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 Lifecycle approach to Autonomous Vehicle safety
 Historically we assume perfectly safe production release
 Need move to lifecycle adaptation model

– Operational metrics used as basis for
continuous improvement 

 Safety Performance Indicators (SPIs)
 Beyond “vehicle is acting unsafely”
 Beyond dynamic risk management
 Beyond run-time safety monitors

…

 ANSI/UL 4600 SPIs monitor safety case soundness

Overview

https://on.gei.co/2r2rjzg
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Conventional software safety engineering
 Do hazard and risk analysis (e.g., ISO 26262)
 Mitigate hazards; achieve acceptable risk
 Assume “perfect” for safety when deployed

– Human driver intervention to clean up loose ends

Autonomous system safety is about change
 Machine learning-based validation is immature
 Open, imperfectly understood environment

– Unknown unknowns, gaps in requirements, etc.
– Keep up with a constantly evolving real world

 System monitoring  safety/security updates

Big Changes In Safety Engineering for AVs

https://goo.gl/dBdSDM

Tartan Rescue’s
CHIMP in 2015
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Hazard and Risk Analysis for conventional systems
 List all applicable hazards
 Characterize the resultant risk
 Mitigate risk as needed, e.g., update design
 Iterate until all risks acceptably mitigated

Use various techniques to create hazard list
 Lessons learned from previous projects; industry standards
 Brainstorming & analysis techniques

– FMEA, Fault Trees, HAZOP, …. bring your own favorite approach …
Presumption all hazards covered before deployment
 Fully characterized operating environment

Safety Engineering: Hazards & Risks
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 Operating in the open world
 All hazards aren’t known at first
 Test, test, test until you have

uncovered enough hazards
 Safety Of The Intended Function (SOTIF)
 Operate in the real world
 Unknowns manifest “triggering events” (ISO 21448 terminology)
 Mitigate newly discovered hazards caused by triggering events
 Repeat until you stop seeing triggering events

 Limitation: residual unknown unknowns  (requirements gaps)
 Hypothesize you can find enough of the unknowns

Hazard Analysis for Novel, Open World Systems
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Driver does dynamic risk mitigation
Useful fiction: systems safe forever when released
 Driver expected to help mitigate risks & surprises
 Recalls for defects drivers can’t handle – not supposed to happen

Driver Assistance Feedback Model
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Conventional systems (in practice) too often:
 Ignore if not reproducible
 Blame it on the operator
 Educate operators on workarounds
 Try again to blame it on the operator
 VERY reluctantly do a software update

 This persists across domains:
 Power imbalance between victims and system designers
 Normalization of #MoralCrumpleZone strategies [https://bit.ly/3qX2D92]

 Poor adoption of software engineering practices
 The fact that the feedback loop is called a “recall”

Reaction To Incidents and Loss Events

https://bit.ly/35B7hlQ
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How Is The Recall Approach Working Out?
 Small sampling of NHTSA recalls (confirmed defects)

 22V-169 and many others: Backup camera & display failures
 21V-972: Parking lock system error leads to vans rolling away when parked
 21V-873 and MANY others: Airbags disabled
 21V-846: Phantom braking due to inconsistent software state after power up
 21V-109: Battery controller reset disconnects electric drive motor power
 20V-748: Improper fail-safe logic degrades brake performance
 20V-771: Malfunctions of wipers, windows, lights, etc. due to comms failure
 20V-557 and others: Airbags deploy too forcefully or when they should not
 17V-713: Engine does not reduce power due to ESP software defect
 15V-569: Unexpected steering motion causes loss of control
 15V-145: Unattended vehicle starts engine  carbon monoxide poisoning

See: https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html
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Machine Learning (ML) only learns things it has seen
 Learns by example
 Can be brittle; generalization is limited
 Spectacular failures for the unexpected

ML complicates safety engineering
 Safety engineering assumes “V” model
 Prone to brittleness to unexpected data variations
 Were there biases or gaps in training data?
 Assurance for rare objects and events in the real world?

– Safety tends to be limited by rare, high-consequence events

Autonomous Vehicles Are Even Worse

[Mitchells vs. Machines]
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Unusual road obstacles & conditions
 Strange behaviors
 Subtle clues

Incomplete Open World Requirements

http://bit.ly/2top1KD

http://bit.ly/2tvCCPK

https://dailym.ai/2K7kNS8

https://en.wikipedia.org/wiki/Magic_Roundabout_(Swindon)

https://goo.gl/J3SSyu
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The Real World: Heavy Tail Distribution

Common Things
Seen In Testing

Edge Cases
Not Seen In Testing

(Heavy Tail Distribution)
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Where will you be after 1 Billion miles of testing?
 At 100M miles per fatality, need perhaps 1 billion miles

Assume 1 Million miles between unsafe “surprises”
 Example #1:   

100 “surprises” @ 100M miles / surprise
 Example #2:   

100,000 “surprises” @ 100B miles / surprise
– Only 1% of surprises seen during 1B mile testing
– SOTIF fixes of triggering events don’t really help

 “Perfect when deployed” no longer a useful fiction
 We’re going to need feedback measurements from deployment

Why The Heavy Tail Matters

https://goo.gl/3dzguf
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Key Performance Indicator (KPI) approach is typical:
 Deviation from intended vehicle path
 Ride smoothness
 Hard braking incidents
 Disengagements during testing
 Coverage of defined scenario catalog
 Risk metrics such as Time to Collision

But how do we predict operational safety?
 Are KPIs good leading metrics for loss events?
 Does a particular KPI set cover all aspects of safety?
 How can we select KPIs for traceability to safety?

Which Metrics Should We Use?

https://bit.ly/2ZQcIYC
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 SPI (per ANSI/UL 4600):
 Measurement used to 

measure or predict safety
 Lagging SPI metrics (how it turned out):
 Arrival rate of adverse events

compared to a risk budget
– Example: Loss events (crashes) per hour

 Incidents (could have been a loss event) 
– Example: running a red light, wrong lane direction

Also need leading metrics to predict safety
 We can do that by linking to a safety case

Safety Performance Indicator (SPI)

pexels-dom-j-297927.jpg
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 Claim – a property of the system
 “System avoids hitting pedestrians”

 Argument – why this is true
 “Detect & maneuver to avoid”

 Evidence – supports argument
 Tests, analysis, simulations, …

 Sub-claims/arguments address
complexity
 “Detects pedestrians” // evidence
 “Maneuvers around detected pedestrians” // evidence
 “Stops if can’t maneuver” // evidence

Safety Cases for Autonomous Vehicles

… 
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 SPIs monitor the validity of safety case claims

SPIs Instrument a Safety Case

CLAIMS-ONLY
VIEW OF

SAFETY CASE

LAGGING
METRICS

LEADING
METRICS



17© 2022 Philip Koopman

 System Level SPIs:
 Road test incidents caught by safety driver in testing
 Simulator (SIL/HIL) incidents

 Subsystem SPIs:
 Vehicle Controls: compromised vehicle stability
 Path Planning: insufficient clearance to object
 Perception: false negative (non-detection)
 Prediction: unexpected object behavior

 Lifecycle SPIs:
 Maintenance errors
 Invalid configuration installed

Example SPIs
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 An SPI is a metric supported by evidence that uses a
threshold comparison to condition a safety case claim.
 Metric: measurement of performance, design quality, process 

quality, operational procedure conformance, etc.
 Threshold: acceptance test on metric value

– Often statistical (e.g., fewer than X events per billion miles)
 Evidence: data used to compute the metric
 Condition a claim: threshold violation falsifies a specific claim

– Argument for claim is (potentially) proven false by SPI
 Anything that does not meet all criteria is a KPI, not an SPI

 SPI violation: part of a safety case has been falsified

Detailed SPI Definition
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 SPI: direct measurement of claim failure
 Independent of reasoning (“claim is X … yet here is ~X)
 Partial measurement(s) OK; multiple SPIs for a claim OK

A falsified safety case claim:
 Not (necessarily) imminent loss event
 Safety case has some defect

Root cause analysis might reveal:
 Product or process defect
 Invalid safety argument
 Issue with supporting evidence
 Assumption error, …

SPIs and Lifecycle Feedback
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 Safety Case argues acceptable risk
 SPIs monitor validity of safety case

SPI-Based Feedback Approach
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 “Acts dangerously” is only one dimension of SPIs
 Violation rate of pedestrian buffer zones
 Time spent closer than safe following distance

Components meet safety related requirements
 False negative/positive detection rates
 Correlated multi-sensor failure rates

Design & Lifecycle considerations
 Design process quality defect rates
 Maintenance & inspection defect rates

 Is it relevant to safety?  Safety Case  SPIs

SPIs Go Beyond Overt Dangerous Behavior
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 Functionality (KPIs):
 Are all the features implemented?
 Does each feature work as intended?
 Is testing progress on track per schedule?

Runtime safety monitors:
 Triggers risk reduction during run time

 Safety Feedback (SPIs):
 Did runtime safety monitor miss something?
 Are there dangerous gaps in the Operational Design Domain?
 Are there problems with requirements, design, upkeep, etc.?
 Are there dangerous gaps in fault responses?

Quality vs. Runtime Monitor vs. SPI

https://bit.ly/2MaLkfY
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 Responsibility-Sensitive Safety (RSS) Scenario:

 KPI: is average following distance appropriate for driving conditions
 Runtime monitor: force an increase of following distance if too close
 SPIs: situation more dangerous than expected (e.g., ODD issues)

– Spent more time in too-dense traffic than expected
– Lead/own vehicle brake violate expectations (too often; too aggressive)
– Spent too long to recover from lead vehicle cut-in

Following Distance Example
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AV is safe enough to deploy because:
We’ve followed industry safety standards
 ISO 26262, ISO 21448, ANSI/UL 4600, …
 Safety culture is robust

 Known hazards have been mitigated
 Residual risk is acceptable at system level

 Arrival rate of unknowns is low
 Incidents which do not trigger runtime safing have low consequence

 Safety case has good SPI coverage
 SPIs usually detect unknowns without an actual crash
 System is fixed to mitigate unknowns before likely reoccurrence

Sketch of an AV Safety Argument

https://shutr.bz/3LyTr2H
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Removing human drivers makes safety much harder
 Tactical: run-time safety monitoring in vehicle
 Strategic: SPI monitoring across fleet
 Field feedback as lifecycle adaptation

 SPIs predict and monitor system safety
 KPIs: “how well do we drive?”
 SPIs: “how often are safety claims falsified?”
 SPIs can detect safety problems with no crash

 SPIs: are you as safe as you think you are?
 See ANSI/UL 4600 Chapter 16 for SPI guidance
 Field feedback via SPIs provides lifecycle safety adaptation

Conclusions

https://shutr.bz/38cKv4
u
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