Recitation #4

18-649 Distributed Embedded Systems
Friday 19-Sep-2014

{() Electrical &Comi):téter C o
ENGINEERING arnegle
Note: Course slides shamelessly stolen from lecture M

All course notes © Copyright 2006-2010, Philip Koopman, All Rights Reserved e]IOI]_

Announcements and Administrative Stuff
¢ Project 4 posted

¢ TA office hours
http://www.ece.cmu.edu/~ece649/admin.html#info
Monday: PH 126A 5:00-600 (Sajjan)

Tuesday: WEH 5328 5:00-6:00 (Felix)
Wednesday: WEH 5310 6:00-7:00 (Patrick)
Thursday: PH A22 5:00-6:00 (Jeff)

Friday: WEH 5328 5:00-6:00 (Felix)

® 6 6 6 ¢ o

¢ Submission Mistakes

 Please place portfolio files in the project root directory with no additional
directories.
— Correct: proj3\(portfolio files)
— Incorrect: proj3\portfolio\(portfolio files)

« Minimum Contribution chart in peer review folder.

TA Office Hours

¢ If you have questions about grading on a project
» Go see the TA that graded your project if possible

¢ For grade correction requests or disputes

* You must submit a written (paper) request including:
— Your name
— TA name that graded the assignment
— Specific issue with grading
« Within 1 week of when the grade is posted to blackboard

— We’ll be a little flexible with projects 1&2 since it took a while to settle down office
hours

Project 3 in Review

¢ Anyone have to update sequence diagrams to add missed behaviors?
« This Is expected
» Good design process helps identify these bugs before implementation!

¢ Some common things some might have missed:
« Turning hall and car button lights OFF
— If you see the button has already lit up, would you press it again?
« Setting car position indicator
— How does the passenger known when to get off the elevator?
« \What about safety cases?

¢ Other notes:

« Why do mHallLight and mCarLight exist?
— Typically used for fancy dispatchers and fault tolerance

— For state chart traceability, you can mark these as “future expansion”
» But, any reasonable approach is fine so long as it is consistently applied

Project 4 Overview

¢ Convert your event-triggered reguirements to time-triggered
¢ Create state charts using time-triggered requirements
¢ Traceability between requirements and state charts

¢ Log any changes to requirements, sequence diagrams, etc.

Previous: Event-Triggered

¢ An event triggers a message to be sent ONCE

» E.g. “Passenger presses a button”

¢ Controllers take actions when they receive a particular message
» Receiving a message is an event that triggers some action

¢ Controllers can only act on one new message at a time
« If actions require more than one message, controller has to store them

Now: Time-Triggered

¢ Think of messages as periodic updates of system state variables
» E.g. Repeatedly check “Is the button currently pressed?”

¢ Controllers take actions based upon the current state of the system
 Controllers run control loops at regular intervals

 Constantly monitor the most recent values of messages
— Actions performed once the most recent values match a particular set of conditions

¢ Controllers keep the most recent copy of messages
« Current state = most recent copies of messages

Another Magic Formula

¢ Time-triggered system
o (Null or <message value>, ... <message value>)
and (Null or <variable value test>, ... <variable value test>)
shall result in <message transmitted>, ...
<variable value assigned>
« Can trigger on zero or more messages; zero or more variables

— Need one or more total triggers
— OK for left hand side trigger to ONLY be a state variable (or always be true)
— Right hand side can have zero or more messages; zero or more variable values

— “Shall” and “should” are both acceptable
« OK to assign multiple messages, OK to assign multiple values

- EVERY VERB GETS A NUMBER

Correct and Incorrect TT Requirement Examples

¢ Correct:
R1. If Xand Y then
R1.a. M shall be set to m
R1.b. N shall be setto n

« One number per verb
 Reminder: Trace to the sub-numbered bullets

¢ Wrong:
R1. If X and Y then M shall be set to m and N shall be setto n
Problem: More than one verb per traceable numbered requirement

Time-Triggered Requirements Guidance

¢ Use typical message format to refer to the most recent copy

* You don’t have to explicitly store the newest copy

¢ Example:
R1. If (mAtFloor[g,b] is true) and (mDesiredFloor.f = = g), then
R1.a. mCarCall[g,b] shall be set to false, and
R1.b. CarLight[g,b] shall be set to false, and
R1.c. mCarLight[g,b] shall be set to false.

¢ Time-triggered requirements act on the current state of the system

* Don’t refer to a message “being received” or some other event

10

How Does This Impact Sequence Diagrams?

¢ Message arcs represent the change in value
« Event-triggered: The time when a single message value is broadcast
« Time-triggered: The time when a periodic message value changes
» S0, the number of message arcs should remain about the same

¢ Time-triggered requirements may simplify your sequence diagrams
« You may not need to explicitly store variables now
« Some of your variable assignment bubbles might need to be removed

¢ Update sequence diagrams if a behavior is changed, added, or removed

¢ Yes, if you modify sequence diagrams you must update traceability

* You must enter each change in the issues log if it is a defect rather than an
enhancement
(Until mid-semester, almost everything you change will be due to finding a
defect)

11

State Charts

¢ Event-Triggered:
 Arcs are taken in response to received message

« Asynchronous state machine
— Only does something when an event occurs
— Action inside a state takes place exactly once per arc transition

« Switch statements for state machine are executed once per arriving arc

¢ Time-Triggered:
 Arcs are taken periodically if conditions are true

« Synchronous state machine
— Does something on regular period regardless of changes
— Actions inside state occur repeatedly (every period)

 Switch statement for state machine executed once per period

¢ What’s the difference?

« What happens when you increment a variable within a state in an event-
triggered state machine vs time-triggered?

12

State Charts

¢ Create state charts based on your time-triggered requirements
» Each state must set all outputs of the control interface in every state

Make decisions based ONLY on the current state of the system

Have mutually excluding transitions

— No two guard statements can be simultaneously true on arcs from same state
— Implicit “stay in same state” guard condition if no other guards are true

Note that action inside a state happens every time state chart is evaluated

— So if you have “set light to on” and the state chart runs at 10x/second,
the light gets an “on” command 10 times per second

For now you can run state charts as fast as you want
— (In general run them at least as fast as the fastest message repetition rate)

¢ Create three tables per state chart
« State activities table
 Transitions table
 Traceability for states and transitions to requirements
« See examples

13

State Charts

¢ Forbidden
» No actions on arcs
— All actions performed in the state
* No entry actions (actions occuring only once upon entry)

 No branches In transitions
— Just make more than one transition

¢ Avoid:

« Using a state variable to collapse states
— Break it down into two separate states
— Compact does not mean easier to read / understand / implement!
» Nested state charts
— There’s examples of how to do it correctly in the Soda Machine
— Still not recommended

14

ButtonControl Time Triggered Statechart

Transition # | Guard
T2.1 mButton[s] +— True AND mEmpty[s] +— False
T2.2 mVend «— True AND mEmpty[s] «+— False
T23 mVend «— True AND mEmpty[s] «+— True
T24 FlashCounter > Flashl imit
T2.5 FlashCounterLimt «—— 0
T2.6 mEmpty «— True o 1
p r 4 ™
127. mEmpty — False State IDLE
- Do:
| Set ButtonLight[s] to True.
Set mButton[s] to False.
Set FlashCounter to 0.
\. 7
\ 4
-
State EMPTY
Do:
Set ButtonLight[s] to False.
Set mButton[s] to False.
Set FlashCounter to 0.
\ J

[T2.1]
[T2.2]

[T2.3]

-

State VEND r
'

Do:

\

State FLASH_OFF

Set ButtonLight[s] to False.
Set mButton[s] to True.
Increment FlashCounter.

J

[T2 .4i

Do:

L

State FLASH_ON

Set ButtonLight[s] to True.
Set mButton[s] to True.
Decrement FlashCounter.

o

[(T2.5]

15

ButtonControl Time Triggered Statechart

Each state gets

a name \\
v

All transitions
are numbered

i ™

State IDLE

Do:

A 4

Set ButtonLight[s] to True.
Set mButton[s] to False.

Set FlashCounter to 0.

\, 7

[T2.6]

Y
State EMPTY

Do:

Set ButtonLight[s] to False.
Set mButton[s] to False.

Set FlashCounter to 0.
\ J

Each state updates
all interface outputs
(and possibly
variables)

\

' '

State VEN r

p
T2.1] S%te FLASH_OFF

Do:
[12.2] Set ButtonLight[s] to False. <
Set mButton[s] to True.
Increment FlashCounter.
\

[T2.5]
[T2.4]
v

State FLASH_ON

[T2.3]

Do:
Set ButtonLight[s] to True.
Set mButton[s] to True.
Decrement FlashCounter.
_ J

16

A Brief Word Nested State Charts

¢ They’re tricky
« Can make implementation and traceability a pain too sometimes

¢ Avoid nested state charts (the stuff in the blue box)

* Your state charts aren’t going to be complex enough to need this

' Y
. State VEND
' ¢ ‘\
State IDLE s
; [T2.1] State FLASH_OFF
- o:
| Set ButtonLight[s] to True. [T2.2] Do: P
Set mButton[s] to False. H_ Set ButtonLight[s] to False.
Set FlashCounter to 0. Set mButton[s] to True.
\, J Increment FlashCounter.
9 \ J
27 [T2.6] [T2.5]
[T2.4
' N 7
State EMPTY State FLASH_ON
[T2.3]
Do: Do:
Set ButtonLight[s] to False. Set ButtonLight[s] to True. [
Set mButton[s] to False. Set mButton(s] to True.
Set FlashCounter to 0. Decrement FlashCounter.
\ y, L)
\, 7

17

Traceability

¢ Forward:

» Does every requirement
map to at least one state
or transition?

¢ Backward:

« Does every state or
transition map to at least
one requirement?

¢ Include this table in
your behavioral
requirements

Requirements-to-Statecharts Traceability

Requirements

States

R21

R22

R23

R2 4a

B2 4b

R25

IDLE

X

EMPTY

X

VEND

FLASH_OFF

FLASH ON

Transthons

T21

18

Traceability Updates and Issues Log

¢ If you change or add a behavior, update your sequence diagrams

¢ Update your issues log
¢ Retrace sequence diagram arcs to requirements to state charts

¢ We require end-to-end traceability
« |t takes longer than you would like, make sure you leave time for it!

19

Notes On Defect Tracking

¢ If you find a problem while you are working on something, don’t
bother logging it
» Defects “count” once you try to unit test, peer review, or check code in

 In other words, start counting defects when you think an item is ready to push
to the next phase

¢ For peer review record defects on a peer review log

« Only promote to the Issue log if not fixed by the weekly due date
(i.e., for every “not fixed” entry in a review log there should be an entry in the
Issue log added that week)

« When reporting defects in presentation metrics, include peer review defect
count, even if defect was closed that week

¢ For tests, record defects in test log AND issue log

« You can add all review defects to issue log if you want for consistency, but it is
optional

20

Questions?

21

