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Preview

¢ FlexRay — automotive choice for X-by-Wire applications
o Created by industry consortium founded in 2000

* Core members: BMW, DaimlerChrysler, General Motors, Motorola, Philips,
Volkswagen, and Robert Bosch.

¢ First public FlexRay protocol specification June 30, 2004 [FlexRay04]
e Combination Time-Triggered & Event-Triggered Approach
 Intended for use in safety critical, fault-tolerant systems

¢ Dec. 7, 2006:
“FlexRay protocol has entered its production phase with devices from
NXP(formerly Philips Semiconductors) and Freescale Semiconductor in
BMW's newest X5 sport activity vehicle.”

¢ High volume production reached in about 2010
e E.g., NXP had shipped 1 million Flexray chips by 2009; 2 million by mid-2010

e But.. By October 2012: “FlexRay not dead, chip vendors claim”
— Due to possibility of time triggered Ethernet (using switches — no collisions)



FlexRay Prototype Hardware (Convergence 2000)
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Topology — Active Star Plays Key Role

¢ Active star simplifies some aspects of distributed coordination
e Maximum delay through star is 250 ns, so it does not buffer full messages
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Figure 9-2: Active Star transfer functionality.

[FlexRay04]



Redundant Active Star

¢ Intended to eliminate single-point failures for critical systems
» This seems the most likely configuration for FlexRay X-by-Wire

Node A Node B Node C Node D Node E

[FlexRay04]

Figure 1-2: Dual channel single star configuration.

¢ TTP was found to have some distributed bus guardian issues
* Problems related to nodes listening to faulty network startup messages
» Single fault affected multiple “independent” portions of chip!
« Latest proposal is to move to dual channel star configuration for TTP as well



General FlexRay Node Block Diagram

e Host is application CPU
» Bus guardian controls enable line on bus driver
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Figure 1-7: All logical interfaces. 6



Physical Layer

¢ Differential NRZ encoding
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Figure 6-1: Electrical signaling.

¢ 10 Mbps operating speed
 Independent of network length because, unlike CAN, doesn’t use bit arbitration

[FlexRay04]



FlexRay Encoding Approach

¢ Data sent as NRZ bytes
e TSS = Transmit Start Sequence (LOW for 5-15 bits)
o FSS = Frame Start Sequence (one HI bit)
« BSS = Byte Start Sequence (similar to start/stop bits in other NRZ)
 FES = Frame End Sequence (END symbol for frame — LO + HI)
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Figure 3-2: Frame encoding in the static segment. [FlexRay04]

¢ Dynamic segment frames are similar
e Adds a DTS = dynamic trailing sequence field; helps line up minislots



FlexRay Frame Format
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Figure 4-1: FlexRay frame format.

« This data is encoded into NRZ bytes per the encoding format

[FlexRay04]
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CAN vs. FlexRay Length Field Corruptions

¢ CAN does not protect length field
o Corrupted length field will point to wrong location for CRC!
e One bit error in length field circumvents HD=6 CRC
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Figure 4-1: FlexRay frame format.
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FlexRay Frame Fields

¢ Frame ID

e Frame’s slot number (1 .. 2047); unigue within channel in communication cycle

¢ Payload Length

o # of 16-bit words in payload

* Must be same for all messages in static segment of communication cycle
¢ Header CRC

 HD=6 error detection for header data (optimal polynomial for 20 bits)
¢ Cycle Count

e Number of current cycle

« Even vs. odd cycle count values are used by protocol details
— Example: clock sync corrects offset on odd cycles and rate on even cycles

¢ Data
o 0..254 bytes (must be same for all static frames)
¢ CRC in trailer segment
 HD=6 up to 248 payload bytes; HD=4 above that until 508 payload bytes
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FlexRay Message Cycle

¢ Two main phases: static & dynamic
o “Temporal firewall” — partition between phases protects timing of each phase
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Figure 5-1: Timing hierarchy within the communication cycle.
[FlexRay04]
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Microtick & Macrotick

¢ Microtick level
* Node’s own internal time base
e Direct or scaled value from a local oscillator or counter/timer
* Not synchronized with rest of system — local free-running oscillator

¢ Macrotick level
* Time interval derived from cluster-wide clock sync algorithm

* Always an integral number of microticks
— BUT, not necessarily the same number of microticks per node
— Number of microticks varies at run time to implement clock sync

¢ Designated macrotick boundaries are “action points”
e Transmissions start here — static; dynamic; symbol window
« Transmissions end here — dynamic segment
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Static Segment

¢ TDMA messages, most likely used for critical messages
» All static slots are the same length in microticks

« All static slots are repeated in order every communication cycle

 All static slot times are expended in cycle whether used or not
— Number of static slots is configurable for system ; up to 1023 slots
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[FlexRay04]

Figure 5-3: Structure of the static segment.
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Static Segment Details

¢ Two-channel operation
« Sync frames on both channels; other frames optionally 1 or 2 channels
— Less critical/less expensive nodes might only connect to one channel
» Slots are lock-stepped in order on both channels

¢ TDMA order is by ascending frame ID number

e Frame number used to determine slot # by software
— 1tis NOT a binary countdown arbitration mechanism — only one xmitter at a time

— Optionally, there is a Message ID in the payload area that can be unrelated to slot
number

— Example use: each node uses its node # as frame # and multiplexes its messages
onto a single time slot, distinguished by Message 1D

* Incontrast, TTP has a MEDL that can have sub-cycles
— Need neither a Frame ID nor a Message ID
— Extra information to be managed and coordinated
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Dynamic Segment

¢ High-level idea is event-based communication channel
e Want arbitration, but must be deterministic
« Binary countdown not used (among other things, restricts possible media)

¢ “Minislot” approach

» (Can be thought of as a time-compressed TDMA approach (details on next slide)

« Two channels can use independent message queues
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Dynamic Segment Detalls

¢ High-level idea is each minislot is an opportunity to send a message
» [f message is sent, minislot expands into a message transmission
» [f message isn’t sent, minislot elapses unused as a short idle period
« All transmitters watch whether a message is sent so they can count minislots
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Minislot Performance

¢ Frame ID # is used for slot numbering
o First dynamic Frame ID = last static Frame ID + 1

¢ Dynamic segment has a fixed amount of time

Fixed number of macroticks, divided up into minislots

» There might or might not be enough time for all dynamic messages to be sent
* When dynamic segment time is up, unsent messages wait for next cycle

¢ Net effect: event-triggered messages

Messages with the lowest Frame ID are sent first

Each Frame ID # can only send ONE message per cycle

As many message as will fit in dynamic segment are sent

This means that only highest priority messages queued are sent in each cycle

Note that idle minislots consume dynamic segment bandwidth
— But minislots are a lot smaller than messages
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Time Keeping

¢ Macrotick is common unit of time across nodes
e lIdea is that it is within one microtick of correct at each node
» Rate and offset correction performed every pair of cycles to keep in sync

¢ Two main timekeeping tasks:

« MTG - Macrotick Generation Process
— Applies rate and offset correction values

e CSP - Clock Synchronization Process
— Initialization
— Calculation of rate and offset values

 Distributed time theory applies here (see lecture on that topic)
— Uses fault tolerant midpoint calculation (how many errors does this tolerate?)

Figure 8-12: Algorithm for clock correction value calculation (k=2). [FlexRay04]
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Clock Sync Schedule

media access schedule (MAC)
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Figure 8-3: Timing relationship between clock synchronization, media access schedule, and
the execution of clock synchronization functions.
[FlexRay04]

¢ NIT = Network Idle Time at end of each cycle
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General Bus Guardian (BG) Operation

¢ ldea is to have an independent time source

 [f communication controller attempts to transmit at wrong time...
bus guardian stops it because “enable” is removed outside correct time slice

o [f BG isincorrect...
communication controller won’t be attempting to transmit anyway

o Goal is “fail silent” operation
— Both BG & communication controller have to enable & transmit for message to be
sent

¢ Why is this required?
o What if a faulty node tries to send at the wrong time — takes down network!
— Especially “babbling idiot” failure, where node broadcasts continuously

 [tis very difficult to get this right at low cost
— ldeally want separate chips for BGs to eliminate common mode failures

— As a practical matter, want to integrate on chip to save cost
21



FlexRay Tradeoffs

¢ Advantages

Probably has primitives necessary for critical x-by-wire applications
Static segment provides timing guarantees and some fault tolerance
Dynamic segment gives flexibility for event triggered messages

Big industry consortium behind it

It’s “flexible”

¢ Disadvantages
o After 10 years it Is getting mature

— Would be no surprise if protocol defects emerge — same as for any other protocol
Does not provide as complete a set of primitives as TTP

— Group membership is an application problem, but will be needed for x-by-wire
— Any safety critical operation on host might complicate safety case

¢ Other
« Does not encompass a complete system architecture

— Provides flexibility for architectures... but not a blueprint for fault tolerance
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Relationship To Selected Other Topics

¢ Distributed systems:
» Enables hybrid Time Triggered & Event Triggered designs
» Requires application to do their own atomic broadcast & group membership
 Built-in distributed timekeeping results (synchronous system approach)

¢ Embedded networks:

» Uses combination of TDMA and minislot (implicit token/compressed TDMA)
approaches

¢ Real time:
* Requires both static scheduling (static portion) and dynamic scheduling
(dynamic portion)
¢ Fault tolerance:
» Requires application support for Byzantine faults (e.g., group membership)
 Includes data integrity checks on header & payload
 Includes no security — that is an application responsibility
* Includes some support for system reset, but host must behave properly
¢ Safety — FlexRay consortium is working on protocol analysis
* Requires a safety case, including fault analysis
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