
Recitation #4

18-649 Distributed Embedded Systems

Friday 19-Sep-2014

Note: Course slides shamelessly stolen from lecture

All course notes © Copyright 2006-2010, Philip Koopman, All Rights Reserved

&Electrical Computer

ENGINEERING

2

Announcements and Administrative Stuff

 Project 4 posted

 TA office hours

 http://www.ece.cmu.edu/~ece649/admin.html#info

 Monday: PH 126A 5:00-600 (Sajjan)

 Tuesday: WEH 5328 5:00-6:00 (Felix)

 Wednesday: WEH 5310 6:00-7:00 (Patrick)

 Thursday: PH A22 5:00-6:00 (Jeff)

 Friday: WEH 5328 5:00-6:00 (Felix)

 Submission Mistakes

• Please place portfolio files in the project root directory with no additional

directories.

– Correct: proj3\(portfolio files)

– Incorrect: proj3\portfolio\(portfolio files)

• Minimum Contribution chart in peer review folder.

3

TA Office Hours

 If you have questions about grading on a project

• Go see the TA that graded your project if possible

 For grade correction requests or disputes

• You must submit a written (paper) request including:

– Your name

– TA name that graded the assignment

– Specific issue with grading

• Within 1 week of when the grade is posted to blackboard

– We’ll be a little flexible with projects 1&2 since it took a while to settle down office

hours

4

Project 3 in Review

 Anyone have to update sequence diagrams to add missed behaviors?

• This is expected

• Good design process helps identify these bugs before implementation!

 Some common things some might have missed:

• Turning hall and car button lights OFF

– If you see the button has already lit up, would you press it again?

• Setting car position indicator

– How does the passenger known when to get off the elevator?

• What about safety cases?

 Other notes:

• Why do mHallLight and mCarLight exist?

– Typically used for fancy dispatchers and fault tolerance

– For state chart traceability, you can mark these as “future expansion”

» But, any reasonable approach is fine so long as it is consistently applied

5

Project 4 Overview

 Convert your event-triggered requirements to time-triggered

 Create state charts using time-triggered requirements

 Traceability between requirements and state charts

 Log any changes to requirements, sequence diagrams, etc.

6

Previous: Event-Triggered

 An event triggers a message to be sent ONCE

• E.g. “Passenger presses a button”

 Controllers take actions when they receive a particular message

• Receiving a message is an event that triggers some action

 Controllers can only act on one new message at a time

• If actions require more than one message, controller has to store them

7

Now: Time-Triggered

 Think of messages as periodic updates of system state variables

• E.g. Repeatedly check “Is the button currently pressed?”

 Controllers take actions based upon the current state of the system

• Controllers run control loops at regular intervals

• Constantly monitor the most recent values of messages

– Actions performed once the most recent values match a particular set of conditions

 Controllers keep the most recent copy of messages

• Current state = most recent copies of messages

8

Another Magic Formula

 Time-triggered system

• (Null or <message value> , … <message value>)

 and (Null or <variable value test>, … <variable value test>)

 shall result in <message transmitted>, …

 <variable value assigned>

• Can trigger on zero or more messages; zero or more variables

– Need one or more total triggers

– OK for left hand side trigger to ONLY be a state variable (or always be true)

– Right hand side can have zero or more messages; zero or more variable values

– “Shall” and “should” are both acceptable

• OK to assign multiple messages, OK to assign multiple values

• EVERY VERB GETS A NUMBER

9

Correct and Incorrect TT Requirement Examples

 Correct:

R1. If X and Y then

 R1.a. M shall be set to m

 R1.b. N shall be set to n

• One number per verb

• Reminder: Trace to the sub-numbered bullets

 Wrong:

R1. If X and Y then M shall be set to m and N shall be set to n

 Problem: More than one verb per traceable numbered requirement

10

Time-Triggered Requirements Guidance

 Use typical message format to refer to the most recent copy

• You don’t have to explicitly store the newest copy

 Example:

R1. If (mAtFloor[g,b] is true) and (mDesiredFloor.f = = g), then

 R1.a. mCarCall[g,b] shall be set to false, and

 R1.b. CarLight[g,b] shall be set to false, and

 R1.c. mCarLight[g,b] shall be set to false.

 Time-triggered requirements act on the current state of the system

• Don’t refer to a message “being received” or some other event

11

How Does This Impact Sequence Diagrams?

 Message arcs represent the change in value

• Event-triggered: The time when a single message value is broadcast

• Time-triggered: The time when a periodic message value changes

• So, the number of message arcs should remain about the same

 Time-triggered requirements may simplify your sequence diagrams

• You may not need to explicitly store variables now

• Some of your variable assignment bubbles might need to be removed

 Update sequence diagrams if a behavior is changed, added, or removed

 Yes, if you modify sequence diagrams you must update traceability

• You must enter each change in the issues log if it is a defect rather than an

enhancement

(Until mid-semester, almost everything you change will be due to finding a

defect)

12

State Charts

 Event-Triggered:

• Arcs are taken in response to received message

• Asynchronous state machine

– Only does something when an event occurs

– Action inside a state takes place exactly once per arc transition

• Switch statements for state machine are executed once per arriving arc

 Time-Triggered:

• Arcs are taken periodically if conditions are true

• Synchronous state machine

– Does something on regular period regardless of changes

– Actions inside state occur repeatedly (every period)

• Switch statement for state machine executed once per period

 What’s the difference?

• What happens when you increment a variable within a state in an event-

triggered state machine vs time-triggered?

13

State Charts

 Create state charts based on your time-triggered requirements

• Each state must set all outputs of the control interface in every state

• Make decisions based ONLY on the current state of the system

• Have mutually excluding transitions

– No two guard statements can be simultaneously true on arcs from same state

– Implicit “stay in same state” guard condition if no other guards are true

• Note that action inside a state happens every time state chart is evaluated

– So if you have “set light to on” and the state chart runs at 10x/second,
the light gets an “on” command 10 times per second

• For now you can run state charts as fast as you want

– (In general run them at least as fast as the fastest message repetition rate)

 Create three tables per state chart

• State activities table

• Transitions table

• Traceability for states and transitions to requirements

• See examples

14

State Charts

 Forbidden

• No actions on arcs

– All actions performed in the state

• No entry actions (actions occuring only once upon entry)

• No branches in transitions

– Just make more than one transition

 Avoid:

• Using a state variable to collapse states

– Break it down into two separate states

– Compact does not mean easier to read / understand / implement!

• Nested state charts

– There’s examples of how to do it correctly in the Soda Machine

– Still not recommended

15

ButtonControl Time Triggered Statechart

16

ButtonControl Time Triggered Statechart

Each state updates

all interface outputs

(and possibly

variables)

Each state gets

a name

All transitions

are numbered

17

A Brief Word Nested State Charts

 They’re tricky

• Can make implementation and traceability a pain too sometimes

 Avoid nested state charts (the stuff in the blue box)

• Your state charts aren’t going to be complex enough to need this

18

Traceability

 Forward:

• Does every requirement

map to at least one state

or transition?

 Backward:

• Does every state or

transition map to at least

one requirement?

 Include this table in

your behavioral

requirements

19

Traceability Updates and Issues Log

 If you change or add a behavior, update your sequence diagrams

 Update your issues log

 Retrace sequence diagram arcs to requirements to state charts

 We require end-to-end traceability

• It takes longer than you would like, make sure you leave time for it!

20

Notes On Defect Tracking

 If you find a problem while you are working on something, don’t

bother logging it

• Defects “count” once you try to unit test, peer review, or check code in

• In other words, start counting defects when you think an item is ready to push

to the next phase

 For peer review record defects on a peer review log

• Only promote to the Issue log if not fixed by the weekly due date

(i.e., for every “not fixed” entry in a review log there should be an entry in the

issue log added that week)

• When reporting defects in presentation metrics, include peer review defect

count, even if defect was closed that week

 For tests, record defects in test log AND issue log

• You can add all review defects to issue log if you want for consistency, but it is

optional

21

Questions?

