Lecture #/

Bit Hacking,
Multiprecision Math,
Peer Reviews

18-348 Embedded System Engineering
Philip Koopman
Wednesday, 3-Feb-2016

) ERGINEERTvG Larnegie
© Copyright 2 Philip Koopman, All Rights Mellon

Example: Elevator Controller

¢ Motor control B — — — =y
 Firm real time &
 Safety critical
e Mechanical interlocks
e Fail safe

¢ Door control
o Soft real time
« Somewhat safety critical
e Mechanical interlocks
e Fail safe

¢ Many other subsystems

¢ Most electronics for 1/0 and
power (replaces relays)

I

(HH Elevator) ¢

Embedded Distributed Architecture

¢ Separate Control Systems for many functions
* (Real elevators have more than are shown here.)

REMOTE
GROUP O MONITORING
BRIDGE
BUILDING
PR : CONTROL

CAR O

OPERATION

MOTION

DISPATCH
BUILDING BUS

DRIVE PR o8

DOOR :GROUP 7 !

Where Are We Now?

¢ Where we’ve been:
e Embedded programming techniques
« Linking C to assembly

¢ Where we’re going today:

* More Embedded programming techniques
— Some 15-213 material, but we’ve found it doesn’t stick for all students

e Multi-precision math
e Design reviews

¢ Where we’re going next:
 Memory bus
e Economics / general optimization
e Debug & Test
« Serial ports

e Exam #1

Preview
¢ REMINDER: Pre-Labs are Individual Effort! (like “homework’)

¢ Bit-based optimizations
« Bit masking
 Division and multiplication via shifting
e Counting bits

¢ Multiple precision math — doing math bigger than CPU size
« Addition/subtraction
« Multiplication
o A little division

¢ Peer Reviews
* Reviews are very effective at finding defects
e Basic good review practices

Buffer Wrap-Around Trick

¢ Let’s say you have a buffer that is 256 bytes long
o Wantto fill bytes 0 ... 255, then wrap-around to O

« Slow and really obvious code:
X[I]=2z; 1=(+1) % 256;

» But, division is slow!

e “Obvious” faster code:
x[i++] = z; if (i==256) {i=0;}

e “Tricky” code:
X[I++] =z; 1=1& OXFF;

¢ Ingeneral, i=1& (2N-1) for a buffer size of 2N
* For example, what hex value do you AND with for a 1024-element buffer?

o What if buffer size isn’t an even power of two?

Optimization: “Strength Reduction”

¢ Convert division and multiplication into shifting
o (Can be faster than multiply if chip doesn’t have a hardware multiplier
» Usually only worth doing for small integers or numbers near power of 2
* Works for both signed and unsigned numbers

¢ Multiply by shifting:
o Multiply by 2N by shifting left N bits

e A=A*8§;
e B=B*512

=> A=A<<3;
=> B=B<<9;

¢ Complex multiply by selective shift & add:

« A=A*9
« A=A*15
« A=A*15

=> A = (A<<3) + A;
=> A = (A)+(A<<1)+(A<<2)+(A<<3);
=> A = (A<<4)-(A);

Division Via Shifting

¢ Unsigned division Is easy i>>2 4

e unsigned int n;

e n=n/8; => n=n>>3;

¢ But, signed division is more difficult!

 Integer division rounds toward zero

(symmetric around zero)

 Shifting rounds down (asymmetric at zero)

¢ For signed division, answer isn’t quite right!

* (How to work around this is a lab topic)

« Convince yourself you have the right answer via

a test program

N|lRr|R|R|[RP|O|O|C|O L L el
SEREN RSN IS S ol Foll ol Nol ol Ne N e ISN N N N I

The Carry Bit

¢ Remember that the basic purpose of a carry bit is multi-precision math
« Example: 16-bit addition done with 8-bit operations:

LDAA
ADDA
STAA

LDAA
ADCA
STAA

X _lo ; add low byte Z =X +Y

Y 1o ; generate carry for high byte

Z 1o

< X
o O O

; add high byte Z =X +Y
, Incorporate carry from low byte

N

¢ Can generalize to as many bits as you want
o Lowest “chunk” is ADDA; all other chunks are ADCA

OR

o Use all ADCA and make sure to use CLC before first set of adds

« Subtract is similar — use subtract with borrow (“borrow” iIs the carry bit)

Using The Carry Bit As An Error Return Flag

¢ Robust code needs error handling
e But, how do you know an error happened?
e Sometimes can use an “illegal” return value (e.g., null pointer)

o But what if all values are legal?
Use an “out of band” value ... such as the carry bit

JSR MyRoutine
BCS error_handler

MyRoutine:

;, do processing
CLC . hormal return here
RTS
ErrorRtn:
STC , set carry bit as error flag

RTS

Flag Manipulation Via Carry Bit

¢ Converta “dirty” flag to a clean flag in an integer

o Cleanflag in Cis 1=True or O=False
“Dirty” non-zero flag is non-zero, but could be anything

— C compilers may waste a lot of code cleaning flags to conform to the standard
On some CPUs, especially with high branch penalties this is a major win;
on HC12 it’s not worth doing

; assume starting value i1s In A (6 bytes / 3 cycles)

, simple way with a branch
; sets flags based on contents of A

TSTA

BEQ zero_ val

LDAA #1 , load a clean carry bit; result In A
Zero_val:

——————— alternate code here

; trlcky way with carry bit (result 1In B)
LDAB #1 ; default value 1s true
DECA ; False value 1s now $FF i1nstead of $00
ADDA #1 , generates carry-out 1f false
#0 , Subtract one only 1f false

SBCB
; 7 bytes total / 4 cycles, but no branch
11

Computing Parity

¢ Parity of a number is xor of all the bits

o Parity of 8-bit value = x0 @ x1 ® x2 ® x3 ® x4 @ X5 @ X6 ® X7

¢ Brute force way (k operations for k bits):

X = ((X) * (x>>1) * (x>>2) ™ (x>>3) * (x>>4) * (x>>5) * (x>>6) * (x>>7)) & 1

¢ Better way (log2(k) operations for k bits):

X =X "N x>>4; [/ parity for 8 bits
X =X"NX>>2;
X=X"x>>1) & 1;

X=XNx>>4;

X=XMNX>>2;

X = X x>>16;// parity for 32 bits

X = XN X>>8; X=xMx>>1;
— N .

X=X X>>4, x=x&1;

X =XNX>>2:

Parity for 8 bits;

X=»bits= JKLMNPAQR
bits= J KL M (NA) (PAK) (QAL) (RMM)
bits = - - (QMANAN) - (RAMAPAK)
bits = - (RAMAPAKAQALANA)
bits= 0000 000 (parity)

X=X"x>>1) & 1;

¢ How many steps (lines of code according to above style) for 128 bits?

12

Counting Bits

¢ Sometimes you need to know how many 1 bits are in a word
« Some mainframes actually had “bit count” instructions!
e Some companies ask this question as a job interview guestion

¢ Simple way (16-bit example)
/[input In integer “value”
Int count = 0;
for (inti=0;1<16;i++)
{if ((value >>1) & 1) count++;}

¢ Usually more efficient to shift value as well and avoid “if”:
Int count = 0;
for (inti=0;1<16; i++)
{ count += value & 1,
value = value >> 1;

}

13

Handy Tool — Lookup Table

¢ Lookup table is a precomputed set of answers stored for later use
« At compile time or when program starts, do the computation once
o Store results in an array
» Instead of computing again at run time, just look up the answer
« More advanced: store samples from continuous data (e.qg., trig functions) and interpolate

¢ Example: pre-computing a lookup table for bit counting
uint8 count_table[....] = {0, // 0x00 zero bits

[/ 0x01 1 bit set

[/ 0x02 1 bit set

[/ 0x03 2 bits set

I/ 0x04

I/ 0x05

/[0x06

I/ 0x07

// 0x08

/[0x09

I/ OX0A

N NP WONMNNPEPE NP P

¢ Usage: bitCount = table[Ox0A]; // get number of bits=2 in hex value 0x0A

14

Counting Bits — Better Ways

¢ In assembler, can use shifting and carry
o Shift bits into CY bit
« Do ADC into sum
« Stop not after 16 iterations, but when residual word is zero

¢ Even better is to use lookup tables
* One 256-entry lookup table for 8 bit value (preload with counts)
o But if memory is tight, use a 16-entry table

uint8 count_table[16]=4{0,1,1,2, 1,2,2,3, 1,2,2,3, 2,3,3,4}
/[input in integer “value”
count = count_table[value & OxF] + count_table[(value>>4) & OxF];

o (similarly, can use a 4-bit or 8-bit table for 16 and 32 bit data words)

e On Pentium-I11, an 8-bit table was faster than a 16-bit table because
8-bit table fits completely into L1 cache

15

Multi-Precision Math

¢ What happens if you need big integers and you have a small CPU?
e 16-bit+ math on an 8-bit CPU
e 32-bit+ math on a 16-bit CPU
e 64-bit math on a 32-bit CPU

¢ To do this, you need multi-precision math
* Most embedded engineers end up implementing multiprecision math sometime
« Some C compilers have it, some don’t
— CW tools don’t support 64 bit integers
— Sometimes you need it for assembly language
— For every new CPU, someone needs to write the math routines
» Does this really happen — yes!
— Cryptographic operations (e.g., mod function on 128 bits)

— There are 31,557,600 seconds in a year — that won’t fit in 16 bits
» Number of microseconds in a year won’t fit either!

16

Example: 16-bit Add & Subtract For 8-bit CPU

X:DS.B 2 « (be sure to get x,y order
Y:DS.B 2 right for subtract!)
Z: DS.B 2
¢L=X+Y ¢Z=X-Y
LDAA X+1 LDAA X+1
ADDA ¥+1 SUBA Y+1
STAA Z+1 STAA Z+1
LDAA X LDAA X
ADCA Y SBCA Y

STAA Z STAA 7

17

32-Bit Add For 8-Bit CPU

X: DS.B 4 , assume this byte order:
Y: DS.B 4 , (hr) 0, +1, +2, +3 (l1o)
Z-DS.B 4

¢ Z=X+Y (subtractis similar)

LDAA X+3 OAA X1
ADDA Y+3 ADCA Vit
STAA Z+3 STAA Z+1
LDAA X+2 oAA X
ADCA Y42 DA
STAA Z+2

STAA Z

Multiplication

¢ Remember how we do unsigned decimal multiplication?
« Binary multiplication is the same process, but “digits” are 8 bits each

W:X *Y:Z W
X Y Z
X*Z
W*Z
Y*X
. Y*W
RESULT

o 16 * 16 bits => 8-bit “digits”; 16-bit partial products and 32-bit result
» Also works for 16-bit “digits” making 64-bit result

Multiplication — Simple C Code

// 16x16 gives 32-bit unsigned multiply
ulntle a, b;

uint32 w, X, vy, z,; // 32-bits for
compiler

ulnt32 result;

w=((a>>8)&0xFF) ; X = (a & OxFF);
y=((b>>8)&0XFF) ; Zz = (b & OxFF);
result = X*Z;
result += (w*z2)<<8;

result += (Y*x)<<8;

result +=(y*w)<<16;

e uint32 used for w,X,y,z so compiler properly maintains 32-bit sums

20

Multiplication — Lookup Table Method

¢ Use a lookup table with 8x8 = 16 bit products
» Instead of individual multiply instructions — some CPUs don’t have a MULT instruction!
o 8x8=>16 bit table is 128KB (too big for many embedded CPUs)
o 4x4=>8 bit table is only 256 bytes

// 8x8 gives 16-bit unsigned multiply/tables
uint8 prod table[256]; // init with products
#define table mult(a,b) prod table[(a&0F)<<4]|b&0OF]

uint8 a, b;

uintle w, x, vy, z; // 16-bits for compiler
uintle result;

w=((a>>4)&0xF) ; X (a & OxF);
y=((b>>4)&0xF) ; z = (b & OxF);

result = table mult(x,z);
result += table mult(w,z)<<4;
result += table mult(y,x)<<4;

result += table mult(y,w)<<8;

21

Multiplication — Shift And Add

¢ Binary multiplication instead of “decimal” or base 256 multiplication
e This is what is used by most low-end hardware
e Complexity proportional to #bits (1 clock cycle per bit + overhead)

e E.g., HC12 multiply is 12 clocks for 8x8 unsigned multiply
— 4 clocks overhead plus one clock per bit for 8 bits

// code to multiply two uint8 values
urnt8 a; urntle b; // b starts with 8 bits
urntlé result;
urnt8 1;
result = 0; // zero shift+add accumulator
for (1=0; 1<8; I1++)
{ 1f (a & 1) result += b;
a=a>1; b =b << 1;

}

22

Better Shift And Add Multiply

¢ Trick — careful analysis saves space
 Shift one operand out to the right in low part of variable
o Accumulate result in high part of variable
» Very useful if you only have one register with both operand and result
o Cuts from two shifts per iteration to one shift (CY bit used too!)
« BUT only works for positive integers (top bit 0) unless you catch carry out bit in asm!!

uint32 w, x; // but only hold 16 bit values

uitnt32 result;

result = x; // high 1s 0; low Is X

w=w << 16; // align with high byte for adds

for (uint8 1=0; 1<16; I1++)

{ 1T (result & 1) {result = (result+w)>>1;}
else {result = result>>1;}

} 7/ note: loop loses carry-out of result+w!
// (use ROR 1f 1In assembly language)

23

RESULT = X*W

START:

W3

W2

W1

WO

0

0

0

0

0

0

0

0

X3

X2

X1

X0

W

RESULT

Test lowest bit of result (X0); assume it's 1 for this example

Add W:
cy=0

Shift right:
cy=0

W3

W2

W1

WO

X3

X2

X1

X0

0

W3

W2

W1

WO

X3

X2

X1

RESULT

RESULT

Test lowest bit of result (X1); assume it’s O for this example

Shift right:
cy=0

If rest of bits of X are all zero, when you're done youget W*1=W

0

0

W3

W2

W1

WO

X3

X2

0

0

0

0

W3

W2

W1

WO

Example (4 x 4 => 8 bits) For Assembly Language
W * X = 1110 * 1101 = 10110110 = RESULT

1 1100 00 0 W
Start 0 00 0 1 1 0 (1) RESULT
+Woey=0 1 1 1 01 1 0 1| RESULT
>>1 cy=0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 ‘1 (@) RESULT
>>1 cy=0 ‘0 ‘0 ‘1 ‘1 ‘1 ‘0 ‘1 (1) RESULT
+W cy=1 0 0 0 1 1 0] 1 1 RESULT
>>1 ¢cy=0 ‘1 ‘0 ‘0 ‘0 ‘1 ‘1 ‘0 (1) RESULT
+W ¢cy=1 0 1 1 0 1 1 0 1 RESULT
>>1 cy=0 ‘1 *0 “1 ‘1 ‘0 ‘1 ‘1 ‘0 RESULT

Signed Multiply

¢ There are really tricky algorithms (usually with special hardware)

o Usually what you do in software is:
1. Compute sign of result (sign A @ sign B)
2. Negate any negative inputs (2’s complement) to give absolute values
3. Multiply absolute values (works fine with tricky shift and add — top bit is zero!)
4. Negate result if sign of result was negative

¢ Other multiplication notes
 Don’t forget that size of product is twice size of operands!

e Signed and unsigned multiply are the same if you truncate to low order bits
— 16-bit x 16-bit => low 16-bits of result is same whether signed or unsigned

e In CPU hardware or microcode, 1 clock per bit
— Can perform conditional add and shift in one clock with the right data path

26

Division
¢ Division is also a shift-and-add operation
Similar to pencil-and-paper division, but one bit at a time
Generally also performed on positive integers
Use the same registers for dividend, quotient, remainder; similar to multiply
Subtract divisor (e.g., 16 bits) from dividend (e.g., 32 bits)
If result is negative, add it back in; if not, record a “1” in quotient
Shift everything one bit to the right (32-bit shift)

Iterate to step 1 for all bits
When done, get a remainder (16 bits) and a quotient (16 bits)

ok wnhE

Details beyond scope of this class

— There is also a “nonrestoring” division which is more efficient; but tricky
» In hardware, works in one clock per bit (e.g., ~16 clocks for 32/16 => 16 bits)
— Wikipedia division article has algorithms
» But they look way more complicated than they need to be for assembly language

¢ We expect you to know how to multiply
« Division is purely bonus material

« If you have questions about doing division, see Prof. Koopman at office hours
27

Getting It Right Matters!

Segway recalls scooters for injury risk AP Associated Press

AF Photo: Inan undated file photo
released by Seguay, Ine. isthe
Segmay iZ2 Personal
Transporter.Seguay...

By MICHAEL P. REGARM, AF Business Wiriter
2006

MEW YORK - Segway Inc. is recalling all 23,200 of the self-balancing scooters it has
shipped because of a software glitch that can make its wheels unexpectedly reverse
direction, throwing off the rider 8and in at least one incident, break some teeth.

The L5,

Consumer Product Safety Commission @ on Thursday said consumers should stap
using the wvehicles immediately. Seqway is cooperating on the woluntary recall.

Sefway has received six reports of problems with the Personal Transporter, resulting in
head and wrist injuries.

segway 15 offering its customers, which include more than 150 police departments
around the world, a free software upgrade that will fix the problem. The upgrades will be
done at Segway's 100 dealerships and service centers around the world, according to
Sefway spokeswornan Carla Vallone. The Bedford, M.H., company will pay to ship the
devices to the appropriate center if need be.

It is the secand time the scooters, which sell far about $4,000 to $5 500, have been
recalled since they first went on sale in 2002, The 2003 recall invalaed the first 6,000 of
the devices sold, and involved a problerm that could cause riders to fall off the device
when was the battery depleted.

segway Chief Technology Officer Doug Field, who has been involved with the
development of the device since its earliest days, said the problem that sparked the
latest recall was found while the company was testing its new model. He said a wery
unusual and specific set of conditions can cause the problem.

http://news.yahoo.com/s/ap/20060914/ap_on_bi_ge/segway_recall 28

How Common Are Coding Defects?

¢ 2012 Coverity scan of open source software results:
« Control flow issues: 3,464 errors
* Null pointer dereferences: 2,724
* Resource leaks: 2,544
 Integer handling issues: 2,512
e Memory — corruptions : 2,264
 Memory - illegal accesses: 1,693
« Error handling issues: 1,432
« Uninitialized variables: 1,374
* Unintialized members: 918

http://www.embedded.com/electronics-blogs/break-points/4415338/Coverity-

Scan-2012?cid=Newsletter+-+Whats+New+on+Embedded.com

29

REVIEWS

¢ Design reviews are the most cost effective way to eliminate defects
* Review early and often
* Review everything

* Reviews are MORE EFFICIENT than testing for catching bugs!

¢ In the context of the course:
When your lab partner does something, double-check it thoroughly!
When you do something, ask your lab partner to check it!

In class, you’re also reviewing my slides (and finding occasional slips)

The TAs and | review labs before release

30

Early Detection and Removal of Defects -

Peer Reviews - remove defects early and efficiently

Relative Cost to Fix Requirements Errors

(Davis - 1993) Product development stages
1-2\ Requirements

/ > \ Design
/10 i
S 20\ e
/B0 speemes

/ 200 \ wanenance

31

Defect Management — Then vs. Now

(Real data from embedded industry)
Defects are removed earlier

Defect Removal by Phase - Typical Project from 5+ years ago
300
250
g 200
£ 150 O Minor
> .
Z 100 . MajOI’
50
Q0 === ‘ ‘ ‘ ‘ ‘ ‘
System Software Arch Det Design Code Unit Test Integ Test System
Rgmts Rgmts Design Test
Defect Removal by Phase With Peer Reviews
300
250
o 200 .
£ 150 0 Minor
Z 100 j B Major
50
0 - | ‘ . ‘ - ‘ - ‘ - ; =
System Software Arch Det Design Code Unit Test Integ Test System
Rgmts Rgmts Design Test

(Source: Roger G., Aug. 2005)

32

Good Review Practices

¢ Check your egos at the door
* Nobody writes perfect code. Get over it.
¢ Critique the Products
« Don’tattack the author. Your turn in the hot seat will come soon enough!
¢ Find problems
e Don’ttry to fix them; just identify them.
¢ Limit meetings to two hours
» 150-200 lines per hour; two hours max
¢ Avoid style “religious” debates
» Concentrate on substance. Ideally, use a style guideline and conform to that
* For lazy people, it Is easier to argue about style than find real problems
¢ Inspect, early, often, and as formally as you can
» EXpect reviews to take a while to provide value
« Keep records so you can document the value

[Wiegers95]
33

Honesty & Review Reports

¢ The point of reviews is to find problems!

« If we ask you to document a review, we expect that you found (and then fixed
after the review!) problems

 If you say you did a review and found no problems, that is a little fishy
— Perfect code is possible, but rare. (But if you get lucky, don’t worry.)
— We do not penalize you for bugs found in a review!

 If you say you did 10 reviews and found no problems then one of:
1. You didn’t do very careful reviews
2. Your lab partner walks on water and should immediately get a job for huge $$$
3. You didn’t actually do the reviews

Most likely, it is bin #1 or bin #3; please avoid those bins.

(No, we don’t want you to make up problems just to report them)

34

Issue Log For Course Reviews

¢ Include the following information:

Developer name

Reviewer name

File name

Date of review

How long the review took and length of file (non-blank lines)
List of defects found

Metrics:
— Lines reviewed per hour (varies depending on complexity of code)
— Defects found per hour (varies depending on complexity and defect density)

¢ Real reviews are more formal and involve larger chunks of things
o We’re just trying to give you a feel for how these things work

35

Review

¢ Bit-based optimizations
o Strength reduction
e Counting bits
o Parity

¢ Multiple precision math
« Addition/subtraction
e Multiplication in gory detail
« Division (just a general idea)

¢ Reviews
* Reviews are very effective at finding defects
« Basic good review practices

36

Lab Skills

¢ Fast arithmetic
e Shifts as division

¢ Multi-precision arithmetic

« Base lab: multi-precision addition/subtraction
multi-precision multiplication

 Bonus: division

» Non-restoring division with a single shift-chain for dividend, quotient, and
remainder Is likely to make your brain hurt.
— If you find multiplication easy you should give it a try, but...
— Don’t say we didn’t warn you!

¢ Each partner review code before hand-in

o Use the review report format

— Yes, these are “toy” reviews. The point is for you to figure out the process without
spending a lot of time on the mechanics

37

	Lecture #7�Bit Hacking, Multiprecision Math,�Peer Reviews
	Example: Elevator Controllers
	Embedded Distributed Architecture
	Where Are We Now?
	Preview
	Buffer Wrap-Around Trick
	Optimization: “Strength Reduction”
	Division Via Shifting
	The Carry Bit
	Using The Carry Bit As An Error Return Flag
	Flag Manipulation Via Carry Bit
	Computing Parity
	Counting Bits
	Handy Tool – Lookup Table
	Counting Bits – Better Ways
	Multi-Precision Math
	Example: 16-bit Add & Subtract For 8-bit CPU
	32-Bit Add For 8-Bit CPU
	Multiplication
	Multiplication – Simple C Code
	Multiplication – Lookup Table Method
	Multiplication – Shift And Add
	Better Shift And Add Multiply
	Slide Number 24
	Example (4 x 4 => 8 bits) For Assembly Language
	Signed Multiply
	Division
	Getting It Right Matters!
	How Common Are Coding Defects?
	REVIEWS
	Early Detection and Removal of Defects -
	Defect Management – Then vs. Now
	Good Review Practices
	Honesty & Review Reports
	Issue Log For Course Reviews
	Review
	Lab Skills

