M 23
Ray" The FlexRay
Protocol

Philip Koopman

Significant material drawn from
FlexRay Specification Version 2.0, June 2004

30 Nov 2015

© Copyright 2005-2015, Philip Koopman Carnegie Me]lon

Preview

¢ FlexRay — automotive choice for X-by-Wire applications
o Created by industry consortium founded in 2000

* Core members: BMW, DaimlerChrysler, General Motors, Motorola, Philips,
Volkswagen, and Robert Bosch.

¢ First public FlexRay protocol specification June 30, 2004 [FlexRay04]
e Combination Time-Triggered & Event-Triggered Approach
 Intended for use in safety critical, fault-tolerant systems

¢ Dec. 7, 2006:
“FlexRay protocol has entered its production phase with devices from
NXP(formerly Philips Semiconductors) and Freescale Semiconductor in
BMW's newest X5 sport activity vehicle.”

¢ High volume production reached in about 2010
e E.g., NXP had shipped 1 million Flexray chips by 2009; 2 million by mid-2010

e But.. By October 2012: “FlexRay not dead, chip vendors claim”
— Due to possibility of time triggered Ethernet (using switches — no collisions)

FlexRay Prototype Hardware (Convergence 2000)

- _—
T o e s STl R '-:"f'i}':'-"'?"'."."f*-"?fi's"' 2 ~ il
__“:-1__:-' - 2 ¥

L ey I

Topology — Active Star Plays Key Role

¢ Active star simplifies some aspects of distributed coordination
e Maximum delay through star is 250 ns, so it does not buffer full messages

Node N03de
2
ranch B
\ Branch C
Node Stream of data > Active Stream of data > Node

Star

Branch D

Figure 9-2: Active Star transfer functionality.

[FlexRay04]

Redundant Active Star

¢ Intended to eliminate single-point failures for critical systems
» This seems the most likely configuration for FlexRay X-by-Wire

Node A Node B Node C Node D Node E

[FlexRay04]

Figure 1-2: Dual channel single star configuration.

¢ TTP was found to have some distributed bus guardian issues
* Problems related to nodes listening to faulty network startup messages
» Single fault affected multiple “independent” portions of chip!
« Latest proposal is to move to dual channel star configuration for TTP as well

General FlexRay Node Block Diagram

e Host is application CPU
» Bus guardian controls enable line on bus driver

Host Communication Data

- > Communication Controller
Configuration Data &
Status Information
-t |
o A A
Synchronization
Signals
Bus Guardian = o
. . optional 2 e
Configuration Data & (op) E 2
Status Information = o o 9
- > 5 5 B B
A n %) = (=
R > sl g E| £
= = £ £
o o Q o
Control Status © © S O
Signals Signals
Y Yy Y
Bus Driver Yy
Control Data &
Status Information
-t _
- L
Power Supply - Control Signal (optional)
-

[FlexRay04]
Figure 1-7: All logical interfaces. 6

Physical Layer

¢ Differential NRZ encoding

ge

Volta

%Fm

dle_LP

ldle

-4 uBP uBus

Data_1

— s P A —
WUBM

-/.

' time

Figure 6-1: Electrical signaling.

¢ 10 Mbps operating speed
 Independent of network length because, unlike CAN, doesn’t use bit arbitration

[FlexRay04]

FlexRay Encoding Approach

¢ Data sent as NRZ bytes
e TSS = Transmit Start Sequence (LOW for 5-15 bits)
o FSS = Frame Start Sequence (one HI bit)
« BSS = Byte Start Sequence (similar to start/stop bits in other NRZ)
 FES = Frame End Sequence (END symbol for frame — LO + HI)

FSS BSS BSS FES
High" I ; I]] H] H] H I T H H] H] H] I ;
X0
Low o I P <

! TSS " 1stbyte sequence = " last byte sequence
High | 1+ gdBit — el la—
TREN MSB LSB
Low

Figure 3-2: Frame encoding in the static segment. [FlexRay04]

¢ Dynamic segment frames are similar
e Adds a DTS = dynamic trailing sequence field; helps line up minislots

FlexRay Frame Format

Reserved bit

/

FlexRay Frame 5 + (0 ... 254) + 3 bytes

S
S -
R
— b E O
2 3588
S T E e
g = o E
T s &2
L += o é
§ 2,58
Header CRC
Covered Area
F D Payload] Header Cycle
rame it CRC count | Pata 0 (Data 1 | Data 2 Datan] CRC CRC CRC
11 bits 7 bits 11 bits | 6 bits 0 ... 254 bytes 24 bits
) ’I"'\ il) Eall i il) Eoatll] Ll
11111 Header Segment Payload Segment Trailer Segment

A

Figure 4-1: FlexRay frame format.

« This data is encoded into NRZ bytes per the encoding format

[FlexRay04]

Y

CAN vs. FlexRay Length Field Corruptions

¢ CAN does not protect length field
o Corrupted length field will point to wrong location for CRC!
e One bit error in length field circumvents HD=6 CRC

/ \
ID | LEN DATA CRC
ID | LEN DATA CRC | CRC

Original Message

Corrupted LEN

¢ FlexRay solves this with a header CRC to protect Length

r\o | Z/m,n

L4

Header CRC
Covered Area

.y
Frame ID tmd Data 1 | Data 2 Datan| CRC | CRC | CRC
its i [16 bits: 0... 254 bytes 24 bits
“ e
1111 Header Segment Payload Segment

FlexRay Frame §+(0...254) + 3 bytes

Trailer Segment Source: FlexRay Standard, 2004

Figure 4-1: FlexRay frame format.

10 10

FlexRay Frame Fields

¢ Frame ID

e Frame’s slot number (1 .. 2047); unigue within channel in communication cycle

¢ Payload Length

o # of 16-bit words in payload

* Must be same for all messages in static segment of communication cycle
¢ Header CRC

 HD=6 error detection for header data (optimal polynomial for 20 bits)
¢ Cycle Count

e Number of current cycle

« Even vs. odd cycle count values are used by protocol details
— Example: clock sync corrects offset on odd cycles and rate on even cycles

¢ Data
o 0..254 bytes (must be same for all static frames)
¢ CRC in trailer segment
 HD=6 up to 248 payload bytes; HD=4 above that until 508 payload bytes

11

FlexRay Message Cycle

¢ Two main phases: static & dynamic
o “Temporal firewall” — partition between phases protects timing of each phase

t—
communication 1 I |
cycle level / 7 7 7 7 7 T
_____________________ / staticsegment ~ / dynamic segment r"_l__symbol window [network
/ f /L | f idle time
arbitration e | e N /
grid level : 7 \ 7] 7 1 :] ;
__________________ %static slc-t__' ____static slot /:_minislot__l_\r______ minislot l"___________________;/__________1______
i v/— action point { v,— action point w v/— action pmintE(I
macrotick | ' ' " [
evel J-C 111 -0 -0
__________________ macrotick_‘/____l__
microtick __d
level
microtick
Figure 5-1: Timing hierarchy within the communication cycle.
[FlexRay04]

12

Microtick & Macrotick

¢ Microtick level
* Node’s own internal time base
e Direct or scaled value from a local oscillator or counter/timer
* Not synchronized with rest of system — local free-running oscillator

¢ Macrotick level
* Time interval derived from cluster-wide clock sync algorithm

* Always an integral number of microticks
— BUT, not necessarily the same number of microticks per node
— Number of microticks varies at run time to implement clock sync

¢ Designated macrotick boundaries are “action points”
e Transmissions start here — static; dynamic; symbol window
« Transmissions end here — dynamic segment

13

Static Segment

¢ TDMA messages, most likely used for critical messages
» All static slots are the same length in microticks

« All static slots are repeated in order every communication cycle

 All static slot times are expended in cycle whether used or not
— Number of static slots is configurable for system ; up to 1023 slots

slot counter channel A

e
1 2 3
channel A ‘ frame ID 1 ‘ | frameid2 | | | ese=e=
channel B | | frame 1D 1 [R [P0 S S
1 2 3
slot counter channel B
static slot 1 static slot 2 static slot 3
e - -
static segment containing ghlumberQOfStaticSiots static slots
- >
[FlexRay04]

Figure 5-3: Structure of the static segment.

14

Static Segment Details

¢ Two-channel operation
« Sync frames on both channels; other frames optionally 1 or 2 channels
— Less critical/less expensive nodes might only connect to one channel
» Slots are lock-stepped in order on both channels

¢ TDMA order is by ascending frame ID number

e Frame number used to determine slot # by software
— 1tis NOT a binary countdown arbitration mechanism — only one xmitter at a time

— Optionally, there is a Message ID in the payload area that can be unrelated to slot
number

— Example use: each node uses its node # as frame # and multiplexes its messages
onto a single time slot, distinguished by Message 1D

* Incontrast, TTP has a MEDL that can have sub-cycles
— Need neither a Frame ID nor a Message ID
— Extra information to be managed and coordinated

15

Dynamic Segment

¢ High-level idea is event-based communication channel
e Want arbitration, but must be deterministic
« Binary countdown not used (among other things, restricts possible media)

¢ “Minislot” approach

» (Can be thought of as a time-compressed TDMA approach (details on next slide)

« Two channels can use independent message queues

channel A

channel B

/
m minislot 1

/

slot counter channel A

m+1, m+2, m+3

/

frame ID m

| frame IDm+3 |

minislat

m+4 , m+5 ghumberOfldinisliots

| frame Dm+5 | ---\--

m

m+1 1 m+2

m+3

‘ frame ID m+3 ‘ | frame ID m+7 |

m+6 | m+7 m+8

m+4 | m+5
A
slot counter channel B \ dynamic slot without transmission

dynamic slot with transmission

dynamic segment containing gNumberOfMinisiots minislots

transmission may only start within the first pLatestTx minislots of the dynamic segment

Figure 5-5: Structure of the dynamic segment.

[FlexRay04]

Dynamic Segment Detalls

¢ High-level idea is each minislot is an opportunity to send a message
» [f message is sent, minislot expands into a message transmission
» [f message isn’t sent, minislot elapses unused as a short idle period
« All transmitters watch whether a message is sent so they can count minislots

minislot |

channel idle
channel active delimiter channel idle
frame 1D m | i
-------------- | | L r [X J T |
A

minislot action
point

minislot action

ds

dynamic slot ~ POINt gynamic slot
transmission phase idle phase
-4 - -
dynamic slot

-~ .

slot
m

counter

Figure 5-7: Timing within the dynamic segment.

channel idle
r:}‘nannel active del}niter r.f/r]annel idle
frame 1D m+3 | i T
| meemeaccaan-a. | | =emeee
A

minislot action
point

-

dynamic slot
transmission phase

minislot action

-

PoINt gynamic slot
idle phase

-

ds

dynamic slot

ol
m+1

ol -]
m+2 m+3

slot counter incremented at
the end of each dynamic slot

[FlexRay04]

Minislot Performance

¢ Frame ID # is used for slot numbering
o First dynamic Frame ID = last static Frame ID + 1

¢ Dynamic segment has a fixed amount of time

Fixed number of macroticks, divided up into minislots

» There might or might not be enough time for all dynamic messages to be sent
* When dynamic segment time is up, unsent messages wait for next cycle

¢ Net effect: event-triggered messages

Messages with the lowest Frame ID are sent first

Each Frame ID # can only send ONE message per cycle

As many message as will fit in dynamic segment are sent

This means that only highest priority messages queued are sent in each cycle

Note that idle minislots consume dynamic segment bandwidth
— But minislots are a lot smaller than messages

18

Time Keeping

¢ Macrotick is common unit of time across nodes
e lIdea is that it is within one microtick of correct at each node
» Rate and offset correction performed every pair of cycles to keep in sync

¢ Two main timekeeping tasks:

« MTG - Macrotick Generation Process
— Applies rate and offset correction values

e CSP - Clock Synchronization Process
— Initialization
— Calculation of rate and offset values

 Distributed time theory applies here (see lecture on that topic)
— Uses fault tolerant midpoint calculation (how many errors does this tolerate?)

Figure 8-12: Algorithm for clock correction value calculation (k=2). [FlexRay04]

19

Clock Sync Schedule

media access schedule (MAC)

< > € € > € >
cycle 2n cycle 2n+1 cycle 2n+2 cycle 2n+3
static |dyn. |sym. NIT static [dyn.|sym. NIT static |dyn.|sym. NIT static |dyn. [sym. NIT
clock sync correction schedule (MTG)
' ' ' offset offset
rate correction rate correction rate correction rate correction
correction values /
____._--"'"""
clock sync calculation schedule (CSP) |
H] \ R R

measurement
values

measurement rate correction
phase value calculation

offset correction
value calculation

Figure 8-3: Timing relationship between clock synchronization, media access schedule, and
the execution of clock synchronization functions.
[FlexRay04]

¢ NIT = Network Idle Time at end of each cycle

20

General Bus Guardian (BG) Operation

¢ ldea is to have an independent time source

 [f communication controller attempts to transmit at wrong time...
bus guardian stops it because “enable” is removed outside correct time slice

o [f BG isincorrect...
communication controller won’t be attempting to transmit anyway

o Goal is “fail silent” operation
— Both BG & communication controller have to enable & transmit for message to be
sent

¢ Why is this required?
o What if a faulty node tries to send at the wrong time — takes down network!
— Especially “babbling idiot” failure, where node broadcasts continuously

 [tis very difficult to get this right at low cost
— ldeally want separate chips for BGs to eliminate common mode failures

— As a practical matter, want to integrate on chip to save cost
21

FlexRay Tradeoffs

¢ Advantages

Probably has primitives necessary for critical x-by-wire applications
Static segment provides timing guarantees and some fault tolerance
Dynamic segment gives flexibility for event triggered messages

Big industry consortium behind it

It’s “flexible”

¢ Disadvantages
o After 10 years it Is getting mature

— Would be no surprise if protocol defects emerge — same as for any other protocol
Does not provide as complete a set of primitives as TTP

— Group membership is an application problem, but will be needed for x-by-wire
— Any safety critical operation on host might complicate safety case

¢ Other
« Does not encompass a complete system architecture

— Provides flexibility for architectures... but not a blueprint for fault tolerance

22

Relationship To Selected Other Topics

¢ Distributed systems:
» Enables hybrid Time Triggered & Event Triggered designs
» Requires application to do their own atomic broadcast & group membership
 Built-in distributed timekeeping results (synchronous system approach)

¢ Embedded networks:

» Uses combination of TDMA and minislot (implicit token/compressed TDMA)
approaches

¢ Real time:
* Requires both static scheduling (static portion) and dynamic scheduling
(dynamic portion)
¢ Fault tolerance:
» Requires application support for Byzantine faults (e.g., group membership)
 Includes data integrity checks on header & payload
 Includes no security — that is an application responsibility
* Includes some support for system reset, but host must behave properly
¢ Safety — FlexRay consortium is working on protocol analysis
* Requires a safety case, including fault analysis

23

