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Where Are We Now?
 Where we’ve been:

• CAN – an “event-centric” protocol

 Where we’re going today:
• Briefly touch requirements churn (reqd reading

from another lecture, but at this point it’s relevant
to the project – which has a requirements change)

• Protocol performance, especially CAN

 Where we’re going next:
• Scheduling
• First half of the course – How to make good distributed+embedded systems
• Second half of the course – How to make them better (dependable; safe; …)
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Summary of Requirements Churn (Ch 9)
 Project 8 adds requirements to make the elevator more realistic

 Requirements changes are a fact of life
• It is impossible to get 100% of requirements set on Day 1 of project
• It is, however, a really Bad Idea to just give on requirements because of this

 The later in the project a requirement changes, the more expensive
• “Churn” is when requirements keep changing throughout project

– Same as other trend; can easily cost 10x-100x more to change late in project
• It is a relative amount … more churn is worse

 Usual countermeasures:
• Change Control Board: make it painful to insert frivolous changes
• Requirements Freezes: after a cutoff date you wait until next release
• Charge for Changes: no change is “free” – it costs money or schedule slip
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Preview: CAN Performance
 A look at workloads and delivery times

• Periodic vs. aperiodic
• Best case vs. worst case vs. expected case

 A look at CAN protocol performance
• Can we predict worst-case delivery time for a CAN message?

– Perhaps surprisingly, people in the past have said “can’t be done” …
what they should have said was “not trivial, but can be done”

• Stay tuned for deadline monotonic scheduling in a later lecture
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A Typical Embedded Control Workload
 “SAE Standard Workload” (subset of 53 messages)   V/C = Vehicle Controller

[Tindell94]



6

Periodic Messages
 Time-triggered, often via control loops or rotating machinery
 Components to periodic messages

• Period (e.g, 50 msec)
• Offset past period  (e.g., 3 msec offset/50 msec period ->  53, 103, 153, 203)
• Jitter is random “noise” in message release time (not oscillator drift)
• Release time is when message is sent to network queue for transmission
• Release timen= (n*period) + offset + jitter    ; assuming perfect time precision
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Sporadic Messages (Aperiodic; ~Exponential)
 Asynchronous messages

• External events
• Often Poisson processes (exponential inter-arrival times)

 Sporadic message timing properties
• Mean inter-arrival rate (only useful over long time periods)
• Minimum inter-arrival time with filtering (often set equal to deadline)

– Artificial limit on inter-arrival rate to avoid swamping system Sporadic
– May miss arrivals if multiple arrivals occur within the filtering window length

APERIODIC

SPORADIC
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Capacity Measurement
 Efficiency = amount sent / channel bandwidth

• Bit-wise efficiency  (data bit encoding; message framing)
• Payload efficiency   (fraction of message that has useful payload)
• Message efficiency  (percent of useful messages)

 Think of workload demand/network capacity in several ways 
depending on how long a window you consider:
• Instantaneous peak capacity/demand

– 100% when message is being sent
– 0% when nothing being sent

• Worst-case traffic bursts   (covered in section on delivery time calculation)
– What is worst case if a big burst hits?  (Someone has to go last)

• Sustained maximum capacity
– How many bits can you send with max constant transmitter demand?
– Most embedded networks avoid collision to get good efficiency under heavy load
– Usually what you care about is worst case delivery latency at max capacity
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Bit-wise Efficiency
 Intra-message, bit-wise efficiency

• Percentage of useful data bits …
– Data field
– Portions of header field that can be used to identify the data by an application 

program (e.g., appropriate parts of CAN message identifier)
• … compared to total bits transmitted (including overhead bits/dead times)

– Inter-message gap to permit transmission sources to achieve quiescence
– Message preamble for receive clock synchronization
– Control bits
– Error detection codes
– Stuff bits
– Token bits

 Example: CAN
• Say there are 140 bits transmission time for a 64-bit data payload
• Bit-wise efficiency is (for that message size) is      64 / 140 = 46%

– This is pretty good as such things go!
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CAN Message Length & Overhead
 Worst case message length per Ellims et al.

• (Note that older Tindell papers miss subtlety about bit stuffing and incorrectly 
divides by 5 instead of 4 in equation below)

• Overhead = 67 bits
– 29 bit header   (slightly different formula below for 11 bit header of course)
– 15 bit CRC
– 4 bit length
– 9 bits start & misc status bits
– 10 bits end of frame + “intermission” between messages

• 8 bits/byte of payload  (sm = size of payload in bytes)
• Worst case of 1 stuff bit for every 4 message bits

– Why?  Because the stuff bit counts as first bit in new stuffing sequence!
– Only 54 of the overhead bits are stuffed; Intermission and some others not stuffed













 

 m
m ssbits 867

4
854#

[Ellims02]
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Message Use Efficiency
 How many messages are actually used?

• In any token/polled system, percentage of data-bearing messages vs. empty 
token passes

• Might make assumption of uniform message length; might be only somewhat 
accurate

 Master/Slave system
• Efficiency might be 50%  (half of messages are polls; half have data)

 Token passing system
• Efficiency varies depending on system load (more efficient at high loads)
• Efficiency critically depends on combining token with useful messages

 Collision-based systems
• Efficiency depends on collisions
• Efficiency reduces with busy system (this is undesirable)

 CAN:
• 100% of messages are useful at protocol level
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Tricks To Improve Efficiency
 Combine messages into large messages

• Several different data fields put into a single message
– Be careful – only works for messages sent from same transmitter
– Can obscure event triggers by combining two events into one message

 Plan message spacing to minimize arbitration overhead
• If there is startup cost to achieve active network, intentionally clump messages 

(keep offset low, but expect to have long latency messages)
• If synchronized messages collide and cost performance, intentionally skew 

message release times (add jitter)

• Time-triggered approaches using TDMA can be 100% message efficient
– But, sometimes the messages are sending redundant data
– And, usually requires precise timekeeping
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Average Demand
 Average Demand is based on mean periods

• Periodic messages – at stated period
• Aperiodic messages – at stated mean period
• Assume time period is long enough that message clumping doesn’t matter

• For example workload over 30 time units:
(note: 30 is Least Common Multiple of periods)

Total = 55 messages / 30 time units

Message Name Type Mean Period # in 30 units
A Periodic 1 30
B Sporadic 5 6
C Periodic 5 6
D Periodic 10 3
E Periodic 5 6
F Sporadic 10 3
G Periodic 30 1
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Peak Demand
 For critical systems, you have to plan on the worst case!
 Peak demand is based on mean periods + max arrival rates

• Periodic messages – at stated period
• Aperiodic messages – at minimum arrival intervals (peak period)

– Usually you assume minimum intervals = deadline
• Assume time period is long enough that message clumping doesn’t matter
• For example sustained peak workload over 30 time units:

Total = 64 messages / 30 time units

Message Name Type Mean Period Peak Period # in 30 units
A Periodic 1 30
B Sporadic 5 2 15
C Periodic 5 6
D Periodic 10 3
E Periodic 5 6
F Sporadic 10 10 3
G Periodic 30 1
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Abbreviated “Standard” Automotive Workload

Signal 
Number

Signal 
Description

Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From To

1 T_Batt_V 8 0.6 100 P 100 Battery V/C
2 T_Batt_C 8 0.7 100 P 100 Battery V/C
3 T_Batt_Tave 8 1.0 1000 P 1000 Battery V/C
4 A_Batt_V 8 0.8 100 P 100 Battery V/C
5 T_Batt_Tmax 8 1.1 1000 P 1000 Battery V/C
6 A_Batt_C 8 0.9 100 P 100 Battery V/C
7 Accel_Posn 8 0.1 5 P 5 Driver V/C
8 Brake_Master 8 0.1 5 P 5 Brakes V/C
9 Brake_Line 8 0.2 5 P 5 Brakes V/C
10 Trans_Lube 8 0.2 100 P 100 Trans V/C
11 Trans_Clutch 8 0.1 5 P 5 Trans V/C
12 Speed 8 0.4 100 P 100 Brakes V/C
13 T_Batt_GF 1 1.2 1000 P 1000 Battery V/C
14 Contactor 4 0.1 50 S 5 Battery V/C
15 Key_Run 1 0.2 50 S 20 Driver V/C
16 Key_Start 1 0.3 50 S 20 Driver V/C
17 Accel_Switch 2 0.4 50 S 20 Driver V/C
18 Brake_Switch 1 0.3 20 S 20 Brakes V/C
19 Emer_Brake 1 0.5 50 S 20 Driver V/C
20 Shift_Lever 3 0.6 50 S 20 Driver V/C
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Note on Deadline Monotonic Scheduling
 If you’ve never heard about this, be sure to read about it before the 

scheduling lecture!
• Rate Monotonic and Deadline Monotonic are almost the same idea
• Generally talks about CPU scheduling
• But, with slight adjustment works on network message schedules too!

 Generalized way to meet real time deadlines with prioritized tasks:
• Sort messages by priority order
• Shortest period gets highest priority
• If rates are harmonic (all rates multiple of other rates), can use 100% of 

resource
• More about this in the real time scheduling lecture
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Sort For Deadline Monotonic Scheduling

Signal 
Number

Signal 
Description

Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From

7 Accel_Posn 8 0.1 5 P 5 Driver
8 Brake_Master 8 0.1 5 P 5 Brakes
9 Brake_Line 8 0.2 5 P 5 Brakes
11 Trans_Clutch 8 0.1 5 P 5 Trans
14 Contactor 4 0.1 50 S 5 Battery
15 Key_Run 1 0.2 50 S 20 Driver
16 Key_Start 1 0.3 50 S 20 Driver
17 Accel_Switch 2 0.4 50 S 20 Driver
18 Brake_Switch 1 0.3 20 S 20 Brakes
19 Emer_Brake 1 0.5 50 S 20 Driver
20 Shift_Lever 3 0.6 50 S 20 Driver
1 T_Batt_V 8 0.6 100 P 100 Battery
2 T_Batt_C 8 0.7 100 P 100 Battery
4 A_Batt_V 8 0.8 100 P 100 Battery
6 A_Batt_C 8 0.9 100 P 100 Battery
10 Trans_Lube 8 0.2 100 P 100 Trans
12 Speed 8 0.4 100 P 100 Brakes
3 T_Batt_Tave 8 1.0 1000 P 1000 Battery
5 T_Batt_Tmax 8 1.1 1000 P 1000 Battery
13 T_Batt_GF 1 1.2 1000 P 1000 Battery
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Workload Bandwidth Consumption
 Total Bandwidth = 122,670 bits/sec (worst case)

Signal 
Number

Signal 
Description

Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From

bits/ 
message

bits/ 
second

7 Accel_Posn 8 0.1 5 P 5 Driver 90 18000
8 Brake_Master 8 0.1 5 P 5 Brakes 90 18000
9 Brake_Line 8 0.2 5 P 5 Brakes 90 18000
11 Trans_Clutch 8 0.1 5 P 5 Trans 90 18000
14 Contactor 4 0.1 50 S 5 Battery 90 18000
15 Key_Run 1 0.2 50 S 20 Driver 90 4500
16 Key_Start 1 0.3 50 S 20 Driver 90 4500
17 Accel_Switch 2 0.4 50 S 20 Driver 90 4500
18 Brake_Switch 1 0.3 20 S 20 Brakes 90 4500
19 Emer_Brake 1 0.5 50 S 20 Driver 90 4500
20 Shift_Lever 3 0.6 50 S 20 Driver 90 4500
1 T_Batt_V 8 0.6 100 P 100 Battery 90 900
2 T_Batt_C 8 0.7 100 P 100 Battery 90 900
4 A_Batt_V 8 0.8 100 P 100 Battery 90 900
6 A_Batt_C 8 0.9 100 P 100 Battery 90 900
10 Trans_Lube 8 0.2 100 P 100 Trans 90 900
12 Speed 8 0.4 100 P 100 Brakes 90 900
3 T_Batt_Tave 8 1.0 1000 P 1000 Battery 90 90
5 T_Batt_Tmax 8 1.1 1000 P 1000 Battery 90 90
13 T_Batt_GF 1 1.2 1000 P 1000 Battery 90 90
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Schedulability (Trivial Bound Version)

 Look at shortest period and 
see if everything fits there

 Shortest period = 5 msec
• 20 messages total, each at 90 

bits = 20*90= 1800 bits
if all messages are released 
simultaneously

• 1800 bits / 5 msec = 360,000 
bits/sec

• Therefore, system is trivially 
schedulable above 360,000 
bits/sec
(i.e., all 20 messages would be 
schedulable if they were all 
sent at 5 msec periods)

Signal 
Description

Size 
/bits

Deadline 
/ms From

bits/ 
message

bits/ 
second

Accel_Posn 8 5 Driver 90 18000
Brake_Master 8 5 Brakes 90 18000
Brake_Line 8 5 Brakes 90 18000
Trans_Clutch 8 5 Trans 90 18000
Contactor 4 5 Battery 90 18000
Key_Run 1 20 -> 5 Driver 90 18000
Key_Start 1 20 -> 5 Driver 90 18000
Accel_Switch 2 20 -> 5 Driver 90 18000
Brake_Switch 1 20 -> 5 Brakes 90 18000
Emer_Brake 1 20 -> 5 Driver 90 18000
Shift_Lever 3 20 -> 5 Driver 90 18000
T_Batt_V 8 100 -> 5 Battery 90 18000
T_Batt_C 8 100 -> 5 Battery 90 18000
A_Batt_V 8 100 -> 5 Battery 90 18000
A_Batt_C 8 100 -> 5 Battery 90 18000
Trans_Lube 8 100 -> 5 Trans 90 18000
Speed 8 100 -> 5 Brakes 90 18000
T_Batt_Tave 8 1000 -> 5 Battery 90 18000
T_Batt_Tmax 8 1000 -> 5 Battery 90 18000
T_Batt_GF 1 1000 -> 5 Battery 90 18000

Total bits/sec = 360,000
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Schedulability (Deadline Monotonic Version)

 Assign priorities based on shortest deadlines; Network Load < ~100% 
• Result is schedulable at ~125 Kbps (note that deadlines are harmonic)

Signal 
Number Priority

Signal 
Description

Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From

bits/ 
message

bits/ 
second

7 1 Accel_Posn 8 0.1 5 P 5 Driver 90 18000
8 2 Brake_Master 8 0.1 5 P 5 Brakes 90 18000
9 3 Brake_Line 8 0.2 5 P 5 Brakes 90 18000
11 4 Trans_Clutch 8 0.1 5 P 5 Trans 90 18000
14 5 Contactor 4 0.1 50 S 5 Battery 90 18000
15 6 Key_Run 1 0.2 50 S 20 Driver 90 4500
16 7 Key_Start 1 0.3 50 S 20 Driver 90 4500
17 8 Accel_Switch 2 0.4 50 S 20 Driver 90 4500
18 9 Brake_Switch 1 0.3 20 S 20 Brakes 90 4500
19 10 Emer_Brake 1 0.5 50 S 20 Driver 90 4500
20 11 Shift_Lever 3 0.6 50 S 20 Driver 90 4500
1 12 T_Batt_V 8 0.6 100 P 100 Battery 90 900
2 13 T_Batt_C 8 0.7 100 P 100 Battery 90 900
4 14 A_Batt_V 8 0.8 100 P 100 Battery 90 900
6 15 A_Batt_C 8 0.9 100 P 100 Battery 90 900
10 16 Trans_Lube 8 0.2 100 P 100 Trans 90 900
12 17 Speed 8 0.4 100 P 100 Brakes 90 900
3 18 T_Batt_Tave 8 1.0 1000 P 1000 Battery 90 90
5 19 T_Batt_Tmax 8 1.1 1000 P 1000 Battery 90 90
13 20 T_Batt_GF 1 1.2 1000 P 1000 Battery 90 90

Total bits/sec = 122,670
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Can We Do Better?
 Look for messages to combine

• Even 1-bit payloads consume a whole message
• Look for messages with same period and same source

Signal 
Number

Signal 
Description

Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From

bits/ 
message

bits/ 
second

14 Contactor 4 0.1 50 S 5 Battery 90 18000
8 Brake_Master 8 0.1 5 P 5 Brakes 90 18000 Brake_msg
9 Brake_Line 8 0.2 5 P 5 Brakes 90 18000
7 Accel_Posn 8 0.1 5 P 5 Driver 90 18000
11 Trans_Clutch 8 0.1 5 P 5 Trans 90 18000
18 Brake_Switch 1 0.3 20 S 20 Brakes 90 4500
15 Key_Run 1 0.2 50 S 20 Driver 90 4500
16 Key_Start 1 0.3 50 S 20 Driver 90 4500
17 Accel_Switch 2 0.4 50 S 20 Driver 90 4500 Driver_msg
19 Emer_Brake 1 0.5 50 S 20 Driver 90 4500
20 Shift_Lever 3 0.6 50 S 20 Driver 90 4500
1 T_Batt_V 8 0.6 100 P 100 Battery 90 900
2 T_Batt_C 8 0.7 100 P 100 Battery 90 900 Batt_msg1
4 A_Batt_V 8 0.8 100 P 100 Battery 90 900
6 A_Batt_C 8 0.9 100 P 100 Battery 90 900
12 Speed 8 0.4 100 P 100 Brakes 90 900
10 Trans_Lube 8 0.2 100 P 100 Trans 90 900
3 T_Batt_Tave 8 1.0 1000 P 1000 Battery 90 90
5 T_Batt_Tmax 8 1.1 1000 P 1000 Battery 90 90 Batt_msg2
13 T_Batt_GF 1 1.2 1000 P 1000 Battery 90 90

Total bits/sec = 122,670
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Workload With Combined Messages
 Deadline monotonic schedulable at >86,110 bits/sec   (36 Kbps savings)

 But, not always a free lunch
• What if design changes to have a different message source for one message?
• What if design needs to change deadline of one of a combined message?
• What if portions of Driver_msg have “event” semantics and aren’t always sent?

Priority
Signal 

Number
Signal 

Description
Size 
/bits

J 
/ms

Period 
/ms

Periodic 
/Sporadic

Deadline 
/ms From

bits/ 
message

bits/ 
second

1 14 Contactor 4 0.1 50 S 5 Battery 90 18000
2 8+9 Brake_msg 16 0.1 5 P 5 Brakes 100 20000
3 7 Accel_Posn 8 0.1 5 P 5 Driver 90 18000
4 11 Trans_Clutch 8 0.1 5 P 5 Trans 90 18000
5 18 Brake_Switch 1 0.3 20 S 20 Brakes 90 4500
6 15-17,19-20 Driver_msg 8 0.2 50 S 20 Driver 90 4500
7 1,2,4,6 Batt_msg1 32 0.6 100 P 100 Battery 120 1200
8 12 Speed 8 0.4 100 P 100 Brakes 90 900
9 10 Trans_Lube 8 0.2 100 P 100 Trans 90 900
10 3,5,13 Batt_msg2 17 1.0 1000 P 1000 Battery 110 110

Total bits/sec = 86,110
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Message Latency
 Networks are an inherently serial medium

• In the worst case, some message is going to go last

 Latency for our purposes starts when you queue a message and ends 
when message is received:
• Minimum theoretical latency is therefore the length of the message itself
• End-to-end latency might also include:

– Sensor/OS/application/OS/NIC delay at transmitter
– NIC/OS/application/OS/actuator delay at receiver

• Latency is measured until after the last bit of the message is received
– Message isn’t received until everything included error codes are received
– PLUS need to add processing delay to check error code, etc.

• If a message is enqueued just 1 psec after node started transmitting or gave up 
slot in arbitration, message has to wait for next opportunity

– Message can’t transmit unless it was enqueued before current arbitration round 
begins

– Even if you could theoretically slip it in later – that is not how networks are built
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Round-Robin Message Latency
 Best case is message transmits immediately (gets lucky or network idle)

 Worst case is message has to wait for its turn
• Message might have just barely missed current turn
• Wait for current message to complete
• Wait for all other nodes in a round to transmit
• Transmit desired message
• Possibly, wait for k+1 rounds if there are k messages already enqueued at the 

transmitter node
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Prioritized Message Latency
 Best case – message transmits immediately

 Prioritized messages worst case:
• Currently transmitting message completes

– You do not pre-empt a message once it starts transmitting
• All higher-priority messages complete
• Potentially, all other messages of same priority complete
• Desired message completes
• NOTE: node number of origin doesn’t matter for globally prioritized messages

– (assuming prioritization is by message ID # rather than node number)

 Message latency is analogous to prioritized interrupts
• 18-348 material – for this course you just need to apply this to CAN network 

messages, but the ideas are very similar.
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Latency For Prioritized Interrupts
 Have to wait for other interrupts to execute

• One might already be executing with lower priority  (have to wait)
– Or, interrupts might be masked for some other reason  (“blocking”)

• All interrupts at higher priority might execute one or more times
• Worst case – have to assume that every possible higher priority interrupt is 

queued   AND   longest possible blocking time (lower priority interrupt)

 Example, (same as previous situation):
• ISR1 takes 1 msec;  repeats at most every 10 msec
• ISR2 takes 2 msec;  repeats at most every 20 msec
• ISR3 takes 3 msec;  repeats at most every 30 msec

• For ISR2, latency is:
– ISR3 might just have started – 3 msec
– ISR1 might be queued already – 1 msec
– ISR2 will run after 3 + 1 = 4 msec

» This is less than 10 msec total (period of ISR1),  so ISR1 doesn’t run a second time
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Example – ISR Worst Case Latency
 Assume following task set  (ISR0 highest priority):

• ISR0 takes 5 msec and occurs at most once every 15 msec
• ISR1 takes 6 msec and occurs at most once every 20 msec
• ISR2 takes 7 msec and occurs at most once every 100 msec
• ISR3 takes 9 msec and occurs at most once every 250 msec
• ISR4 takes 3 msec and occurs at most once every 600 msec

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

Pending @ 9 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1
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Will ISR2 Execute Within 50 msec?
 Worst Case is ISR3 runs just before ISR2 can start

• Why this one?  – has  longest execution time of everything lower than ISR2

 Then ISR0 & ISR1 go because they are higher priority
• But wait, they retrigger by 20 msec – so they are pending again

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 Pending @ 20 msec: ISR0, ISR1, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1
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ISR0 & ISR1 Retrigger, then ISR2 goes

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 Pending @ 31 msec: ISR0, ISR2

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1

TIME (msec)

ISR3

ISR2
ISR1
ISR0

ISR2ISR3

0 5 10 15 20 25 30 35 40 45 5550 60

ISR1ISR0 ISR0 ISR1 ISR0 Pending @ 43 msec:  ISR1

ISR0 ISR0 ISR0
ISR0

ISR1 ISR1
ISR1
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ISR Latency – The Math
 In general, higher priority interrupts might run multiple times!

• Assume N different interrupts sorted by priority  (0 is highest; N-1 is lowest)
• Want latency of interrupt m

• What it’s saying is true for anything with prioritization plus initial blocking 
time:
1. You have to wait for one worst-case task at same or lower priority to complete
2. You always have to wait for all tasks with higher priority, sometimes repeated

  j
ISRs j

i
jmji ISRtime

ISRperiod
ilatencyISRtimeilatency

ilatency

mj




















1max

0

1

0
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Example Response Time Calculation
 What’s the Response Time for task 2?

• Note: N=4  (tasks 0..3)
• Have to wait for task 3 to finish

– (longest execution time)
• Have to wait for two execution of task 0
• Have to wait for one execution of task 1

 

10

1022621
12
911

8
961

921621
12
611

8
661

6max

,2

1

0
1,

0,22,2

1

0
0,

0,21,2

30,2
42















 












 






























 












 




































R

C
P
R

RR

C
P
R

RR

CCR

m

m m
m

i

m

m m
m

i

j
j

Task# 
i
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(Pi)

Execution 
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0 8 1

1 12 2

2 20 3

3 25 6
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Blocking Delay
 CAN is not a purely preemptive system

• Messages queue while waiting for previous message to transmit
• This aspect of scheduling is non-preemptive – just like ISRs on most CPUs

 Blocking time while waiting for previous message:  ([Ellims02])

• ~“Blocking time is longest possible message that could have just started 
transmission”

• For combined message example, longest time is 120 bits for Batt_msg1
– Do we need to worry about this for schedulability? 
– In general, yes, especially if 120 bits is non-trivial with respect to deadlines

• Next, let’s look at delivery time for individual messages 

)(max
)( kmlpkm CB



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Example Worst-Case Timing
 Bound results:

• Look at maximum # higher priority messages within deadline
– Gives pessimistic analysis of worst case pre-emption
– (Don’t forget to add blocking message)

• Example:  Driver_msg has to wait for:
– Batt_msg1 as potential blocking message  (120 bits)
– Four copies of each 5 msec message + 1 copy of Brake_switch
– For this example, 120+360+400+360+360+90+90 bits (assuming it meets deadline)

Bits sent within n msec

Priority
Signal 

Description
J 

/ms
Deadline 

/ms From
bits/ 

message 5 20 100 1000
1 Contactor 0.1 5 Battery 90 90 360 1800 18000
2 Brake_msg 0.1 5 Brakes 100 100 400 2000 20000
3 Accel_Posn 0.1 5 Driver 90 90 360 1800 18000
4 Trans_Clutch 0.1 5 Trans 90 90 360 1800 18000
5 Brake_Switch 0.3 20 Brakes 90 90 450 4500
6 Driver_msg 0.2 20 Driver 90 90 450 4500
7 Batt_msg1 0.6 100 Battery 120 120 120 120 1200
8 Speed 0.4 100 Brakes 90 90 900
9 Trans_Lube 0.2 100 Trans 90 90 900
10 Batt_msg2 1.0 1000 Battery 110 110 110 110
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Why Bother With All This Stuff?
 Deadline monotonic scheduling (later lecture) is a general-purpose tool

• BUT – you can beat deadline monotonic in some situations by using exact 
schedulability approaches

 Ellim’s equation gives a more exact result
• Can do better if you account for offset, especially on messages coming from 

same processor
• Can do better if you account for multiple messages being at same rate even 

though they have different deadlines
• Does NOT include retransmissions/lost message effects

– These make things worse; need to allocate a budget and hope you don’t exceed it

 Now you can see how to get static scheduling on CAN
• Launch all copies of messages at exactly zero offset + zero jitter
• Messages empty out of transmission queues according to priority
• Gives static schedule with just a single, periodic “clock” message to trigger all 

the message releases
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Other Capacity Issues
 Message acknowledgements

• Broadcast messages may generate a message-ack flurry on some systems
• CAN uses single ACK & error frame NACK for all receivers

– Helps deal with localized noise sources
• Other protocols may require distinct Ack from all receivers

– e.g., 1 message + 8 acks for a single message in the workload

 Message retries
• Errors may require retransmission; leave slack space for that

 “Headroom”
• Good system architects include 4x or 5x “headroom” into new systems

– Can it handle the same traffic with 5x faster frequency?
– Is that traffic from the same number of nodes or from 5x more nodes?
– This accounts for 10-20 years of system evolution
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Receiver Over-Run
 Slow receivers can be over-run with fast messages

• Assume interface hardware can catch messages…
but that slow CPU must remove them from receive queue

 Possible approaches
• Throttle all message transmissions with large inter-message gap (Lonworks)

– CAN has a 7 bit “intermission” for this purpose, and “overload frame” if node needs 
a little more time

• Require receiver to indicate ready-to-receive before transmitting
– Or, retry on receive-buffer overflow

• Send only Q message types to slow nodes, where Q is receive queue depth
– Combine messages into a single message
– Use separate “mailboxes”, one for each of the Q types   (CAN)

• Deliberately schedule messages so that receivers are never over-run
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Tricks To Improve Latency
 Schedule message offsets to avoid conflicts/waits

• Ultimate is TTP, which pre-schedules messages for zero conflicts
– That makes it a TDMA protocol

• If tasks produce messages just in time, latency is simply transmission time

 Schedule tasks in order of output message priority
• No point scheduling tasks that produce low priority messages early in a cycle 

… they’ll just have to wait to transmit anyway
• Might even intentionally add some delay to spread tasks out in cycle

 The Fast CPU = Poor Network Performance paradox (!)
• A faster CPU can increase message latency
• Enqueuing low-priority messages quickly simply gives them longer to rot in the 

output queue
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Limits to Performance
 Payload within message

• Bits for header, error detection, etc.
 Message encoded into bits

• Bandwidth used for self-clocking, stuff bits, message framing
 Arbitration to send message on bus

• Collisions, token passes, poling messages
 Ability of nodes to accept/send data

[Dean]
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Review
 Another look at workloads vs. delivery times

• Periodic vs. aperiodic
• Worst case is what matters for most real time systems

 Network capacity
• Plumbing level analysis – do all the bits fit?
• Efficiency

 Exact CAN schedulability calculations
• The longer you wait, the longer you have to wait with prioritized, periodic 

messages
• This looks a whole lot like interrupt latency from 18-348

– There was a reason those equations were important – they show up any time you 
have non-preemptable tasks!


