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Changes To Non-project Items 

 I apologize for the “no changes to door control” email 

 

 Changes must be in the issue log 

• Helps TAs find where changes are when things don’t 

match the template 

 Changes must be peer reviewed 

• Helps you not burn yourself by making bad changes 
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DoorControl Traceability 

“The DoorControl never makes the doors reverse. 

How do we make it trace to our sequence 

diagrams?” 

 

Options: 

• Change sequence diagrams 

– Fix your sequence diagrams to match the DoorController 

behavior 

• Change the behavioral requirements 

– Make the DoorControl behave as described 
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Announcements and Administrative Stuff 

 Project 5 posted 

 

 Project 5 is due Thursday Oct. 2nd by 10pm 

• Get started if you haven’t already! 

• Testing will take a while 

 

 .xls/.xlsx files 

• We must be able to open them. If we can’t open them, they don’t exist 

• Test them on the lab computers. If we can’t get our machines to open them, we 

will open them there 
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E-mail Check-list (On Admin Page) 

 Before writing that e-mail 

• Check blackboard to see if an answer has been posted  

• Re-read the assignment to make sure you are reading it correctly 

• Look at the grading checklist to see if it has relevant information 

• Look at the Pepsi machine example to see if it provides a reasonable example 

• Discuss the problem with your teammates and see if you can agree upon a 

reasonable way to proceed without violating written assignment requirements 
 

 Regarding e-mail on assignments 

• If you simply don't understand, then skip the e-mail and go to office hours 

• If you think there is a defect in the course materials, include the URL of the 

document you have a question about and a specific explanation of the defect or 

contradiction 

• Start your e-mail with "I've used the e-mail question checklist, and I think the 

following is an issue:" or the e-mail might not be replied to 

• Wait 5 minutes before sending. Seriously. We get lots of "oops, found it"  

 e-mails less than 5 minutes after sending a query 
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Project 5 - Overview 

 Implementation first half of elevator 

• Door Control 

• Drive Control 

• Car Button Control 

• Hall Button Control 

 

 Traceability - State chart to code 

 

 Unit testing 

 

 Integration testing 

 

 Peer Review 
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Implementation 

 Create new java files to implement four controllers 

• Place these files in ../simulator/elevatorcontrol/ 

• Each module must be included in simulator.elevatorcontrol package 

 

 General requirements listed on the website. Some examples: 

• You shall use the interface defined in the behavioral requirements 

• You shall NOT add additional communication channels between controllers 

– No accessing global variables, etc. 

– Just communicate using network and physical messages 

• You shall adhere to the message dictionary and interface 

– Don’t be tempted to create new messages or modify the dictionary 

 

 We’ll eventually run your implementations on our own test files 

• Probably fail tests if your design uses secondary channels or altered dictionary  
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Traceability 

 All transition arcs must be traced to the code that causes the transition 

• In most cases, comment just above the if statement that tests guard statement 

 

 Code must contain comments that indicates each transition 

• Forward traceability 

 

 Portfolio must include traceability table 

• Each transition and its corresponding code line # must be in the table 

• Backward traceability 

 

 Detailed instructions and hints on project 5 web page 
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Testing 

 Project 5 page contains link to detailed instructions for testing 

• You must perform each step listed in the detailed testing instructions 
 

 Unit Tests 

• Exercise all the transitions in your state chart 

• Reminder: If your transition has an OR, you must test both branches! 
 

 Integration Tests 

• Select TWO sequence diagrams  

– Shall include at least one of the implemented modules 

– Should NOT include any of the non-implemented modules 

 

 You are not required to pass every test 

• You shall document the results of every test 
 

 Traceability required for each test 

 Peer review required for each Unit Test 
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Simulator Documentation 

 There is LOTS of documentation.  (Believe me.  ) 

 Spend some time getting familiar with it! 

 Codebase page on the course website  

• http://www.ece.cmu.edu/~ece649/project/codebase/index.html 

 

 Javadoc 

• Describes simulator classes in detail 

• How to build simulator javadoc: 

– Download the latest version of the simulator 

– Run ‘make’ in the top-level directory (not the code directory) 

– This creates a folder called ‘doc’ with the javadoc for the simulator 

• Javadoc is mostly up to date, but may contain some references to outdated 

simulator 
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Simulator Documentation 

 Command line interface 

• Run simulator with no arguments 

• Read it!  Lots of useful details and features! 

 

 Examples 

• Check the provided example code if you having trouble getting your interfaces 

or tests working. 

• Testlight, soda machine example 
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Code Commenting Style 

 Simulator development overview has a complete style guide 

 

 Traceability comments shall be exactly as specified in the project 

 

 Other guidelines are recommendations, not hard and fast rules 

 

 Your code shall be easily understood by a reasonable third party  

• For example, the TAs 

 

 If in doubt, refer to the examples or come to office hours 
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Simulator Architecture 

Controller 

ButtonControl 

Module 

DoorMotor 

Fault Injector 

Message Injector 

GUI 

  
simulator.elevatorcontrol 

(your implementation) 

simulator.elevatormodules 

(System objects) 

 
 

 
 

simulator.framework 

(simulation glue and testing) 

Passenger Injector 

         Passengers 
 

 
 

 
 

 
 

 

… 

 

… 

 

Harness (event simulator, time keeping, logging) 

CAN Network Physical ‘Network’ 
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Controller Implementation 

 All controllers must be a descendent of simulator.framework.Controller 

 

 Provides CAN network and physical interfaces 

• Enforces rules on like “only one physical input” and “only one physical output” 

 

 Provides a timer object (for periodic execution) 

 

 Provides logging framework 

• See Simulator Debug Tips on course webpage 
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Physical ‘Network’ Interface 

 Controller provides a PhysicalConnection object 

 

 Important Methods 

• registerTimeTriggered(Payload object) 

• sendTimeTriggered(Payload object, SimTime period) 

 

 registerTimeTriggered(Payload object) 

• a.k.a. physical input 

• The payload object will be updated periodically with current value. 

 

 sendTimeTriggered(Payload object, SimTime period) 

• a.k.a. physical output 

• When you modify the value in the payload object, that modification will be 
periodically propagated to the rest of the system. 

• Period should be the same as the controller period. 
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CAN Network Interface 

 Controller provides a CANConnection object 

 

 Important Methods 

• registerTimeTriggered(CanMailbox object) 

• sendTimeTriggered(CanMailbox object, SimTime period) 

 

 registerTimeTriggered(CanMailbox object) 

• a.k.a. network input 

• Mailbox object updated whenever a CAN message with the same ID is sent 

 

 sendTimeTriggered(CanMailbox object, SimTime period) 

• a.k.a. network output 

• A CAN message is sent periodically  

– Message has whatever value is currently in the mailbox object 

• Period should be the same as the controller period. 
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CAN Network Translators 

 Physical payload objects have field that represents the data value 

• E.g. ‘CarCallPayload.pressed’ 

 

 CanMailbox objects only have bit-level representation of CAN message 

• Can store up to 8 bytes of data per message, per the CAN spec 

 

 Use CanPayloadTranslators to convert bit sets into abstract ‘get/set’ 
methods 

• Examples provided in the codebase 

• You can write your own or use the ones provided 

• Use consistent translators 

– Sender and receiver of same message must use same translator 

• Translators are also used in the testing framework 
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Testing Framework 

 The -mf and -cf file formats are fully documented in the command line 
documentation 
• Read the documentation carefully 

• Make sure your text files have unix line endings 

• You can also look at the TestLight examples from project 1 

 

 -cf <file.cf> to specify which objects should be instantiated  

• Test a single object (unit test)  

• or a set of objects (integration test) 

 

 -mf <file.mf> to define the test inputs and outputs 

• Inputs - inject CAN messages and physical/framework values 

• Outputs - use assertions to monitor controller outputs 

 

 Run the simulator with no args to see info about the file syntax 
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Testing Framework 

 

 The message injector has a simple macro feature for –mf files 
• Syntax:  #DEFINE MACRO value 

• Macro is a one-for-one text field replacement 

• Cannot be used to replace multiple fields 

 

 Use macros for things that are subject to change 
• CAN message IDs 

• Message periods 

 

 -pd to generate and exhaustive list of #define statements 

• Save output to file, then #INCLUDE in your test files 

 

 

 Use descriptive macro names to improve readability 
• See soda machine examples 
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Testing Framework Tips 

 ‘F’/Framework is a synonym for the physical network 

• http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/butto
n_control_1.mf 

 

 Invalid test file lines can cause cryptic runtime errors 

 

 A good workflow for defining tests is: 

• Most unit tests only use a handful of inputs and outputs 

• For each test, start out with just one injection line for each input and one 
assertion for each output 

• Run the test until you have syntax correct (get no errors) 

• Use the validated lines as models for the rest of the test 

 

 Start your testing early!!!  

• Testing takes a long time, do not blow it off until the last minute 

http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/button_control_1.mf
http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/button_control_1.mf
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Testing Framework Tips 

 <period> parameter specifies how often the message is sent 

• use the periods defined in Control.java and Modules.java 

• Once you start using a period value for a message, you cannot change the 
period later in the test 

 

 <time> parameter specifies what time in the simulator a message 
change occurs 

• For periodic messages, change is rounded to next time when the message is sent 
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Soda Machine Example 

 It’s all there: 

• Code (java) 

• Testing 

– .mf, .cf files 

– Sequence Diagrams 

• Traceability 
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Questions? 


