

**Prof. Philip Koopman** 

Carnegie Mellon University

# Safety Performance Indicators (SPIs) for Autonomous Vehicles



## **Overview**



- KPIs: Key Performance Indicators
  - Quantify performance
  - Important, but not enough for safety
- SPIs: Safety Performance Indicators
  - Quantify safety
  - Leading vs. Lagging SPIs
  - Safety case validity SPIs



## **Key Performance Indicator (KPI)**

#### Carnegie Mellon University

#### KPI:

- Quantifiable measurement
- Used to gauge statistical performance

## KPI examples:

- Percent correctly identified pedestrians
- Miles between SDC self-disengagements
- Miles between uncomfortable braking
- KPIs can measure SDC progress
  - Metrics should improve over time
  - But KPIs are wrong approach for safety



## Six Sigma Isn't Enough for Safety

#### KPIs help with quality

- Are all functions working?
- Is the functionality improving?
- Is the fault rate decreasing?

### Good KPIs are only the start

- Six Sigma Quality: 99.99966% (five nines)
  - A good start; not enough for life critical functions
- Fatal Crash Avoidance: 99.999999996% (eleven nines)
  - − Safety is 1 million times more demanding! → 8.34 sigma
    - » (example: 1000 opportunities/mile, 250M miles/fatal crash, 1.5o shift)





## **Functionality vs. Safety**

#### Functionality (KPIs):

- Are all the features implemented?
- Does each feature work as intended?
- Are all scenarios accounted for?
- Does the product do what it is supposed to?

#### Safety:

- Are there dangerous mis-behaviors?
- Are there dangerous gaps in the Operational Design Domain?
- Are there dangerous gaps in fault responses?
- Are there dangerous defects in requirements, design, repair, etc.?





## **Safety Performance Indicator (SPI)**



#### SPI:

- Quantifiable measurement
- Used to gauge <u>safety</u>
- Typically: arrival rate of adverse events compared to a risk budget
- Lagging SPI metrics: (per hour is implied)
  - Loss events (crashes) per hour
  - Incidents (could have been a loss event)
    - Example: running a red light, driving wrong direction for lane



## **Leading SPIs**

- System Level Leading SPIs:
  - Road test incidents caught by safety driver
  - Simulator (SIL/HIL) incidents
- Subsystem Leading SPIs:
  - Vehicle Controls: compromised vehicle stability
  - Path Planning: insufficient clearance to object
  - Perception: false negative (non-detection)
  - Prediction: unexpected object behavior
- Lifecycle SPIs:
  - Maintenance errors
  - Invalid configuration installed



Carnegie

University

## **Safety Case**







- Ex.: SDC misses pedestrians because...
  - Pedestrians are detected with 3 sensor types
  - Pedestrian intent is predicted accurately
  - Path planning leaves buffer zone around them

SPIs help detect violations of the safety case

## **SPIs and the Safety Case**

- SPIs also measure safety case assumptions
  - ODD matches the Operational Domain
  - Validation predicts operational performance
  - Maintenance performed as required
  - Correct configuration installed in vehicle
- Example Safety Case-related SPIs:
  - Appearance of assumed rare objects and events
  - Correlated diverse sensor detection faults
  - Safety related maintenance error

htt**ps://**bit.lv/3aHWiYu





## **KPI vs. SPI Contrast**

#### Distance to object:

- KPI: average and 95<sup>th</sup> percentile clearance
- SPI: how often SDC violates safe clearance limit

#### Sensor effectiveness:

- KPI: detection rate, SNR per sensor
- SPI: concurrent multi-sensor detection failure
- SPI: loss of calibration
- Pedestrian perception:
  - KPI: accuracy, precision, recall
  - SPI: false negative for more than <k> consecutive frames
  - SPI: previously unknown type of pedestrian encountered





## **SPIs and the Deployment Decision**

- KPIs can predict if your SDC will "work"
  - SOTIF analysis resolves many outliers
- SPIs can predict if it will work safely
  - System level SPIs from simulation & testing
    - At system level, an outlier could be fatal
  - Subsystem SPIs
    - Control, planning, prediction, perception performance SPIs
    - Ability of system to detect and respond to exiting ODD
  - Safety case SPIs
    - Arrival rate of "surprises" / unknown unknowns during testing
    - Arrival rate of gaps in safety case being discovered



© 2022 Philip Koopman 11

Carnegie

Jniversity

## Conclusions

#### SPIs predict and monitor system safety

- KPIs: "how well do we drive"
- SPIs: "how often are we potentially unsafe"

#### Different flavors of SPIs

- Lagging (e.g., crash rates)
- Leading (e.g., simulator collisions, testing incidents)
- Safety case SPIs (how often is safety case invalid)

#### Do you have SPI coverage for your system?

- Extend SOTIF analysis beyond KPIs to include SPIs
- See ANSI/UL 4600 Chapter 16 on SPIs





