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Precision GPS for Agriculture

[John Deere Inc]

¢ Regular GPS has an accuracy of
perhaps 20 meters

« Works well if you can “snap” your position
to the nearest road

« Not good enough for precision agriculture
— Want to be within an inch

¢ Precision GPS uses augmentation

e Ground stations monitor received GPS
signals and broadcast correction

« WAAS only gives 1 meter accuracy

 Private correction service can give 1 inch
position accuracy

« Subscription service (how do you charge?)

¢ Precision navigation saves money
« Minimal overlap between passes
« Adaptive fertilizer, pesticide, irrigation

» Tractor auto-pilot for poor evening
operation and to reduce operator fatigue



Where Are We Now?

¢ Where we’ve been:
o Lectures on software techniques

¢ Where we’re going today:
 Memory bus (back to hardware for a lecture)

¢ Where we’re going next:
Economics / general optimization
Debug & Test

Serial ports

Exam #1
— Scope of coverage is indicated on course web page



Preview

¢ Memory types
 Different types of memory and general characteristics (RAM, PROM, ...)
 Interfacing to memory (rows vs. columns)

¢ CPU memory bus
e Connects CPU to memory
e Connects CPUto I/O
« DMA — direct memory access
» Practicalities (fanout, etc.)

¢ Quick review of memory protection (15-213 material)



Reminder — the memory bus on a microcontroller

¢ Used to transfer data to and from processor
» Various types of memory
« 1/O data as well

 Carries: address, data and control signals “Memory” Bus
.
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Various Types of Memory

¢ RAM = Random Access Memory
¢ ROM = Read Only Memory

Common memory types in embedded systems

DRAM SRAM NVRAM  Flash EEPROM EPROM PROM Masked

[Barr01]



Memory type characteristics

Type Volatile? Writeable? Erase Size Erase Cycles Cost/byte Speed

Masked No No n/a n/a Inexpensive Fast
ROM

EEPROM No Fast to read,
e (see specs) slow to write

[Barr01]



Memory Array Geometry

¢ 2-D array composed of

iIdentical memory cells

X0
O
<’
<

p)

e Address decoder selects one row

« Sense amps detect and amplify
memory cell value

 Word select takes a subset of =
columns that have the byte/word &

DRESS

_>

' MEMORY
ARRAY

ADDRESS DECODER

of interest (mux = multiplexor) COLUMNS
¢ Memory cell construction
varies
e Speed vs. density R/W SENSE/AMP
* Volatile vs. non-volatile WORD SELECT MUX

:

DATA



SRAM - Static RAM

¢ Uses “6T” cell design to reduce power consumption -- static CMOS
e Used for on-chip RAM and small off-chip RAMs
» Uses same process technology as CPU logic

 Faster, less dense, more expensive than DRAM
IBM’s 6-Transistor Memory Cell

Circuit Diagram Cell Layout
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DRAM Cells

¢ DRAM optimized for small size, not speed

» Uses different process technology than SRAMs or CPUs
— Integrated DRAM + CPU chips can be inefficient to create — more process steps

Figure 1: IBM Trench Capacitor Memory

WORD LINE -
Row Add
Column Address “%nr"d Lin;ess o Transfer Node
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Note: Not to Scale
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Basics of DRAM Cells [18-240]

e Dynamic memory — the memory element is not active
« Even with power on, the memory will ... eventually ... (i[ﬁﬁtﬁ) —/
forget <V
_ _ _ Bit stored here
¢ Memory mechanism is a capacitor in capacitor
e Charge is stored in it to rep_resent a logic 1 Select
* No charge represents a logic 0
Data
. . : ... (inout)
 When you read it, you drain the capacitor — must rewrite it
Read
* Real life hits! The capacitor has a leak — the logic 1
eventually decays to a logic O Select
Data
(inout)

g I
Write T

11



Dram refresh [18-240]

¢ The charge exponentially decays
» The capacitor must be refreshed (recharged), typically every 4 milliseconds
 Every bit of the memory must be refreshed!
» Typically one memory array row is refreshed at a time

Vcap
Select
High Data
Low (inout) Tl
0

4 ms

12



DRAM Internal Organization
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Multiplexed Addresses [18-240]

¢ SRAM chips have a pin for every address line
» Gives fast access, which is what SRAM is all about
» For example, 64K bit x 1 chip has 16 address lines
» For example, 256K bit x 8 (2 Mbit chip) has 18 address pins; 8 data pins

¢ DRAMS split the address in half (multiplex high and low bits)

* The top 8 bits were the row address

* Then bottom 8 bits selected one column (the column address)

» This organization reduces the DRAM pin count — same pins for both Row & Col
— 8 address bits can be sent at a time, in sequence
— Only 8 pins and two strobe signals
— Vs. 16 pins and a strobe sigal
— Also ties in with the internal memory organization

Address < X rowaddr X X coladdr X >

14



A 64K-bit DRAM Example [18-240]

¢ Aspect ratio of chip

* Needs to be closer to square —
here 256x256

e Thus rows contain more than
one “word”

¢ External
« One bit infout (“word”)
e 16-bit address

¢ Internal storage

» Top eight bits of address select
the word

e 256:1 mux (bottom 8 bits of
address) selects bit to read/write

e 256 bits refreshed at a time

[15.8]

)

1%

(@)

o

2 <

= N § 256 x 256 array
M o

|| &

5

w :

16-bit address

8 bits ——=> Row latch, Mux

[7:0] |

o

!

Dout Din

A “word” is how many bits

go in/outin at atime (1 here)
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A 64K-bit DRAM — Read [18-240]

& Read access

elect

[15: 256 x 256 array

8 bits—>

8-bit row address register
roy decoder
N S

[7:0]

Dout Din

16-bit address

Select

Data __7T1_
(inout)

—_—
One of 256

rows
selected

S

Theread is
destructive — it
drains the capacitor.

The 256 hits are later
written back into the
memory to refresh it

16



Timing Diagram Notation

Figure 9.18
Nomenclature for
drawing timing
diagrams.

Symbol

IR B

[18-240]

Input

Output

The input
must be vahd

If the input
were to fall

[f the input
were to rise

Don't care.
it will work
regardless

Nonsense

The output
will be vahd

Then the output
will fall

Then the output
will rise

Don't know, the
output value 1s
indeterminate

High impedence,
tristate, HiZ,
Not driven, floating
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DRAM Read Cycle

READ CYCLE
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DRAM Read Cycle [18-240]

¢ Sequence of events for reading a memory
* Note — It Is pretty complex
o Usually “small” embedded systems avoid DRAM to keep things simple

Address 4 X rowaddr X X coladdr X >
— Store row latch
ras_| \ into selected row
(like a refresh)
cas_| \ /.
Dout <  valid >—
Load row-address
register (latch), Load column- disggrglégut
read selected row address register
and store in row (latch), output-
latch. enable Dout.

we_| not asserted

ras_|, row address strobe 19



Fast Page Mode

(Micron MT4LC16M4AT) FAST-PAGE-MODE READ CYCLE
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A 64K-bit DRAM — Write [18-240]

& Write access

* First read
256 bits
Into latches
(like
previous
read)

» Change
single bit
In latches

¢ Write 256
bits back
Into array

[15:

:> 256 x 256 array

rofl decoder

One of 256
words
selected

S

8-bit row address register

OOIS ==>d_rowlatcpes, _

[7:0] .256-W|de 9 emux

16-bit address

21



DRAM Write Cycle [18-240]

Address 4 X rowaddr X X coladdr X >

ras_| \ /+«——_Store row latches
we | \ Into selected row
Din < valid >
cas_| \ Va
Load row-address Load column-
register, read address register,

selected row and merge Din into
store in row latch selected column of

column latches.

Lots of details not shown!
22



DRAM Write Cycle

EARLY WRITE CYCLE

(Micron MT4LC16M4A7)
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A 64K-bit DRAM — Refresh [18-240]

& Write access

e First read =
256 bits %
into latches >
« Write 256 é I3 One of 256
bits back 3] o words
intoarray ~ [15:3] | S é :> 256 x 256 array selected
next word S =
E
0

o
o
—
wn
A

l__row latches,
TIuxes, ...
16-bit address Dout Din

‘Sometimes this is done by a controller on the chip, sometimes by an off-chip one.




Refresh Cycle [18-240]

¢ Each 4 ms, every word must be refreshed
e Every ~15 psec a 256-bit word is refreshed (4ms/256)
« There is an on-chip controller to do this — it generates the row address and ras_|

Row Address < 0 > >
ras_| /-
store row
latch
back into

Load row-address register,
read selected row and store
in row latch

selected
row

¢ Notes

e More happens in this memory than is easily accountable for with two edges (load
register, load latches, write memory)!

Lots of details not shown!

25



Non-Volatile RAM Technologies

¢ Sometimes memory has to survive a power outage
e On desktop machines this is (mostly) done by hard disk
 Many embedded systems don’t have magnetic storage (cost, reliability, size)

¢ Battery backed SRAM (fairly rare now that EEPROM is cheap)
e Mold a battery right into the SRAM plastic chip case
o Just as fast & versatile as SRAM
o Typically retains data for 4-7 years (usually limited by battery shelf life)
e Cost includes both SRAM and a dedicated battery

¢ FRAM

Relatively new technology — in the marketplace, but not mainstream (yet)
Ferroelectric RAM

Unlimited read/write cycles

Intended as non-volatile drop-in replacement for SRAM (still expen$ive)

26



ROM - Read Only Memory

¢ Masked ROM - pattern of bits built permanently into silicon
« Historically the most dense (least expensive) NV memory
e BUT - need to change masks to change memory pattern ($$$$, lead time)

* Every change means building completely new chips!
— It also means throw the old chips away ... they can’t be changed

¢ Masked ROM seldom used in low-end embedded systems
* Too expensive to make new chips every time a change is needed
» Takes too long (multiple weeks) to get the new chips

¢ Corollary: many high volume embedded systems don’t use ASICs!
(Application-Specific 1Cs and semi-custom chips)

« Design tools are too expensive and have too steep a learning curve
* Changes come frequently, obsoleting inventory

e ASICs usually only worthwhile for high-end embedded systems
($50 to $100 chips might be sensible ASICs — not $1 to $10 chips!)

27



PROM Types

¢ PROM: Programmable Read-Only Memory

» Generic term for non-volatile memory that can be modified

¢ OTPROM -*“One Time” PROM

« Can only be programmed a single time (think “blowing fuses” to set bit values)
« Holds data values indefinitely

¢ EPROM - “Eraseable” PROM

« Entire chip erased at once using UV light through a window on chip
« Mostly obsolete and replaced by flash memory

¢ EEPROM - “Electrically Eraseable” PROM

« Erasure can be accomplished in-circuit under software control
« Same general operation as flash memory EXCEPT...

* ...EEPROM can be erased/rewritten a byte at a time

— Often have both flash (for bulk storage) and EEPROM (for byte-accessible writes) in same
system

¢ For all PROMS, ask about data retention

o Bits “rot” over time, 10 years for older technology; 100 years for newer technology
e 10 year product life is often too short for embedded systems!
» Also ask about wearout for values that are updated frequently

28



Flash Memory Operation

¢ Flash memory (and EEPROM, etc.) hold data on
a floating transistor gate

 Gate voltage turns transistor on or off for reading data
— Usually, erasure results in all “1” values

» Erase/program cycles wear out the gate
— E.g., max 100K cycles for NOR flash
— E.g., max 1M cycles for NAND flash

» Data retention can be 100 years+

e Cheaper than EEPROM,; not byte modifiable

Floating

STORED VALUE

GND

Vpp

Transistor "ON" or "OFF"
based on gate voltage

Operate

NAND Flash
PROM Operation

GND
Program Erase 20




Don’t Update EEPROM Every Minute!

¢ 1M cycle EEPROM can only be updated every 5-10 minutes
e Assuming 5-10 year product life

* For workarounds: http://betterembsw.blogspot.com/2015/07/avoiding-eeprom-
wearout.html

EEPROM Wearout

100
] N EEPROM 6 HOURS
sy 100K EEPROM
E_m 1 HOUR
[ 15 MINUTES
5" 5 MINUTES
= 1 MINUTE
0.1
15 SECONDS
0.01 I 1 I 1
10 100 1000 10000 100000

Write Period (seconds) 30



Flash Memory Update & Integrity

¢ Flash memory can be used as a “solid state hard drive”
» Supports erase/reprogram of blocks of memory (not bytes as with EEPROM)
e Technology used in USB “thumb drives” and solid state MP3 players
« Hardware supports wear leveling and sector remapping to mitigate write hot-spots

¢ Flash/EEPROM update is complex
* Requires significant time and repeated operations to set good bit values
« Writing both flash and EEPROM is slow

¢ Common flash problem — “weak writes”

e What happens if machine crashes during flash update?

» (ate can be at a marginal voltage = unreliable data values

« Usual solution: keep flag elsewhere in flash indicating write in progress
— “System has started a flash update”
— “System has completed a flash update™
— If reboot finds “started” flag set, you know a weak write took place

« Some flash-based file systems to have vulnerabilities in this area

— Sometimes even the ones that say they are protected against power outages
— If you use one, try about 100 power cycle tests to see if it suffers corruption

31



How Does Memory Connect To CPU?

¢ Processor bus (“memory bus”) connects CPU to memory and 1/O

« Data lines — actually transfers data

* Address lines — feed memory address and 1/O port number
o Control lines — provides timing and control signals to direct transfers
e Sometimes these lines are shared to reduce hardware costs

Figure 1.2

A memory read cycle
copies data from RAM,
ROM, or an input device
into the processor.

[Valvano]

f———— :
< sionals

——s  Output
_ i
—— signals

4
AEEE
$3800 [ Memory read cycle
R
Processor
)\ t— Input
ports
RAM g9g=
l :_ Output
o ports
ROM . .
Y 5.
Aidress Control

Data
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Bus Transactions

¢ Bus serves multiple purposes

 Memory read and write
e |/O read and write

» Bulk data transfers (DMA - discussed later in lecture)

Figure 1.3
A memory write cycle
copies data from the

processor into RAM or
an output device.

[Valvano]

+f;¥

23800 4 Memory write cycle
825 "
Processor
Input -~ ]1_1]:rul
ports -+—— signals
RAM
:_ Output »  (utput
& -
ports »  signals
ROM ? !
Y |
Addicss ¥ Control
Data
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Address Decoding

¢ Every device on bus must recognize its own address
e Must decide which of multiple memory chips to activate
e Each I/O port must decide if it is being addressed
» High bits of addressed decoded to “select” device; low bits used within device

¢ “Memory Mapped” I/O
» /O devices and memory share same address space (e.g., Freescale)
o Alternative: separate memory and I/O control lines (e.g., Intel)

« What address Figure 9.7 ] ——
does this decode? An address decoder 1aHC02
identifies on which o~
cycles to activate. Ald
Select
A3 AI3 AI2
T4HCI1

Al2

= |

fmpe
[Valvano] Al
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Read And Write Timing

¢ Usually two edges involved
* One edge means “address valid now” — starts memory cycle
« Second edge means “read or write data valid now” — ends memory cycle

Figure 9.24
Synchronized bus
timing.

[Valvano]

Synchronized read cycle

A=
CI
D7-D0 [S"/E]

| KK _a XX

Synchronized write cycle

//

Read data is
valid here

Write data must
be valid here
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MC9S12C32 Bus Timing

Figure 9.40 !
Simplified bus timing for 5 "
the MC9512C32 i . ; -
expanded mode, - &
h.I
R;N‘;‘r
A — | »
Ilnr“;// \2 _ I‘in@. Ons
Read ¥
[Valvano] ADI5.ADO MA]S/.A >{:}< ><X I.}Iﬁ-ljﬂ\mi

Write
AD15-AD0 SOOKAIS-A0 XX— DISD0  )»—
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Typical Bus Lines

¢ Clock

» System clock so other devices don’t have to have their own oscillators
 Drives bus timing for synchronous transfers

¢ Address & Data

Used for memory R/W, 1/0, and DMA

e Sometimes multiplexed, sometimes separate
o Sometimes address is multiplexed (high/low) to make DRAM interface simpler

¢ Control signals

Read/write — which way Is data moving?

Memory vs. I/O — if they are separate address spaces (Intel, not Freescale)
Byte vs. word — iIs it a whole word, or just a byte?

Device controls — interrupt request/grant; DMA request/grant; etc.

37



DMA — Direct Memory Access

¢ For block memory transfers, can we keep data from the CPU

bottleneck?

* In software, each byte read requires Device => CPU; CPU => Memory
 Instead, directly transfer data from 1/O device to memory (and reverse t00)

* Requires separate DMA controller hardware to perform transfer

s

Figure 1.4

A DMA read cycle copies
data from RAM, ROM,
or an input device into
an output device.

[Valvano]

»3800 [ DMA read cycle
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DMA Read Operation

DMA READ FROM I/O
INTERRUPT - - _

WHER PO, | DMACONTROLLER .
CPU ADDRESS COUNTER &rr, JIEs
~ _»| WORDS LEFT COUNTER ﬁ -1
_--" I !
+”  DMA#X READ,/ ADDRESS | \ MEMORY WRITE
32-bit BUS il :
DATA READY | v [ DATAWORD _v ¥ -
/O DEVICE #X MEMORY

¢ CPU sets up DMA controller and 1/O device before starting DMA

¢ \Where does the 1/0 address come from?
e For aCPU read from I/O device it would be the address on the bus
« But here, the address is the memory address

39



DMA Write Operation
DMA WRITE TO I/O

INTERRUPT . — <~

RN | DMA CONTROLLER
+4 bytes
CPU ADDRESS COUNTER  &*x+,
" _ || WORDS LEFT COUNTER R ss, -1
- - | |
+”  DMA#X WRITE/ ADDRESS | \ MEMORY READ
32-bit BUS i :
READY ! DATA WORD \
FOR DATA [ v A - ——
/O DEVICE #X MEMORY

¢ DMA Controller signals CPU when DMA is done
» CPU keeps executing programs in parallel with DMA (they alternate bus access)

¢ Does the memory “know” if it is doing DMA or CPU-directed accesses?
« Does the I/0 device “know” if it is doing DMA or CPU-directed accesses?

40



Case Study: Original PC ISA Bus Pinout (PC-104)

“CHIP” SIDE “SOLDER” SIDE o - Ll

Al: IOCHK# B1: GND '

A2: SD7 B2: RESETDRV# |

A3: SD6 B3: +5V ' .
A4: SD5 B4: IRQ2 o
A5: SD4 B5: -5V | e [
A6: SD3 B6: DRQ2 O i e s
A7: SD2 B7: -12V . s G SR
A8: SD1 B8: (unused) 10008
A9: SDO B9: +12V |

A10: IOCHRDY B10: GND

Al1: AEN B11: SMEMW#

A12: SA19 B12: SMEMR#

A13: SA18 B13: IOW#

Al4: SAL7 B14: IOR#

A15: SA16 B15: DACK3#

A16: SA15 B16: DRQ3

Al7: SA14 B17: DACK1#

A18: SA13 B18: DRQ1

A19: SA12 B19: REFRESH#=DACKO#

A20: SA11 B20: BCLK (4.77 MHz)

A21: SA10 B21: IRQ7

A22: SA9 B22: IRQ6

A23: SA8 B23: IRQ5

A24: SAT B24: IRQ4

A25: SAB B25: IRQ3

A26: SA5 B26: DACK2#

A27: SA4 B27: TC

A28: SA3 B28: BALE

A29: SA2 B29: +5

A30: SA1 B30: OSC (14.3 MHz)

A31: SAO B31: GND

(Eggebrecht Figure 8-1)



ISA (PC/104) 1/0 Bus Read Operation

¢ Still used in embedded systems as the PC-104 bus standard

¢ Read from port
* Note: Intel chips have separate 1/0 and Memory control lines (shared A & D)

PROCESSOR
CLOCK

ALE

AD AlS

x

00-D7

Tl 12 13 W T4
tl
_.1_2'_ — 13
14 +-J-4— e — 15
4£.-< t10 — |-+
77772 VA0 PORT ROORESS 7777777777777
L U - t]]
A t t12 o tg’_ | 1]
< t13 -
DlllTA M}JST BE VALIlD HEIRE

ignals)

(Eggebrecht Figure 6-3) 4o



ISA (PC/104) Direct Memory Access (DMA) Operation
¢ Separate DMA controller s1 52 53 SW 4 y
e Counter to track number of 1l —»
words remaining 120 13 fe—
DMA CLOCK
o “Cycle steals” bus
bandwidth, transparent to Y aaling 15> |
programs > 15 ] 16 |-
¢ Data moves from memory oaex
fo I/O {7 "T- H-lslq—
* |/Ocard asserts DRQx ~ “wo w9 JLLJ777, A0 MEMORY MODRESS 7777777777
» |/O eventually receives 19} — f19
DACKXx from DMA MEME
controller o ety ol Kb 1o
« DMA controller asserts oW B [
MEMR and IOW to e i
accomplish a concurrent 00-07
memory read and 1/0
write operation VALID DATA FROW PC MEMORY

(Eggebrecht Figure 6-5) 43



Practicalities — Fanout

¢ Sometimes a CPU has to drive many loads on a bus

¢ Fanout = number of loads being driven | >

Multiple banks of memory
Multiple 1/O devices

FANOUT=4

By address bus
By data bus
By control lines o
Limited by drive current 15, and I, (chip 1/O speed rated at limited current)
Common limit for fanout is 5-10 loads

VVVY

¢ |If fanout limit is exceeded need a buffer

Especially common for address lines on memory wider than 8 bits

For example, 74L.S245 is a bidirectional data buffer;
74L.S244 is a unidirectional buffer

Buffer adds delay; slows down maximum system speed; increases fanout limit
Usually need to buffer DRAM memory address lines

— Address lines drive *all* the chips (e.g., drives 8 chips for 4 chips x 32 bits x 2 banks)

— Data lines only drive one chip in each bank (e.g., drives 2 chips for 2 banks) "



Practicalities — Conflicting Bus Devices

¢ What happens if address decoding has a
hardware bug?
e One device might drive a bit to high
* One device might drive that same bit to low
e |sthat OK?

45



Practicalities — Noise And Termination

¢ Real Hardware buses act as a transmission line
« Signals take non-zero time to propagate

« Signal waves reflect, superimpose, interfere, etc.

* Noise issues are dominated by edge steepness — not just MHz!
— Spectral components of edge are the culprit, not transitions per second

¢ Termination is used in physically large or complex buses

» Put terminating resistors at

one (or better, both) ends
of bus lines

o Especially if cabling or
mechanical connectors
are involved

DRIVER

Rp

PC-BOARD TRACE

T

_[> .

[Ethirajan98]

R1
Tz )
R
.
. - T
. Vee
R1
Zy }
R
e

LOAD




Memory Address Space Extension

¢ How does a 16-bit CPU address more than 64KB?
« Ever wonder how a 16-bit CPU can have 128KB of memory?
e To do this, need to change “memory model”

¢ Page register
» A register that holds top 8 or 16 bits of memory address
 Memory address pre-pended with page register value
e Might have “long” instructions that take full size memory address
« Might have multiple page registers to allow copying between pages

* If you have a problem with load and store instructions not working, check that you have
the right memory model — we’re using the “tiny” memory model which ignores page
register

¢ Segment registers (e.g., 808x — original IBM PC CPU)
o A 24-bit or 32-bit base register that is added to each memory address
» Flexible, but hardware addition adds latency to memory path
« Might have multiple segment registers (e.g., program, stack, data)

¢ Virtual memory .... (coming right up)
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Course CPU Uses A Page Register

¢ Version 5 uses “far” addresses for subroutine calls
o Uses CALL instructions instead of JSR/BSR
o Uses RTC instead of RTS
¢ PPG = Program Page register
8 bit register that holds the top 8 bits of program address
» Programs operate in a 64 K-byte fixed address space for programs
» Switch between pages using CALL and RTC
o CALL pushes PPG onto stack; RTC pulls PPG from stack

CALL opri6a, page (SP) -2 = SP; RTNy:RTN| = MispyMsp, 1) EXT |42 hh 11 pg
CALL oprx0_xysp, page (SP) -1 = SP; (PPG) = Mspy; IDX |4B xb pg

CALL oprx9,xysp, page pg = PPAGE register; Program address = PC IDX1 |4B xb ££f pg
CALL oprx16,xysp, page IDX2 |4B xb ee ff pg
CALL [D, xysp] Call subroutine in extended memory [D,IDX] 4B xb

CALL [oprx16, xysp] (Program may be located on another [IDX2] |[4B xb ee ff

expansion memory page.)

Indirect modes get program address
and new pg value based on pointer.

RTC (Msp)) = PPAGE; (SP) + 1= SP; INH 0OR
(SP) +2 = SP [Freescale]
Retumn from Call




Virtual Memory (Remember This?)
¢ Two-level page table example showing address 0x12345678

!

0x12345678

£33

0x048 0x345 0x678

WHICH
PAGE
[ABLE?

Address
0x0732678

0523000
swapped

0732000

0512000
swapped

0541000

0065000 Address 0073000
Table entry #048 0
= Page Table Start | SVaPPed 0x0541D14 | swappe
+ 0x120

Address
0x0541000

PAGE PAGE TABLE PHYSICAL
DIRECTORY (1K ENTRIES MEMORY
(1K ENTRIES @ 4 BYTES PAGE
@ 4 BYTES = 4 KB) (4 KB)

= 4 KB)
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Memory Protection

¢ Many small CPUs have unlimited access to memory
e Any task can corrupt RAM

« Fortunately, a wild pointer can’t corrupt Flash memory
— Flash requires a complex procedure to modify

¢ Virtual memory provides excellent memory protection
« Each task has its own distinct memory space starting at address 0
* Only the OS can access other tasks’ memory spaces
« Can enable sharing on a page by page basis

¢ Virtual memory hardware “lite” = MMU
« Memory Management Unit
e Big MMU might provide hardware support for virtual memory

e But, a “small” MMU might just protect memory from other tasks
— Usually a per-task base register that is added to memory addresses

¢ What if you don’t have an MMU?
» (ood practice is at least putting error code information of blocks of RAM values
 [f awild pointer changes values, the error code has a chance to detect it
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Lab Skills

¢ Built a memory bus interface

* The module we use doesn’t have the real memory bus pinned out to proto-board

» S0 we created software to emulate a simple memory bus for you
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Review
¢ Memory types

Different types of memory and general characteristics
— Should know names, general construction, characteristics of each
— General idea behind NV memory (flash operation/EEPROM use)
Interfacing to memory (rows vs. columns)
— Should know, e.g., what “RAS” and “CAS” do on DRAM s at level presented
— Should understand how “read,” “write,” and “refresh” signals work

¢ CPU memory bus

General signals on a bus and what they are for

How to read a timing diagram

General bus operations — read, write, DMA, 1/O

General practicalities (fanout, conflicts, noise, termination)
Memory address space protection

¢ BUT we don’t expect you to memorize or do these things:

Memorize timing numbers on specific buses
Draw bus timing diagrams or recall bus signal names from memory
Draw or interpret what each individual transistor does in a memory cell 52
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