
Recitation #3

18-649 Embedded System Engineering

Friday 12-Sept-2014

Note: Course slides shamelessly stolen from lecture

All course notes © Copyright 2006-2012, Philip Koopman, All Rights Reserved

&Electrical Computer

ENGINEERING

2

Announcements and Administrative Stuff

 Project 3 posted

Groups finalized. Any confusion ask TA's

 Project 2 due Tonight

 TA office hours

 http://www.ece.cmu.edu/~ece649/admin.html#info

 Monday: PH 126A 5:00-600 (Sajjan)

 Tuesday: WEH 5328 5:00-6:00 (Felix)

 Wednesday: WEH 5310 6:00-7:00 (Patrick)

 Thursday: PH A22 5:00-6:00 (Jeff)

 Friday: WEH 5328 5:00-6:00 (Felix)

3

Minimum Requirements Chart

A way for TAs to check if you fulfilled the minimum

requirements for each project.

 Shall be downloaded and completed for each project.

 Project is not turned in until we have the chart

4

GUI Overview

 Great debugging tool for later projects

 Good mental concept of the elevator for design projects

5

Project 3 Overview

 Write requirements for an event-triggered system

• DoorControl [b, r]

• CarPositionControl

• Dispatcher

• DriveControl

• LanternControl [d]

• HallButtonControl [f, b, d]

• CarButtonControl [f, b]

 Traceability

• Requirements to sequence diagrams

• Sequence diagrams to requirements

• ALL SEVEN controllers need to be included in traceability

These are done for you already

You specify requirements for these

6

The Magic Formula for Event-Triggered Systems

 Behavioral requirements

• (ID) <message received> shall result in <message transmitted> …

 and/or <variable value assigned> …

• OR

• (ID) <message received> and <variable value tested>

 shall result in <message transmitted> …

 and/or <variable value assigned> …

• Account for all possible messages received; OK to restrict by value

– E.g., <message received> with value V shall result in …

• Account for all possible messages that need to be transmitted outbound

• Make sure all variables are set as required in right hand sides

• EXACTLY ONE received message per requirement (network serializes

messages; simultaneous reception of messages is impossible)

• OK to have: multiple messages transmitted; multiple variables assigned

7

From Sequence Diagrams to Requirements

 For each controller

• Find all sequence diagrams that include that controller

• Identify all incoming /outgoing arcs for the controller in a diagram

• Note any variables that need to be tested or set

 Gives you a behavior that you’ve defined in that sequence diagram

• Incoming message arcs trigger the event (or cause variables to be set)

• Outgoing messages are the resulting transmissions from the event

• Test and set variables as appropriate

 Use Shall and Should

8

Soda Machine Example - CoinControl

 Scenario 1A: Customer inserts a coin when the cost of a soda has not been

reached

Note: SodaCost = 2 coins

9

Example Requirement

 Incoming arcs (and values)

• CoinIn (true)

 Variables

• CoinCount

 Outgoing arcs (and values)

• mCoinCount (CoinCount)

 Example requirement (you might come up with something different):

RCC.1 - If CoinIn is received as true then,

 RCC.1.a - CoinCount shall be incremented and

 RCC.1.b - mCoinCount shall be set to CoinCount

 Anything you need to be careful about with the above requirement?

 Check out the soda machine design for more example

• Disclaimer: Soda machine is in development, it may have occasional bugs

10

An Elevator Example

 Sample Scenario 2A:

• Passenger is in the car and elevator is not at the desired destination floor

 Pre-Conditions:

– Car is at floor f, with at least one Door[b,r] open.

– Passenger is in the car and elevator is not at the desired destination [g,c], where f !=

g. Also, b might not equal c.

– Car call button for desired destination is not lit.

 Scenario:

– S2.A.1. Passenger presses car call button for desired destination [g,c].

– S2.A.2. Car call button for destination [g,c] is lit. Passenger sees button light up.

– S2.A.3. Doors close fully.

 Post-Conditions:

– Elevator has not yet arrived at destination [g,c].

– Passenger is in the car.

– All doors are closed.

– Car call button light for desired destination [g,c] is on.

11

Elevator Example

 Scenario 2A: Passenger is in the car and elevator is not at the desired

destination floor (this ignores the dispatcher)

 What’s an event-triggered requirement for Car Button Control?

 Note these are just examples, yours will likely look different

• There is no single correct answer

12

Some Requirement Guidance

 Keep them short and concise

• All but the most complex should be less than 25 words,

– 50 words borders on excessive

• All requirements shall be less than 100 words

• Don’t ramble; avoid ambiguity.

– Another team mate might have to implement that requirement later!

 Use English

• Each requirement shall be a complete English sentence

• Not a line of code!

 Each requirement shall have exactly one verb

• You’ll likely end up with multi-part requirements

– Refer back to the CoinCount example

 Explicitly record all variables you use in requirements

13

Traceability

 Trace all seven controllers

• Another teammate must trace the controller requirements you wrote

• The excel template is in the portfolio

 Complete forward traceability

• Each sequence diagram message maps to at least one requirement

• Ensures you didn’t leave out any behaviors

 Complete backward traceability

• Each requirement maps to at least one sequence diagram message

• Ensures no spurious or unwanted behaviors

 But what if you realize something important is missing?!

• Add the missing requirement or sequence diagram message if necessary

• Its OK to go back and fix sequence diagrams

– We require a working elevator and complete documentation!

• Now’s a good time to get familiar with that issue log

14

Peer Reviews

 For each project we want you to do at least one peer review per person

• For this project, we want you to review requirements for each controller

• Just do the four controllers you wrote requirements for

 Peer review procedure

• Reviews shall be performed by someone other than the primary author of the
“artifact”.

– “Artifact” is a diagram, set of requirements, statechart, etc.

• Reviews should be performed by a team member who did not contribute at all
to creating the artifact (an independent reviewer)

• The reviewer looks at the artifact and creates a review sheet

– We give you an Excel template, but you can use something else comparable

– The review sheet records that the review happened, and lists any problems found

– Use a separate review sheet for every review (so there will be many such sheets by
the end of the semester

• When the review is completed, it’s added to a web page that lists all reviews for
your project, accumulated over the semester

15

Questions?

