Time” PROM
• Can only be programmed a single time (think “blowing fuses” to set bit values)
• Holds data values indefinitely

 EPROM – “Eraseable” PROM
• Entire chip erased at once using UV light through a window on chip
• Mostly obsolete and replaced by flash memory

 EEPROM – “Electrically Eraseable” PROM
• Erasure can be accomplished in-circuit under software control
• Same general operation as flash memory EXCEPT…
• …EEPROM can be erased/rewritten a byte at a time

– Often have both flash (for bulk storage) and EEPROM (for byte-accessible writes) in same
system

 For all PROMS, ask about data retention
• Bits “rot” over time, 10 years for older technology; 100 years for newer technology
• 10 year product life is often too short for embedded systems!
• Also ask about wearout for values that are updated frequently

29

Flash Memory Operation
 Flash memory (and EEPROM, etc.) hold data on

a floating transistor gate
• Gate voltage turns transistor on or off for reading data

– Usually, erasure results in all “1” values
• Erase/program cycles wear out the gate

– E.g., max 100K cycles for NOR flash
– E.g., max 1M cycles for NAND flash

• Data retention can be 100 years+
• Cheaper than EEPROM; not byte modifiable

30

Don’t Update EEPROM Every Minute!
 1M cycle EEPROM can only be updated every 5-10 minutes

• Assuming 5-10 year product life
• For workarounds: http://betterembsw.blogspot.com/2015/07/avoiding-eeprom-

wearout.html

31

Flash Memory Update & Integrity
 Flash memory can be used as a “solid state hard drive”

• Supports erase/reprogram of blocks of memory (not bytes as with EEPROM)
• Technology used in USB “thumb drives” and solid state MP3 players
• Hardware supports wear leveling and sector remapping to mitigate write hot-spots

 Flash/EEPROM update is complex
• Requires significant time and repeated operations to set good bit values
• Writing both flash and EEPROM is slow

 Common flash problem – “weak writes”
• What happens if machine crashes during flash update?
• Gate can be at a marginal voltage  unreliable data values
• Usual solution: keep flag elsewhere in flash indicating write in progress

– “System has started a flash update”
– “System has completed a flash update”
– If reboot finds “started” flag set, you know a weak write took place

• Some flash-based file systems to have vulnerabilities in this area
– Sometimes even the ones that say they are protected against power outages
– If you use one, try about 100 power cycle tests to see if it suffers corruption

32

How Does Memory Connect To CPU?
 Processor bus (“memory bus”) connects CPU to memory and I/O

• Data lines – actually transfers data
• Address lines – feed memory address and I/O port number
• Control lines – provides timing and control signals to direct transfers
• Sometimes these lines are shared to reduce hardware costs

[Valvano]

33

Bus Transactions
 Bus serves multiple purposes

• Memory read and write
• I/O read and write
• Bulk data transfers (DMA – discussed later in lecture)

[Valvano]

34

Address Decoding
 Every device on bus must recognize its own address

• Must decide which of multiple memory chips to activate
• Each I/O port must decide if it is being addressed
• High bits of addressed decoded to “select” device; low bits used within device

 “Memory Mapped” I/O
• I/O devices and memory share same address space (e.g., Freescale)
• Alternative: separate memory and I/O control lines (e.g., Intel)
• What address

does this decode?

[Valvano]

35

Read And Write Timing
 Usually two edges involved

• One edge means “address valid now” – starts memory cycle
• Second edge means “read or write data valid now” – ends memory cycle

[Valvano]

Read data is
valid here

Write data must
be valid here

36

MC9S12C32 Bus Timing

[Valvano]

37

Typical Bus Lines
 Clock

• System clock so other devices don’t have to have their own oscillators
• Drives bus timing for synchronous transfers

 Address & Data
• Used for memory R/W, I/O, and DMA
• Sometimes multiplexed, sometimes separate
• Sometimes address is multiplexed (high/low) to make DRAM interface simpler

 Control signals
• Read/write – which way is data moving?
• Memory vs. I/O – if they are separate address spaces (Intel, not Freescale)
• Byte vs. word – is it a whole word, or just a byte?
• Device controls – interrupt request/grant; DMA request/grant; etc.

38

DMA – Direct Memory Access
 For block memory transfers, can we keep data from the CPU

bottleneck?
• In software, each byte read requires Device => CPU; CPU => Memory
• Instead, directly transfer data from I/O device to memory (and reverse too)
• Requires separate DMA controller hardware to perform transfer

[Valvano]

39

DMA Read Operation

 CPU sets up DMA controller and I/O device before starting DMA
 Where does the I/O address come from?

• For a CPU read from I/O device it would be the address on the bus
• But here, the address is the memory address

32-bit BUS

DMA READ FROM I/O

CPU
DMA CONTROLLER

I/O DEVICE #X MEMORY

ADDRESS COUNTER

WORDS LEFT COUNTER

+4 bytes

-1

DMA #X READ

DATA READY

INTERRUPT
WHEN DONE

MEMORY WRITE

DATA WORD

ADDRESS

40

DMA Write Operation

32-bit BUS

DMA WRITE TO I/O

CPU
DMA CONTROLLER

I/O DEVICE #X MEMORY

ADDRESS COUNTER

WORDS LEFT COUNTER

+4 bytes

-1

DMA #X WRITE

READY
FOR DATA

INTERRUPT
WHEN DONE

MEMORY READ

DATA WORD

ADDRESS

 DMA Controller signals CPU when DMA is done
• CPU keeps executing programs in parallel with DMA (they alternate bus access)

 Does the memory “know” if it is doing DMA or CPU-directed accesses?
• Does the I/O device “know” if it is doing DMA or CPU-directed accesses?

41

Case Study: Original PC ISA Bus Pinout (PC-104)
“CHIP” SIDE “SOLDER” SIDE
A1: IOCHK# B1: GND
A2: SD7 B2: RESETDRV#
A3: SD6 B3: +5V
A4: SD5 B4: IRQ2
A5: SD4 B5: -5V
A6: SD3 B6: DRQ2
A7: SD2 B7: -12V
A8: SD1 B8: (unused)
A9: SD0 B9: +12V
A10: IOCHRDY B10: GND
A11: AEN B11: SMEMW#
A12: SA19 B12: SMEMR#
A13: SA18 B13: IOW#
A14: SA17 B14: IOR#
A15: SA16 B15: DACK3#
A16: SA15 B16: DRQ3
A17: SA14 B17: DACK1#
A18: SA13 B18: DRQ1
A19: SA12 B19: REFRESH#=DACK0#
A20: SA11 B20: BCLK (4.77 MHz)
A21: SA10 B21: IRQ7
A22: SA9 B22: IRQ6
A23: SA8 B23: IRQ5
A24: SA7 B24: IRQ4
A25: SA6 B25: IRQ3
A26: SA5 B26: DACK2#
A27: SA4 B27: TC
A28: SA3 B28: BALE
A29: SA2 B29: +5
A30: SA1 B30: OSC (14.3 MHz)
A31: SA0 B31: GND

(Eggebrecht Figure 8-1)

42

ISA (PC/104) I/O Bus Read Operation
 Still used in embedded systems as the PC-104 bus standard
 Read from port

• Note: Intel chips have separate I/O and Memory control lines (shared A & D)
• PC/104 still common in embedded systems (original IBM PC bus signals)

(Eggebrecht Figure 6-3)

43

ISA (PC/104) Direct Memory Access (DMA) Operation
 Separate DMA controller

• Counter to track number of
words remaining

• “Cycle steals” bus
bandwidth, transparent to
programs

 Data moves from memory
to I/O
• I/O card asserts DRQx
• I/O eventually receives

DACKx from DMA
controller

• DMA controller asserts
MEMR and IOW to
accomplish a concurrent
memory read and I/O
write operation

(Eggebrecht Figure 6-5)

44

Practicalities – Fanout
 Sometimes a CPU has to drive many loads on a bus

• Multiple banks of memory
• Multiple I/O devices

 Fanout = number of loads being driven
• By address bus
• By data bus
• By control lines
• Limited by drive current IOH and IOL (chip I/O speed rated at limited current)
• Common limit for fanout is 5-10 loads

 If fanout limit is exceeded need a buffer
• Especially common for address lines on memory wider than 8 bits
• For example, 74LS245 is a bidirectional data buffer;

74LS244 is a unidirectional buffer
• Buffer adds delay; slows down maximum system speed; increases fanout limit
• Usually need to buffer DRAM memory address lines

– Address lines drive *all* the chips (e.g., drives 8 chips for 4 chips x 32 bits x 2 banks)
– Data lines only drive one chip in each bank (e.g., drives 2 chips for 2 banks)

FANOUT=4

45

Practicalities – Conflicting Bus Devices
 What happens if address decoding has a

hardware bug?
• One device might drive a bit to high
• One device might drive that same bit to low
• Is that OK?

1

0

+5V

0V

46

Practicalities – Noise And Termination
 Real Hardware buses act as a transmission line

• Signals take non-zero time to propagate
• Signal waves reflect, superimpose, interfere, etc.
• Noise issues are dominated by edge steepness – not just MHz!

– Spectral components of edge are the culprit, not transitions per second

 Termination is used in physically large or complex buses
• Put terminating resistors at

one (or better, both) ends
of bus lines

• Especially if cabling or
mechanical connectors
are involved

[Ethirajan98]

47

Memory Address Space Extension
 How does a 16-bit CPU address more than 64KB?

• Ever wonder how a 16-bit CPU can have 128KB of memory?
• To do this, need to change “memory model”

 Page register
• A register that holds top 8 or 16 bits of memory address
• Memory address pre-pended with page register value
• Might have “long” instructions that take full size memory address
• Might have multiple page registers to allow copying between pages

• If you have a problem with load and store instructions not working, check that you have
the right memory model – we’re using the “tiny” memory model which ignores page
register

 Segment registers (e.g., 808x – original IBM PC CPU)
• A 24-bit or 32-bit base register that is added to each memory address
• Flexible, but hardware addition adds latency to memory path
• Might have multiple segment registers (e.g., program, stack, data)

 Virtual memory …. (coming right up)

48

Course CPU Uses A Page Register
 Version 5 uses “far” addresses for subroutine calls

• Uses CALL instructions instead of JSR/BSR
• Uses RTC instead of RTS

 PPG = Program Page register
• 8 bit register that holds the top 8 bits of program address
• Programs operate in a 64 K-byte fixed address space for programs
• Switch between pages using CALL and RTC
• CALL pushes PPG onto stack; RTC pulls PPG from stack

[Freescale]

49

Virtual Memory (Remember This?)
 Two-level page table example showing address 0x12345678

50

Memory Protection
 Many small CPUs have unlimited access to memory

• Any task can corrupt RAM
• Fortunately, a wild pointer can’t corrupt Flash memory

– Flash requires a complex procedure to modify

 Virtual memory provides excellent memory protection
• Each task has its own distinct memory space starting at address 0
• Only the OS can access other tasks’ memory spaces
• Can enable sharing on a page by page basis

 Virtual memory hardware “lite” = MMU
• Memory Management Unit
• Big MMU might provide hardware support for virtual memory
• But, a “small” MMU might just protect memory from other tasks

– Usually a per-task base register that is added to memory addresses

 What if you don’t have an MMU?
• Good practice is at least putting error code information of blocks of RAM values
• If a wild pointer changes values, the error code has a chance to detect it

51

Lab Skills
 Built a memory bus interface

• The module we use doesn’t have the real memory bus pinned out to proto-board
• So we created software to emulate a simple memory bus for you

52

Review
 Memory types

• Different types of memory and general characteristics
– Should know names, general construction, characteristics of each
– General idea behind NV memory (flash operation/EEPROM use)

• Interfacing to memory (rows vs. columns)
– Should know, e.g., what “RAS” and “CAS” do on DRAMs at level presented
– Should understand how “read,” “write,” and “refresh” signals work

 CPU memory bus
• General signals on a bus and what they are for
• How to read a timing diagram
• General bus operations – read, write, DMA, I/O
• General practicalities (fanout, conflicts, noise, termination)
• Memory address space protection

 BUT we don’t expect you to memorize or do these things:
• Memorize timing numbers on specific buses
• Draw bus timing diagrams or recall bus signal names from memory
• Draw or interpret what each individual transistor does in a memory cell

	Lecture #8�Memory &�Processor Bus
	Precision GPS for Agriculture
	Where Are We Now?
	Preview
	Reminder – the memory bus on a microcontroller
	Various Types of Memory
	Slide Number 7
	Memory Array Geometry
	SRAM – Static RAM
	DRAM Cells
	Basics of DRAM Cells [18-240]
	Dram refresh [18-240]
	DRAM Internal Organization
	Multiplexed Addresses [18-240]
	A 64K-bit DRAM Example [18-240]
	A 64K-bit DRAM — Read [18-240]
	Timing Diagram Notation
	DRAM Read Cycle
	DRAM Read Cycle [18-240]
	Fast Page Mode
	A 64K-bit DRAM — Write [18-240]
	DRAM Write Cycle [18-240]
	DRAM Write Cycle
	A 64K-bit DRAM — Refresh [18-240]
	Refresh Cycle [18-240]
	Non-Volatile RAM Technologies
	ROM – Read Only Memory
	PROM Types
	Flash Memory Operation
	Don’t Update EEPROM Every Minute!
	Flash Memory Update & Integrity
	How Does Memory Connect To CPU?
	Bus Transactions
	Address Decoding
	Read And Write Timing
	MC9S12C32 Bus Timing
	Typical Bus Lines
	DMA – Direct Memory Access
	DMA Read Operation
	DMA Write Operation
	Case Study: Original PC ISA Bus Pinout (PC-104)
	ISA (PC/104) I/O Bus Read Operation
	ISA (PC/104) Direct Memory Access (DMA) Operation
	Practicalities – Fanout
	Practicalities – Conflicting Bus Devices
	Practicalities – Noise And Termination
	Memory Address Space Extension
	Course CPU Uses A Page Register
	Virtual Memory (Remember This?)
	Memory Protection
	Lab Skills
	Review

