
23
The FlexRay

Protocol

Philip Koopman
Significant material drawn from

FlexRay Specification Version 2.0, June 2004

30 Nov 2015

© Copyright 2005-2015, Philip Koopman

2

Preview
 FlexRay – automotive choice for X-by-Wire applications

• Created by industry consortium founded in 2000
• Core members: BMW, DaimlerChrysler, General Motors, Motorola, Philips,

Volkswagen, and Robert Bosch.

 First public FlexRay protocol specification June 30, 2004 [FlexRay04]
• Combination Time-Triggered & Event-Triggered Approach
• Intended for use in safety critical, fault-tolerant systems

 Dec. 7, 2006:
“FlexRay protocol has entered its production phase with devices from
NXP(formerly Philips Semiconductors) and Freescale Semiconductor in
BMW's newest X5 sport activity vehicle.”

 High volume production reached in about 2010
• E.g., NXP had shipped 1 million Flexray chips by 2009; 2 million by mid-2010
• But .. By October 2012: “FlexRay not dead, chip vendors claim”

– Due to possibility of time triggered Ethernet (using switches – no collisions)

3

FlexRay Prototype Hardware (Convergence 2000)

4

Topology – Active Star Plays Key Role
 Active star simplifies some aspects of distributed coordination

• Maximum delay through star is 250 ns, so it does not buffer full messages

[FlexRay04]

5

Redundant Active Star
 Intended to eliminate single-point failures for critical systems

• This seems the most likely configuration for FlexRay X-by-Wire

 TTP was found to have some distributed bus guardian issues
• Problems related to nodes listening to faulty network startup messages
• Single fault affected multiple “independent” portions of chip!
• Latest proposal is to move to dual channel star configuration for TTP as well

[FlexRay04]

6

General FlexRay Node Block Diagram
• Host is application CPU
• Bus guardian controls enable line on bus driver

[FlexRay04]

7

Physical Layer
 Differential NRZ encoding

 10 Mbps operating speed
• Independent of network length because, unlike CAN, doesn’t use bit arbitration

[FlexRay04]

8

FlexRay Encoding Approach
 Data sent as NRZ bytes

• TSS = Transmit Start Sequence (LOW for 5-15 bits)
• FSS = Frame Start Sequence (one HI bit)
• BSS = Byte Start Sequence (similar to start/stop bits in other NRZ)
• FES = Frame End Sequence (END symbol for frame – LO + HI)

 Dynamic segment frames are similar
• Adds a DTS = dynamic trailing sequence field; helps line up minislots

[FlexRay04]

9

FlexRay Frame Format

• This data is encoded into NRZ bytes per the encoding format

[FlexRay04]

1010

CAN vs. FlexRay Length Field Corruptions
 CAN does not protect length field

• Corrupted length field will point to wrong location for CRC!
• One bit error in length field circumvents HD=6 CRC

 FlexRay solves this with a header CRC to protect Length

ID

ID

LEN

LEN

CRC

CRCCRC

DATA

DATA

Original Message

Corrupted LEN

Source: FlexRay Standard, 2004

11

FlexRay Frame Fields
 Frame ID

• Frame’s slot number (1 .. 2047); unique within channel in communication cycle
 Payload Length

• # of 16-bit words in payload
• Must be same for all messages in static segment of communication cycle

 Header CRC
• HD=6 error detection for header data (optimal polynomial for 20 bits)

 Cycle Count
• Number of current cycle
• Even vs. odd cycle count values are used by protocol details

– Example: clock sync corrects offset on odd cycles and rate on even cycles

 Data
• 0 .. 254 bytes (must be same for all static frames)

 CRC in trailer segment
• HD=6 up to 248 payload bytes; HD=4 above that until 508 payload bytes

12

FlexRay Message Cycle
 Two main phases: static & dynamic

• “Temporal firewall” – partition between phases protects timing of each phase

[FlexRay04]

13

Microtick & Macrotick
 Microtick level

• Node’s own internal time base
• Direct or scaled value from a local oscillator or counter/timer
• Not synchronized with rest of system – local free-running oscillator

 Macrotick level
• Time interval derived from cluster-wide clock sync algorithm
• Always an integral number of microticks

– BUT, not necessarily the same number of microticks per node
– Number of microticks varies at run time to implement clock sync

 Designated macrotick boundaries are “action points”
• Transmissions start here – static; dynamic; symbol window
• Transmissions end here – dynamic segment

14

Static Segment
 TDMA messages, most likely used for critical messages

• All static slots are the same length in microticks
• All static slots are repeated in order every communication cycle
• All static slot times are expended in cycle whether used or not

– Number of static slots is configurable for system ; up to 1023 slots

[FlexRay04]

15

Static Segment Details
 Two-channel operation

• Sync frames on both channels; other frames optionally 1 or 2 channels
– Less critical/less expensive nodes might only connect to one channel

• Slots are lock-stepped in order on both channels

 TDMA order is by ascending frame ID number
• Frame number used to determine slot # by software

– It is NOT a binary countdown arbitration mechanism – only one xmitter at a time
– Optionally, there is a Message ID in the payload area that can be unrelated to slot

number
– Example use: each node uses its node # as frame # and multiplexes its messages

onto a single time slot, distinguished by Message ID

• In contrast, TTP has a MEDL that can have sub-cycles
– Need neither a Frame ID nor a Message ID
– Extra information to be managed and coordinated

16

Dynamic Segment
 High-level idea is event-based communication channel

• Want arbitration, but must be deterministic
• Binary countdown not used (among other things, restricts possible media)

 “Minislot” approach
• Can be thought of as a time-compressed TDMA approach (details on next slide)
• Two channels can use independent message queues

[FlexRay04]

17

Dynamic Segment Details
 High-level idea is each minislot is an opportunity to send a message

• If message is sent, minislot expands into a message transmission
• If message isn’t sent, minislot elapses unused as a short idle period
• All transmitters watch whether a message is sent so they can count minislots

[FlexRay04]

18

Minislot Performance
 Frame ID # is used for slot numbering

• First dynamic Frame ID = last static Frame ID + 1

 Dynamic segment has a fixed amount of time
• Fixed number of macroticks, divided up into minislots
• There might or might not be enough time for all dynamic messages to be sent
• When dynamic segment time is up, unsent messages wait for next cycle

 Net effect: event-triggered messages
• Messages with the lowest Frame ID are sent first
• Each Frame ID # can only send ONE message per cycle
• As many message as will fit in dynamic segment are sent
• This means that only highest priority messages queued are sent in each cycle
• Note that idle minislots consume dynamic segment bandwidth

– But minislots are a lot smaller than messages

19

Time Keeping
 Macrotick is common unit of time across nodes

• Idea is that it is within one microtick of correct at each node
• Rate and offset correction performed every pair of cycles to keep in sync

 Two main timekeeping tasks:
• MTG – Macrotick Generation Process

– Applies rate and offset correction values
• CSP – Clock Synchronization Process

– Initialization
– Calculation of rate and offset values

• Distributed time theory applies here (see lecture on that topic)
– Uses fault tolerant midpoint calculation (how many errors does this tolerate?)

[FlexRay04]

20

Clock Sync Schedule

 NIT = Network Idle Time at end of each cycle
[FlexRay04]

21

General Bus Guardian (BG) Operation
 Idea is to have an independent time source

• If communication controller attempts to transmit at wrong time…
bus guardian stops it because “enable” is removed outside correct time slice

• If BG is incorrect…
communication controller won’t be attempting to transmit anyway

• Goal is “fail silent” operation
– Both BG & communication controller have to enable & transmit for message to be

sent

 Why is this required?
• What if a faulty node tries to send at the wrong time – takes down network!

– Especially “babbling idiot” failure, where node broadcasts continuously

• It is very difficult to get this right at low cost
– Ideally want separate chips for BGs to eliminate common mode failures
– As a practical matter, want to integrate on chip to save cost

22

FlexRay Tradeoffs
 Advantages

• Probably has primitives necessary for critical x-by-wire applications
• Static segment provides timing guarantees and some fault tolerance
• Dynamic segment gives flexibility for event triggered messages
• Big industry consortium behind it
• It’s “flexible”

 Disadvantages
• After 10 years it is getting mature

– Would be no surprise if protocol defects emerge – same as for any other protocol
• Does not provide as complete a set of primitives as TTP

– Group membership is an application problem, but will be needed for x-by-wire
– Any safety critical operation on host might complicate safety case

 Other
• Does not encompass a complete system architecture

– Provides flexibility for architectures… but not a blueprint for fault tolerance

23

Relationship To Selected Other Topics
 Distributed systems:

• Enables hybrid Time Triggered & Event Triggered designs
• Requires application to do their own atomic broadcast & group membership
• Built-in distributed timekeeping results (synchronous system approach)

 Embedded networks:
• Uses combination of TDMA and minislot (implicit token/compressed TDMA)

approaches
 Real time:

• Requires both static scheduling (static portion) and dynamic scheduling
(dynamic portion)

 Fault tolerance:
• Requires application support for Byzantine faults (e.g., group membership)
• Includes data integrity checks on header & payload
• Includes no security – that is an application responsibility
• Includes some support for system reset, but host must behave properly

 Safety – FlexRay consortium is working on protocol analysis
• Requires a safety case, including fault analysis

