
Lecture #7

Bit Hacking,
Multiprecision Math,

Peer Reviews
18-348 Embedded System Engineering

Philip Koopman
Wednesday, 3-Feb-2016

© Copyright 2006-2016, Philip Koopman, All Rights Reserved

&Electrical Computer
ENGINEERING

2

Example: Elevator Controllers
 Motor control

• Firm real time
• Safety critical
• Mechanical interlocks
• Fail safe

 Door control
• Soft real time
• Somewhat safety critical
• Mechanical interlocks
• Fail safe

 Many other subsystems

 Most electronics for I/O and
power (replaces relays)

(HH Elevator)

3

Embedded Distributed Architecture
 Separate Control Systems for many functions

• (Real elevators have more than are shown here.)

GROUP 1

GROUP 2

GROUP 3

GROUP 4

GROUP 5

GROUP 6

GROUP 7

REMOTE
MONITORING

BUILDING
CONTROL

OPERATION

BRIDGE

DRIVE

DOOR

MOTION

BRIDGEC
A

R
 1

C
A

R
 2

C
AR

 3
C

A
R

 4
C

A
R

 5
C

AR
 6

C
A

R
 7

B
U

IL
D

IN
G

 B
U

S

D
IS

PA
TC

H

4

Where Are We Now?
 Where we’ve been:

• Embedded programming techniques
• Linking C to assembly

 Where we’re going today:
• More Embedded programming techniques

– Some 15-213 material, but we’ve found it doesn’t stick for all students
• Multi-precision math
• Design reviews

 Where we’re going next:
• Memory bus
• Economics / general optimization
• Debug & Test
• Serial ports

• Exam #1

5

Preview
 REMINDER: Pre-Labs are Individual Effort! (like “homework”)

 Bit-based optimizations
• Bit masking
• Division and multiplication via shifting
• Counting bits

 Multiple precision math – doing math bigger than CPU size
• Addition/subtraction
• Multiplication
• A little division

 Peer Reviews
• Reviews are very effective at finding defects
• Basic good review practices

6

Buffer Wrap-Around Trick
 Let’s say you have a buffer that is 256 bytes long

• Want to fill bytes 0 … 255, then wrap-around to 0

• Slow and really obvious code:
x[i] = z; i = (i + 1) % 256;

» But, division is slow!

• “Obvious” faster code:
x[i++] = z; if (i==256) {i = 0;}

• “Tricky” code:
x[i++] = z; i = i & 0xFF;

 In general, i = i & (2N-1) for a buffer size of 2N

• For example, what hex value do you AND with for a 1024-element buffer?

• What if buffer size isn’t an even power of two?

7

Optimization: “Strength Reduction”
 Convert division and multiplication into shifting

• Can be faster than multiply if chip doesn’t have a hardware multiplier
• Usually only worth doing for small integers or numbers near power of 2
• Works for both signed and unsigned numbers

 Multiply by shifting:
• Multiply by 2N by shifting left N bits

• A = A * 8; => A = A << 3;
• B = B * 512 => B = B << 9;

 Complex multiply by selective shift & add:
• A = A * 9 => A = (A<<3) + A;
• A = A * 15 => A = (A)+(A<<1)+(A<<2)+(A<<3);
• A = A * 15 => A = (A<<4)-(A);

8

Division Via Shifting
 Unsigned division is easy

• unsigned int n;
• n = n / 8; => n = n >> 3;

 But, signed division is more difficult!
• Integer division rounds toward zero

(symmetric around zero)
• Shifting rounds down (asymmetric at zero)

 For signed division, answer isn’t quite right!
• (How to work around this is a lab topic)
• Convince yourself you have the right answer via

a test program

i i>>2 i/4
-8 -2 -2
-7 -2 -1
-6 -2 -1
-5 -2 -1
-4 -1 -1
-3 -1 0
-2 -1 0
-1 -1 0
0 0 0
1 0 0
2 0 0
3 0 0
4 1 1
5 1 1
6 1 1
7 1 1
8 2 2

9

The Carry Bit
 Remember that the basic purpose of a carry bit is multi-precision math

• Example: 16-bit addition done with 8-bit operations:
LDAA X_lo ; add low byte Z = X + Y
ADDA Y_lo ; generate carry for high byte
STAA Z_lo

LDAA X_hi ; add high byte Z = X + Y
ADCA Y_hi ; incorporate carry from low byte
STAA Z_hi

 Can generalize to as many bits as you want
• Lowest “chunk” is ADDA; all other chunks are ADCA

OR
• Use all ADCA and make sure to use CLC before first set of adds

• Subtract is similar – use subtract with borrow (“borrow” is the carry bit)

10

Using The Carry Bit As An Error Return Flag
 Robust code needs error handling

• But, how do you know an error happened?
• Sometimes can use an “illegal” return value (e.g., null pointer)
• But what if all values are legal?

Use an “out of band” value … such as the carry bit
…
JSR MyRoutine
BCS error_handler

…
… … … … … … … … … … … … … … … … … … …
MyRoutine:

… ; do processing
CLC ; normal return here
RTS

ErrorRtn:
STC ; set carry bit as error flag
RTS

11

Flag Manipulation Via Carry Bit
 Convert a “dirty” flag to a clean flag in an integer

• Clean flag in C is 1=True or 0=False
– “Dirty” non-zero flag is non-zero, but could be anything
– C compilers may waste a lot of code cleaning flags to conform to the standard

• On some CPUs, especially with high branch penalties this is a major win;
on HC12 it’s not worth doing

; assume starting value is in A (5 bytes / 3 cycles)
; simple way with a branch
TSTA ; sets flags based on contents of A
BEQ zero_val
LDAA #1 ; load a clean carry bit; result in A

Zero_val:
… - - - - - - - alternate code here- - - - - - - - - - - -
; tricky way with carry bit (result in B)
LDAB #1 ; default value is true
DECA ; false value is now $FF instead of $00
ADDA #1 ; generates carry-out if false
SBCB #0 ; subtract one only if false
; 7 bytes total / 4 cycles, but no branch

12

Computing Parity
 Parity of a number is xor of all the bits

• Parity of 8-bit value = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7

 Brute force way (k operations for k bits):
x = ((x) ^ (x>>1) ^ (x>>2) ^ (x>>3) ^ (x>>4) ^ (x>>5) ^ (x>>6) ^ (x>>7)) & 1;

 Better way (log2(k) operations for k bits):
x = x ^ x>>4; // parity for 8 bits
x = x ^ x>>2;
x = (x ^ x>>1) & 1;

x = x ^ x>>16;// parity for 32 bits
x = x ^ x>>8;
x = x ^ x>>4;
x = x ^ x>>2;
x = (x ^ x>>1) & 1;

 How many steps (lines of code according to above style) for 128 bits?

13

Counting Bits
 Sometimes you need to know how many 1 bits are in a word

• Some mainframes actually had “bit count” instructions!
• Some companies ask this question as a job interview question

 Simple way (16-bit example)
// input in integer “value”
int count = 0;
for (int i = 0 ; i < 16; i++)

{ if ((value >> i) & 1) count++;}

 Usually more efficient to shift value as well and avoid “if”:
int count = 0;
for (int i = 0 ; i < 16; i++)

{ count += value & 1;
value = value >> 1;

}

14

Handy Tool – Lookup Table
 Lookup table is a precomputed set of answers stored for later use

• At compile time or when program starts, do the computation once
• Store results in an array
• Instead of computing again at run time, just look up the answer
• More advanced: store samples from continuous data (e.g., trig functions) and interpolate

 Example: pre-computing a lookup table for bit counting
uint8 count_table[….] = {0, // 0x00 zero bits

1, // 0x01 1 bit set
1, // 0x02 1 bit set
2, // 0x03 2 bits set
1, // 0x04
2, // 0x05
2, // 0x06
3, // 0x07
1, // 0x08
2, // 0x09
2, // 0x0A

 Usage: bitCount = table[0x0A]; // get number of bits=2 in hex value 0x0A

15

Counting Bits – Better Ways
 In assembler, can use shifting and carry

• Shift bits into CY bit
• Do ADC into sum
• Stop not after 16 iterations, but when residual word is zero

 Even better is to use lookup tables
• One 256-entry lookup table for 8 bit value (preload with counts)
• But if memory is tight, use a 16-entry table

uint8 count_table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
// input in integer “value”
count = count_table[value & 0xF] + count_table[(value>>4) & 0xF];

• (similarly, can use a 4-bit or 8-bit table for 16 and 32 bit data words)
• On Pentium-III, an 8-bit table was faster than a 16-bit table because

8-bit table fits completely into L1 cache

16

Multi-Precision Math
 What happens if you need big integers and you have a small CPU?

• 16-bit+ math on an 8-bit CPU
• 32-bit+ math on a 16-bit CPU
• 64-bit math on a 32-bit CPU

 To do this, you need multi-precision math
• Most embedded engineers end up implementing multiprecision math sometime
• Some C compilers have it, some don’t

– CW tools don’t support 64 bit integers
– Sometimes you need it for assembly language
– For every new CPU, someone needs to write the math routines

• Does this really happen – yes!
– Cryptographic operations (e.g., mod function on 128 bits)
– There are 31,557,600 seconds in a year – that won’t fit in 16 bits

» Number of microseconds in a year won’t fit either!

17

Example: 16-bit Add & Subtract For 8-bit CPU
X: DS.B 2
Y: DS.B 2
Z: DS.B 2

 Z = X + Y
LDAA X+1
ADDA Y+1
STAA Z+1

LDAA X
ADCA Y
STAA Z

• (be sure to get x,y order
right for subtract!)

 Z = X - Y
LDAA X+1
SUBA Y+1
STAA Z+1

LDAA X
SBCA Y
STAA Z

18

32-Bit Add For 8-Bit CPU
X: DS.B 4 ; assume this byte order:
Y: DS.B 4 ; (hi) 0, +1, +2, +3 (lo)
Z: DS.B 4

 Z = X + Y (subtract is similar)
LDAA X+3
ADDA Y+3
STAA Z+3

LDAA X+2
ADCA Y+2
STAA Z+2

LDAA X+1
ADCA Y+1
STAA Z+1

LDAA X
ADCA Y
STAA Z

19

Multiplication
 Remember how we do unsigned decimal multiplication?

• Binary multiplication is the same process, but “digits” are 8 bits each

• 16 * 16 bits => 8-bit “digits”; 16-bit partial products and 32-bit result
• Also works for 16-bit “digits” making 64-bit result

W:X * Y:Z

 X

 +

W

Y

X

Z

X*Z
W*Z
Y*X

Y*W

RESULT

20

Multiplication – Simple C Code
// 16x16 gives 32-bit unsigned multiply
uint16 a, b;
uint32 w, x, y, z; // 32-bits for
compiler

uint32 result;
w=((a>>8)&0xFF); x = (a & 0xFF);
y=((b>>8)&0xFF); z = (b & 0xFF);
result = x*z;
result += (w*z)<<8;
result += (y*x)<<8;
result +=(y*w)<<16;

• uint32 used for w,x,y,z so compiler properly maintains 32-bit sums

21

Multiplication – Lookup Table Method
 Use a lookup table with 8x8 = 16 bit products

• Instead of individual multiply instructions – some CPUs don’t have a MULT instruction!
• 8x8=>16 bit table is 128KB (too big for many embedded CPUs)
• 4x4=>8 bit table is only 256 bytes

// 8x8 gives 16-bit unsigned multiply/tables
uint8 prod_table[256]; // init with products
#define table_mult(a,b) prod_table[(a&0F)<<4|b&0F]

uint8 a, b;
uint16 w, x, y, z; // 16-bits for compiler
uint16 result;
w=((a>>4)&0xF); x = (a & 0xF);
y=((b>>4)&0xF); z = (b & 0xF);
result = table_mult(x,z);
result += table_mult(w,z)<<4;
result += table_mult(y,x)<<4;
result += table_mult(y,w)<<8;

22

Multiplication – Shift And Add
 Binary multiplication instead of “decimal” or base 256 multiplication

• This is what is used by most low-end hardware
• Complexity proportional to #bits (1 clock cycle per bit + overhead)
• E.g., HC12 multiply is 12 clocks for 8x8 unsigned multiply

– 4 clocks overhead plus one clock per bit for 8 bits

// code to multiply two uint8 values
uint8 a; uint16 b; // b starts with 8 bits
uint16 result;
uint8 i;
result = 0; // zero shift+add accumulator
for (i=0; i<8; i++)
{ if (a & 1) result += b;
a = a >> 1; b = b << 1;

}

23

Better Shift And Add Multiply
 Trick – careful analysis saves space

• Shift one operand out to the right in low part of variable
• Accumulate result in high part of variable
• Very useful if you only have one register with both operand and result
• Cuts from two shifts per iteration to one shift (CY bit used too!)
• BUT only works for positive integers (top bit 0) unless you catch carry out bit in asm!!

uint32 w, x; // but only hold 16 bit values
uint32 result;
result = x; // high is 0; low is x
w = w << 16; // align with high byte for adds
for (uint8 i=0; i<16; i++)
{ if (result & 1) {result = (result+w)>>1;}
else {result = result>>1;}

} // note: loop loses carry-out of result+w!
// (use ROR if in assembly language)

START: W0 0 0 0 0 WW1W2W3

X00 0 0 0 X1X2X3 RESULT

RESULT = X * W

Test lowest bit of result (X0); assume it’s 1 for this example
Add W:

Test lowest bit of result (X1); assume it’s 0 for this example

If rest of bits of X are all zero, when you’re done you get W * 1 = W

W0W1W2W3cy=0 X0X1X2X3 RESULT

RESULT
Shift right:

W1W2W30cy=0 X1X2X3W0

Shift right:
cy=0 W2W300 X2X3W0W1

W2W30 0 00 W0W1

25

Example (4 x 4 => 8 bits) For Assembly Language

0 0 0 0 0 W
W * = 1110X 1101 = * 10110110 = RESULT

111

10 0 0 0 011 RESULTStart

11cy=0 1 1 0 011 RESULT+W
00cy=0 1 1 1 110 RESULT>>1
10cy=0 0 1 1 101 RESULT>>1
10cy=1 0 0 1 101 RESULT+W
11cy=0 0 0 0 011 RESULT>>1
10cy=1 1 1 0 011 RESULT+W
01cy=0 0 1 1 110 RESULT>>1

26

Signed Multiply
 There are really tricky algorithms (usually with special hardware)

• Usually what you do in software is:
1. Compute sign of result (sign A ⊕ sign B)
2. Negate any negative inputs (2’s complement) to give absolute values
3. Multiply absolute values (works fine with tricky shift and add – top bit is zero!)
4. Negate result if sign of result was negative

 Other multiplication notes
• Don’t forget that size of product is twice size of operands!

• Signed and unsigned multiply are the same if you truncate to low order bits
– 16-bit x 16-bit => low 16-bits of result is same whether signed or unsigned

• In CPU hardware or microcode, 1 clock per bit
– Can perform conditional add and shift in one clock with the right data path

27

Division
 Division is also a shift-and-add operation

• Similar to pencil-and-paper division, but one bit at a time
• Generally also performed on positive integers
• Use the same registers for dividend, quotient, remainder; similar to multiply

1. Subtract divisor (e.g., 16 bits) from dividend (e.g., 32 bits)
2. If result is negative, add it back in; if not, record a “1” in quotient
3. Shift everything one bit to the right (32-bit shift)
4. Iterate to step 1 for all bits
5. When done, get a remainder (16 bits) and a quotient (16 bits)

• Details beyond scope of this class
– There is also a “nonrestoring” division which is more efficient; but tricky

» In hardware, works in one clock per bit (e.g., ~16 clocks for 32/16 => 16 bits)
– Wikipedia division article has algorithms

» But they look way more complicated than they need to be for assembly language

 We expect you to know how to multiply
• Division is purely bonus material
• If you have questions about doing division, see Prof. Koopman at office hours

28

Getting It Right Matters!

http://news.yahoo.com/s/ap/20060914/ap_on_bi_ge/segway_recall

2006

29

How Common Are Coding Defects?
 2012 Coverity scan of open source software results:

• Control flow issues: 3,464 errors
• Null pointer dereferences: 2,724
• Resource leaks: 2,544
• Integer handling issues: 2,512
• Memory – corruptions : 2,264
• Memory – illegal accesses: 1,693
• Error handling issues: 1,432
• Uninitialized variables: 1,374
• Unintialized members: 918

http://www.embedded.com/electronics-blogs/break-points/4415338/Coverity-
Scan-2012?cid=Newsletter+-+Whats+New+on+Embedded.com

30

REVIEWS
 Design reviews are the most cost effective way to eliminate defects

• Review early and often
• Review everything

• Reviews are MORE EFFICIENT than testing for catching bugs!

 In the context of the course:
• When your lab partner does something, double-check it thoroughly!
• When you do something, ask your lab partner to check it!

• In class, you’re also reviewing my slides (and finding occasional slips)

• The TAs and I review labs before release

31

Early Detection and Removal of Defects -
Peer Reviews - remove defects early and efficiently

1-2

10

5

20

200
50

Requirements

Design

Coding

Unit Test

System Test

Maintenance

Relative Cost to Fix Requirements Errors
(Davis - 1993) Product development stages

32

Defect Management – Then vs. Now

Defect Removal by Phase - Typical Project from 5+ years ago

0

50

100

150

200

250

300

System
Rqmts

Software
Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

N
um

be
r

Minor
Major

Defects are removed earlier

Defect Removal by Phase With Peer Reviews

0

50

100

150

200

250

300

System
Rqmts

Software
Rqmts

Arch
Design

Det Design Code Unit Test Integ Test System
Test

N
um

be
r

Minor
Major

(Source: Roger G., Aug. 2005)

(Real data from embedded industry)

33

Good Review Practices
 Check your egos at the door

• Nobody writes perfect code. Get over it.
 Critique the Products

• Don’t attack the author. Your turn in the hot seat will come soon enough!
 Find problems

• Don’t try to fix them; just identify them.
 Limit meetings to two hours

• 150-200 lines per hour; two hours max
 Avoid style “religious” debates

• Concentrate on substance. Ideally, use a style guideline and conform to that
• For lazy people, it is easier to argue about style than find real problems

 Inspect, early, often, and as formally as you can
• Expect reviews to take a while to provide value
• Keep records so you can document the value

[Wiegers95]

34

Honesty & Review Reports
 The point of reviews is to find problems!

• If we ask you to document a review, we expect that you found (and then fixed
after the review!) problems

• If you say you did a review and found no problems, that is a little fishy
– Perfect code is possible, but rare. (But if you get lucky, don’t worry.)
– We do not penalize you for bugs found in a review!

• If you say you did 10 reviews and found no problems then one of:
1. You didn’t do very careful reviews
2. Your lab partner walks on water and should immediately get a job for huge $$$
3. You didn’t actually do the reviews

Most likely, it is bin #1 or bin #3; please avoid those bins.

(No, we don’t want you to make up problems just to report them)

35

Issue Log For Course Reviews
 Include the following information:

• Developer name
• Reviewer name
• File name
• Date of review
• How long the review took and length of file (non-blank lines)
• List of defects found
• Metrics:

– Lines reviewed per hour (varies depending on complexity of code)
– Defects found per hour (varies depending on complexity and defect density)

 Real reviews are more formal and involve larger chunks of things
• We’re just trying to give you a feel for how these things work

36

Review
 Bit-based optimizations

• Strength reduction
• Counting bits
• Parity

 Multiple precision math
• Addition/subtraction
• Multiplication in gory detail
• Division (just a general idea)

 Reviews
• Reviews are very effective at finding defects
• Basic good review practices

37

Lab Skills
 Fast arithmetic

• Shifts as division

 Multi-precision arithmetic
• Base lab: multi-precision addition/subtraction

multi-precision multiplication
• Bonus: division
• Non-restoring division with a single shift-chain for dividend, quotient, and

remainder is likely to make your brain hurt.
– If you find multiplication easy you should give it a try, but…
– Don’t say we didn’t warn you!

 Each partner review code before hand-in
• Use the review report format

– Yes, these are “toy” reviews. The point is for you to figure out the process without
spending a lot of time on the mechanics

	Lecture #7�Bit Hacking, Multiprecision Math,�Peer Reviews
	Example: Elevator Controllers
	Embedded Distributed Architecture
	Where Are We Now?
	Preview
	Buffer Wrap-Around Trick
	Optimization: “Strength Reduction”
	Division Via Shifting
	The Carry Bit
	Using The Carry Bit As An Error Return Flag
	Flag Manipulation Via Carry Bit
	Computing Parity
	Counting Bits
	Handy Tool – Lookup Table
	Counting Bits – Better Ways
	Multi-Precision Math
	Example: 16-bit Add & Subtract For 8-bit CPU
	32-Bit Add For 8-Bit CPU
	Multiplication
	Multiplication – Simple C Code
	Multiplication – Lookup Table Method
	Multiplication – Shift And Add
	Better Shift And Add Multiply
	Slide Number 24
	Example (4 x 4 => 8 bits) For Assembly Language
	Signed Multiply
	Division
	Getting It Right Matters!
	How Common Are Coding Defects?
	REVIEWS
	Early Detection and Removal of Defects -
	Defect Management – Then vs. Now
	Good Review Practices
	Honesty & Review Reports
	Issue Log For Course Reviews
	Review
	Lab Skills

