

Prof. Philip Koopman

Carnegie Mellon University A Safety Case + SPI Metric Approach for Autonomous Vehicle Safety

Overview

Multi-scale metric & feedback loops

Design hazard analysis

...

- Operational risk mitigation
- Lifecycle discovery of surprises

Safety Performance Indicators (SPIs)

- Beyond "vehicle acted unsafely"
- Beyond real-time dynamic risk measurement
- It's all about monitoring safety case validity

Traditional Hazard Analysis

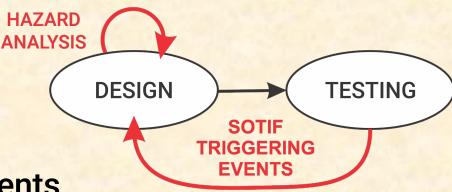
Risk Analysis (e.g., start with HARA)

- List all applicable hazards
- Characterize the resultant risk
- Mitigate risk as needed
- Document all risks acceptably mitigated
- Use various techniques to create hazard list
 - Lessons learned (previous projects; industry)
 - Brainstorming & analysis techniques
 - HAZOP, STPA, bring your own favorite approach ...

Limitation: unknown hazards

But, human is responsible for overall system safety

DESIGN

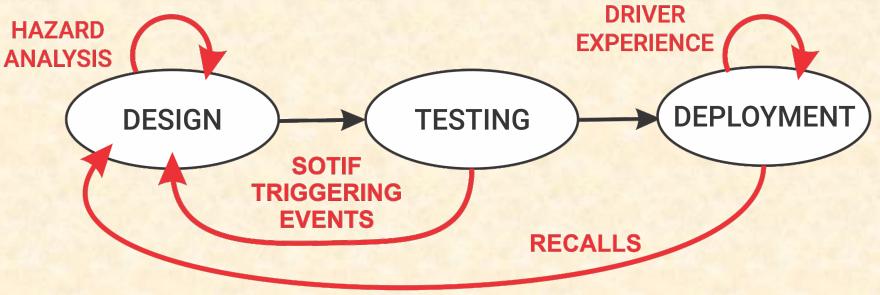

HAZARD

ANALYSIS

Carnegie

Hazard Analysis for ADAS

- Operating in the open world
 - All hazards aren't known
 - New hazards will appear
- Safety of the Intended Function (SOTIF)
 - Operate in the real world
 - Observe "triggering events"
 - Mitigate discovered hazards
 - Repeat
- Limitation: unseen triggering events
 - But, human is responsible for system safety



Carnegie

Pre-Autonomy & ADAS Feedback Model

Carnegie Mellon University

- Driver does dynamic risk mitigation
 Recalls for technical faults
 - Recalls are never supposed to happen

Hazard Analysis for Full Autonomy

- Still an open world with unknowns & changes
 - But ... no human driver responsible

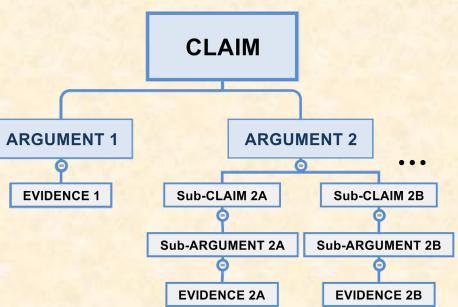
Use Positive Trust Balance

- Engineering rigor
- Practicable validation
- Strong safety culture and ...
- Field feedback to handle surprises

■ Good fit to UL 4600 → Safety Cases

TRUSTWORTHY POSITIVE RISK BALANCE

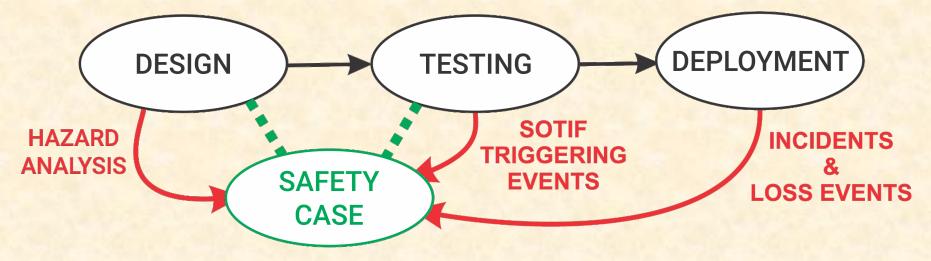
Carnegie


Mellon University

© 2022 Philip Koopman 6

Safety Arguments (Safety Case)

- Claim a property of the system
 - "System avoids pedestrians"
- Argument why this is true
 - "Detect & maneuver to avoid"
- Evidence supports argument
 - Tests, analysis, simulations, ...
- Sub-claims/arguments address complexity
 - "Detects pedestrians" // evidence
 - "Maneuvers around detected pedestrians" // evidence
 - "Stops if can't maneuver" // evidence

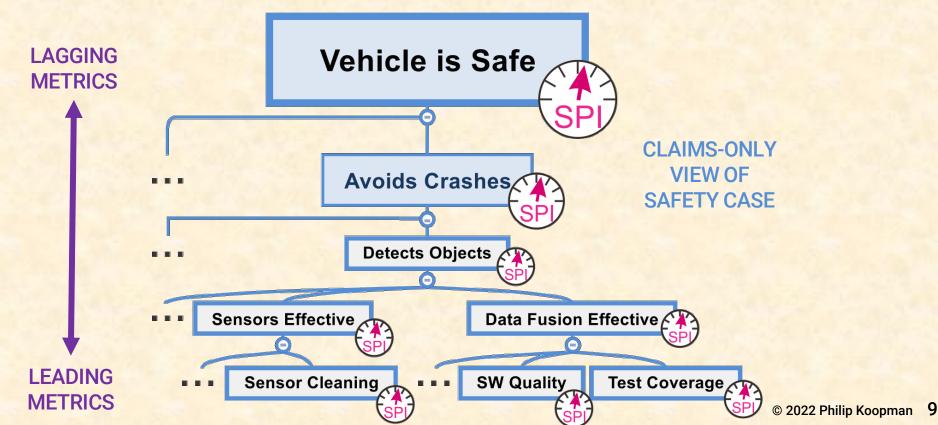


Carnegie

Default SDC Feedback Model

Safety Case argues acceptable risk – without driver

- Perhaps Positive Risk Balance ("safer than human")
- Update in response to incidents and loss events


But, deployment only yields lagging metrics

Carnegie

Safety Performance Indicators (SPIs)

SPIs monitor the validity of safety case claims

Examples of SPIs

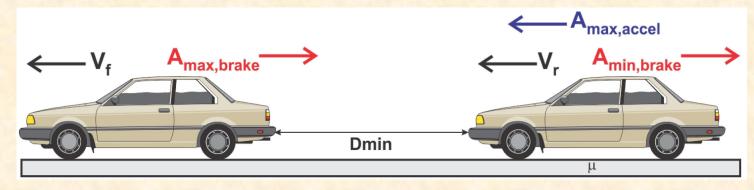
- "Acts dangerously" is only one dimension of SPIs
 - Violation rate of pedestrian buffer zones
 - Time spent too close per RSS following distance
- Components meet safety related requirements
 - False negative/positive detection rates
 - Correlated multi-sensor failure rates
- Design & Lifecycle considerations
 - Design process quality defect rates
 - Maintenance & inspection defect rates
- Is it relevant to safety? Safety Case SPIs

Carnegie

KPI vs. SPI Contrast

Distance to object:

- KPI: average and variance of clearance
- SPI: how often SDC violates safe clearance limit


Sensor effectiveness:

- KPI: detection rate, SNR per sensor
- SPI: concurrent multi-sensor detection failure
- SPI: loss of calibration
- Pedestrian perception:
 - KPI: accuracy, precision, recall
 - SPI: false negative more than <k> consecutive frames
 - SPI: systematic under-performance on sub-classes

Carnegie

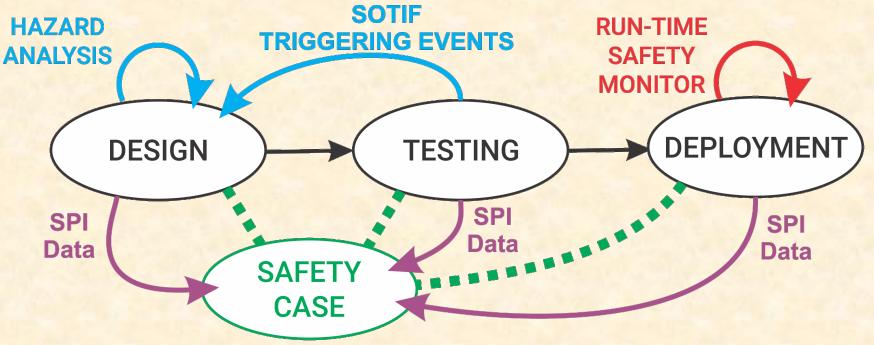
Runtime Monitoring Implications

Responsibility-Sensitive Safety (RSS) Scenario:

- Safety monitor: increase distance if too close in case of panic stop
- KPI: best effort separation given driving conditions
- SPIs: situation more dangerous than expected (e.g., ODD issues)
 - Spent more time in too-dense traffic than expected
 - Lead/own vehicle brake violate expectations
 - Other vehicles panic brake more often than assumed

Carnegie

SPIs and Lifecycle Feedback


- SPI measures validity of a safety case claim
- → a SPI value violation means safety case is invalid
- Root cause analysis might reveal:
 - Design process execution defect
 - Design defect
 - Hazard analysis gap
 - SOTIF analysis gap
 - Training data bias
 - Evidence gap, or defect
 - Assumption error

SPI-Based Feedback Approach

Safety Case argues acceptable risk

SPIs monitor validity of safety case

Carnegie

Summary

- Monitoring incidents is only part of feedback
- Removing human means mitigating surprise
 - Tactical: run-time safety monitoring
 - Strategic: run-time SPI monitoring
- SPIs provide feedback on:
 - Design quality & process maturity
 - Testing coverage
 - Lifecycle procedure execution
- SPIs: you are as safe as you think you are
 - Field feedback is key to SPI success

Carnegie