
Recitation #5

18-649 Embedded System Engineering

Friday 26-Sept-2014

Note: Course slides shamelessly stolen from lecture

All course notes © Copyright 2006-2010, Philip Koopman, All Rights Reserved

&Electrical Computer

ENGINEERING

2

Changes To Non-project Items

 I apologize for the “no changes to door control” email

 Changes must be in the issue log

• Helps TAs find where changes are when things don’t

match the template

 Changes must be peer reviewed

• Helps you not burn yourself by making bad changes

3

DoorControl Traceability

“The DoorControl never makes the doors reverse.

How do we make it trace to our sequence

diagrams?”

Options:

• Change sequence diagrams

– Fix your sequence diagrams to match the DoorController

behavior

• Change the behavioral requirements

– Make the DoorControl behave as described

4

Announcements and Administrative Stuff

 Project 5 posted

 Project 5 is due Thursday Oct. 2nd by 10pm

• Get started if you haven’t already!

• Testing will take a while

 .xls/.xlsx files

• We must be able to open them. If we can’t open them, they don’t exist

• Test them on the lab computers. If we can’t get our machines to open them, we

will open them there

5

E-mail Check-list (On Admin Page)

 Before writing that e-mail

• Check blackboard to see if an answer has been posted

• Re-read the assignment to make sure you are reading it correctly

• Look at the grading checklist to see if it has relevant information

• Look at the Pepsi machine example to see if it provides a reasonable example

• Discuss the problem with your teammates and see if you can agree upon a

reasonable way to proceed without violating written assignment requirements

 Regarding e-mail on assignments

• If you simply don't understand, then skip the e-mail and go to office hours

• If you think there is a defect in the course materials, include the URL of the

document you have a question about and a specific explanation of the defect or

contradiction

• Start your e-mail with "I've used the e-mail question checklist, and I think the

following is an issue:" or the e-mail might not be replied to

• Wait 5 minutes before sending. Seriously. We get lots of "oops, found it"

 e-mails less than 5 minutes after sending a query

6

Project 5 - Overview

 Implementation first half of elevator

• Door Control

• Drive Control

• Car Button Control

• Hall Button Control

 Traceability - State chart to code

 Unit testing

 Integration testing

 Peer Review

7

Implementation

 Create new java files to implement four controllers

• Place these files in ../simulator/elevatorcontrol/

• Each module must be included in simulator.elevatorcontrol package

 General requirements listed on the website. Some examples:

• You shall use the interface defined in the behavioral requirements

• You shall NOT add additional communication channels between controllers

– No accessing global variables, etc.

– Just communicate using network and physical messages

• You shall adhere to the message dictionary and interface

– Don’t be tempted to create new messages or modify the dictionary

 We’ll eventually run your implementations on our own test files

• Probably fail tests if your design uses secondary channels or altered dictionary

8

Traceability

 All transition arcs must be traced to the code that causes the transition

• In most cases, comment just above the if statement that tests guard statement

 Code must contain comments that indicates each transition

• Forward traceability

 Portfolio must include traceability table

• Each transition and its corresponding code line # must be in the table

• Backward traceability

 Detailed instructions and hints on project 5 web page

9

Testing

 Project 5 page contains link to detailed instructions for testing

• You must perform each step listed in the detailed testing instructions

 Unit Tests

• Exercise all the transitions in your state chart

• Reminder: If your transition has an OR, you must test both branches!

 Integration Tests

• Select TWO sequence diagrams

– Shall include at least one of the implemented modules

– Should NOT include any of the non-implemented modules

 You are not required to pass every test

• You shall document the results of every test

 Traceability required for each test

 Peer review required for each Unit Test

10

Simulator Documentation

 There is LOTS of documentation. (Believe me. )

 Spend some time getting familiar with it!

 Codebase page on the course website

• http://www.ece.cmu.edu/~ece649/project/codebase/index.html

 Javadoc

• Describes simulator classes in detail

• How to build simulator javadoc:

– Download the latest version of the simulator

– Run ‘make’ in the top-level directory (not the code directory)

– This creates a folder called ‘doc’ with the javadoc for the simulator

• Javadoc is mostly up to date, but may contain some references to outdated

simulator

11

Simulator Documentation

 Command line interface

• Run simulator with no arguments

• Read it! Lots of useful details and features!

 Examples

• Check the provided example code if you having trouble getting your interfaces

or tests working.

• Testlight, soda machine example

12

Code Commenting Style

 Simulator development overview has a complete style guide

 Traceability comments shall be exactly as specified in the project

 Other guidelines are recommendations, not hard and fast rules

 Your code shall be easily understood by a reasonable third party

• For example, the TAs

 If in doubt, refer to the examples or come to office hours

13

Simulator Architecture

Controller

ButtonControl

Module

DoorMotor

Fault Injector

Message Injector

GUI

simulator.elevatorcontrol

(your implementation)

simulator.elevatormodules

(System objects)

simulator.framework

(simulation glue and testing)

Passenger Injector

 Passengers

…

…

Harness (event simulator, time keeping, logging)

CAN Network Physical ‘Network’

14

Controller Implementation

 All controllers must be a descendent of simulator.framework.Controller

 Provides CAN network and physical interfaces

• Enforces rules on like “only one physical input” and “only one physical output”

 Provides a timer object (for periodic execution)

 Provides logging framework

• See Simulator Debug Tips on course webpage

15

Physical ‘Network’ Interface

 Controller provides a PhysicalConnection object

 Important Methods

• registerTimeTriggered(Payload object)

• sendTimeTriggered(Payload object, SimTime period)

 registerTimeTriggered(Payload object)

• a.k.a. physical input

• The payload object will be updated periodically with current value.

 sendTimeTriggered(Payload object, SimTime period)

• a.k.a. physical output

• When you modify the value in the payload object, that modification will be
periodically propagated to the rest of the system.

• Period should be the same as the controller period.

16

CAN Network Interface

 Controller provides a CANConnection object

 Important Methods

• registerTimeTriggered(CanMailbox object)

• sendTimeTriggered(CanMailbox object, SimTime period)

 registerTimeTriggered(CanMailbox object)

• a.k.a. network input

• Mailbox object updated whenever a CAN message with the same ID is sent

 sendTimeTriggered(CanMailbox object, SimTime period)

• a.k.a. network output

• A CAN message is sent periodically

– Message has whatever value is currently in the mailbox object

• Period should be the same as the controller period.

17

CAN Network Translators

 Physical payload objects have field that represents the data value

• E.g. ‘CarCallPayload.pressed’

 CanMailbox objects only have bit-level representation of CAN message

• Can store up to 8 bytes of data per message, per the CAN spec

 Use CanPayloadTranslators to convert bit sets into abstract ‘get/set’
methods

• Examples provided in the codebase

• You can write your own or use the ones provided

• Use consistent translators

– Sender and receiver of same message must use same translator

• Translators are also used in the testing framework

18

Testing Framework

 The -mf and -cf file formats are fully documented in the command line
documentation
• Read the documentation carefully

• Make sure your text files have unix line endings

• You can also look at the TestLight examples from project 1

 -cf <file.cf> to specify which objects should be instantiated

• Test a single object (unit test)

• or a set of objects (integration test)

 -mf <file.mf> to define the test inputs and outputs

• Inputs - inject CAN messages and physical/framework values

• Outputs - use assertions to monitor controller outputs

 Run the simulator with no args to see info about the file syntax

19

Testing Framework

 The message injector has a simple macro feature for –mf files
• Syntax: #DEFINE MACRO value

• Macro is a one-for-one text field replacement

• Cannot be used to replace multiple fields

 Use macros for things that are subject to change
• CAN message IDs

• Message periods

 -pd to generate and exhaustive list of #define statements

• Save output to file, then #INCLUDE in your test files

 Use descriptive macro names to improve readability
• See soda machine examples

20

Testing Framework Tips

 ‘F’/Framework is a synonym for the physical network

• http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/butto
n_control_1.mf

 Invalid test file lines can cause cryptic runtime errors

 A good workflow for defining tests is:

• Most unit tests only use a handful of inputs and outputs

• For each test, start out with just one injection line for each input and one
assertion for each output

• Run the test until you have syntax correct (get no errors)

• Use the validated lines as models for the rest of the test

 Start your testing early!!!

• Testing takes a long time, do not blow it off until the last minute

http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/button_control_1.mf
http://www.ece.cmu.edu/~ece649/project/sodamachine/portfolio/unit_test/button_control_1.mf

21

Testing Framework Tips

 <period> parameter specifies how often the message is sent

• use the periods defined in Control.java and Modules.java

• Once you start using a period value for a message, you cannot change the
period later in the test

 <time> parameter specifies what time in the simulator a message
change occurs

• For periodic messages, change is rounded to next time when the message is sent

22

Soda Machine Example

 It’s all there:

• Code (java)

• Testing

– .mf, .cf files

– Sequence Diagrams

• Traceability

23

Questions?

