12
Embedded $ystem
Engineering Economics

October 7, 2015
18-649 Distributed Embedded Systems
Philip Koopman

(() Electrical &Com ter
ENGIN EE ING
© Copyright 2008-2014, Philip Koopman Carnegie Me]lon

Introduction

¢ Hardware economics
* Why aren’t embedded systems all 32-bit CPUSs?
« Examples of microcontroller cost tradeoffs

¢ Software economics
e Cost of code
* Why saving money on hardware can increase total costs

¢ Performance margin
* Why using 100% of resources is a bad idea

» Thoughts on assembly language source code to squeeze out system
performance

Recurring & Non-Recurring Costs

¢ Recurring Expenses (RE)
— directly related to each unit produced

e Raw materials
* Manufacturing labor
« Shipping
¢ Non-Recurring Expenses (NRE)
— “one-time” costs to produce the first unit
* Engineering time
« Semiconductor masks
» (Capital equipment (assuming equipment bought up-front)
» Software

¢ Cost of goods Is generally:
* Assumes amortization of NRE over number of items produced

CostPerltem = RE +(NRE j
ltems

Hardware Costs

¢ Hardware is more than CPU cost; it includes:
e CPU
 Memory

« A/D; D/A; other I/O
Figure 1. Pentium 4 Processor
* Clock 423.Pin 00l Package

* Power supply
» Circuit board
e Cooling

¢ Constraints on embedded hardware

beyond cost: Figure 9. Install Fan Heatsink

e Power and Both Clips
(Photos: Intel, 2004)

» Size, especially for cooling equipment
« Maximum clock speed (due to radio frequency interference issues)
« Availability of integrated features, especially memory & 1/0

Why Aren’t Embedded CPUs all 32 bits?

¢ The Intel 386 was 32 bits in 1985, with 275,000 transistors
« Now we can build billions of transistors on a single chip!

¢ First answer: fast chips are optimized for big programs, not embedded
« 4 MB on-chip cache for an Itanium takes 24 million transistors (assume 6T cell)
« Many, many transistors used for superscalar + out of order execution
* And, you can’t keep it cool in many embedded systems

Moore’s Law
. Transistors in High-End Intel CPUs
- Six-Core Xeon 7400¢
i
& 100M
dd
0 10Mm
7p) Pentium
C 1M
E 100K |
|_
10K |

1K | | : | : | | |
1970 1980 1990 2000 2010
Year

Embedded Chips Have To Be Small(er)

¢ Most embedded systems need a $1 to $10 CPU
« Can you afford a $500 CPU in a toaster oven?

¢ This means die size is smaller than a huge CPU
« Smaller die takes less wafer space, meaning more raw chips per wafer
* And smaller die gets better yield, meaning more good chips per wafer

e Let’s say a big CPU has 100 million transistors for $1000

— At an arm-waving approximation perhaps you can get 2 million transistors for $10
— This could fit an Intel 386 and 256 KB of on-chip memory, BUT no 1/O

¢ Embedded systems have to minimize total size and cost
» So real embedded systems combine CPU, memory, and I/O
e Common to have 8K to 64K of flash memory on-chip

o (Don’t really need more than an 8-bit processor if you only have 64KB of
memory and are operating on 8-bit analog inputs!)

How Embedded Microcontrollers Spend Transistors

¢ 32-bit & 64-bit processors: optimize for speed — often $5 - $100
¢ 8- & 16-bit processors: optimize for 1/O integration

« Small memory, no operating system — often $0.50 - $10
¢ Low-end CPUs spend chip area to lower total system cost

32-bit ARM CPU 8/16-bit TI CPU
MEMORY; PROTECTION &
CPU SUPPORT - MEMORY
PROCESSOR CORE /0 O = ALL PROCESSOR CORE

THE REST!

*““'-“" '8 Il m “Bo@m E@ e
It !

L
il
J ‘ | .'
i J2KB Flash l |
e e————————— | |}

AE EEEN 'l"_-—_h-l -llll

m——

I B EE R BB

' L’Sl;_l a Dlllt
16Hit ADC
0 IO el 2 _”
H ez hl _
§ | ® -‘ﬁ--..‘___
i Th
b
b

E;* E'H"'h“ S\‘\

—
—
v 5
<«
_1
-
@
ko
i]
]
o
-
~l
o)
FLASH I

!
|

& MPY 430

=m'm G

BKB SRAM ’

e

[Cravotta05]

Microprocessor Unit Sales

All types, all markets worldwide

350,000

300,000

g B
5 8

2
S

100,000

Monthly Units (1,000)

50,000

8-bit

tﬁj\

4-bit

Lpmans

AR

v
qﬁf“ﬁ

/_N'\

Wa

N

1990

e

T

1892

1994

1996

1998

Source WsTS

2000

MCU Sales by Category

—4—4-/8-bit 16-bit —d&— 32-bit

12,000 A .

’ Dollars and units
g 40000~ tell a different story.
E 8,000 -
5 . .
£ 6000 - 32-bit is NOT majority
= I by number of CPUs.
= 4,000 e — . + . mmm—

E,M‘] - E = ¥ 5 : T o -

10 11 12 13 14F 15F 16F 17F 18F

MCU Unit Shipments by Category
——4-/8-bit — 16-bit —A—32-bit |
lszﬂ L B L B B L P R L T LR S O T S LT T S B L S T L L L e B L S R S T S S S L L S S PP T LI S S u S L

10,000 -

Millions of Units
_-Fl- ‘_U'\ _Dﬂ'
g g 8

10 11 12 13 14F 15F 16F 17F 18F
Source: IC Insights’ 2014 McClean Report

http://eecatalog.com/8bit/2014/01/31/microcontrollers-make-
waves-in-automotive-and-internet-of-things/#

Wh 8 B't MC' ' Charles Murray, Design News, Sept 2015

y - I S TABLE 1: Microcontroller Market, By Revenue
L [8bit [397% |

Refuse to Go Away jemr=w——r=

New peripherals are paving the way for the continued success of the 8-bit 16-bit
microcontroller. (Source: Gartner, Inc.)

The answer 1s that 8-bit’s success has
little to do with it being, well, 8 bits.
For many engineers, it's more about fa-
miliarity. Thats why white goods mak-
ers employ it in refrigerators, freczers,
washing machines, dryers and dishwash-
ers. [t's why automakers use it in win-
dow lifts, door locks, mirrors, seat mo-
tors, and interior lighting. It’'s why tens
of millions of smart cards incorporate it,
and why countless low-end motors are
controlled by it.

“Its about legacy” Jim McGregor,
founder and principal analyst for Tirias Re-
search, told Design News.“The engineers
have been using it so long that they just
don’t want to switch their software base.”

~ 16 hit~
(2 16 bitx)

“

-
http://Mwwdesignnews.com/author.asp?doc_id=278431

Embedded Chips Tend To Be “Old” Technology

¢ Semiconductor Fab
Economics:
o Cost per wafer
processed drops

when equipment is
depreciated

* Yield increases
with experience

¢ Result: Chips get
Inexpensive right
about the time they
get obsolete
e Y axis on this curve
Is about 50% cost

reduction over first
2 years

NEXT GENERATION
FAB ENTERS

FAB ENTERS

PRODUCTION \PRODUCTION

Q Data Source: Kraft, “Semiconductor
Business, process, product and fab

influence on throughtput, cycle time,
and chip cost, 1996

LEGACY &
EMBEDDED CHIPS
LEGACY &

EMBEDDED CHIPS

MANUFACTURING COST PER GOOD CM?

0

1 2 3 Z 5 6 7
YEARS OF OPERATION

11

Example Embedded Chip Motorola MC9S12A256

¢ Medium-high end, 16 bit CPU
« (Partly 16 bits because it has more than 64 KB of memory)

¢ March 2002 chip introduction for automotive market:

o - 256K bytes Flash memory
- 4K bytes EEPROM (byte-erasable)
- 12K bytes of RAM
- Three synchronous serial peripheral interfaces (SPI)
- 25 MHz HCS12 core (40 ns minimum instruction cycle)
- 16-channel, 10-bit analog-to-digital converter (ADC)
- 8-channel, 16-bit timer with capture and compare
- 4-channel, 16-bit or 8-channel 8-bit pulse width modulator (PWM)
- Two asynchronous serial communication interfaces (SCI)
- One I2C communication port (11C)
- Low electromagnetic emissions and RF noise susceptibility

e $11.88in 10,000 quantity

e $9.13 for version with 128 KB flash, 2KB EEPROM, 8KB RAM

— (Prices indicate memory is almost half the cost of the larger chip)
12

Hardware Quantity Pricing

¢ Hardware costs reduce with high volume
« Typical to have price reductions at 10, 100, 1K, 10K, 100K, 1M units/year

¢ Factors that drive volume pricing
« Lower cost to make the sale and maintain customer relations
* More efficiency in administration, shipping
» Better yield when single chip is made on a large run in fab

¢ Capital equipment costs dominate semiconductor fab costs
« A 32 billion fab depreciates at the rate of $45,630 per hour for five years
» Large orders reduce risk of expensive idle time at fab

¢ So, normally you’d want to buy lots of chips at one time
« But, if you have masked ROM this can be a problem if you need to change SW
* (Recall that in masked ROM a metalization layer is used to program the ROM)

13

What About Software Costs?

¢ High-end vehicle costs approaching 40% for electronics and software
* “90% of all innovations driven by electronics and software”
« 70 Electronic Control Units and 5 system buses

e 50-70% of development costs are related to software Se|f_

Automotive SW i

wieror . Automotive Software
H.-G. Frischkorn .

BMW Group i 2 B : g Ve k o~ pm .

10-12. Jan. 2004
Page 3

Driving
cars

ACC Stop&Go
BFD
ALC
KSG
Navigation System 42-Voltage
CD-Changer Internet Portal
ACC Active Cruise GPRS, UMTS
Control Telematics
Airbags Online Services
Electronic Gear Control DSC Dynamic Blue-Tooth
Electronic Air Condition Stability Control Car Office
| ASC Anti Slip Control Adaptive Gear Local Hazard Warning
ABS Anti Blocking Sys. Control Integrated Safety
in Iniant Telephone Xenon Light System
E:ggf gﬁﬂﬁmons Seat Heating Control BMW Asgist Stegn’Brake- By-Wire
Speed Control Autom. Mirror Dimming RDS/TMC I-Drive _ '
Central Locking Speech Recognition Lane Keeping Assist.
Emergency Call Persaonalization
' Software Update

Force Feedback Pedal
|

1970 1980 1990 2000 Source: [Frischkorn04] http://aswsd.ucsd.edu/

2004/pdfs/Frischkorn_Keynote
Degree of Interdependence _Workshop_SanDiego2004versl.2.pdf 14

Productivity: 8-16 SLOC Per Day (1-2 per hour)

DoD Projects Industry Projects
:1002' :100[:,
Squares are projects) ‘ T1‘1£.111gles are
: . t 5 ra r -
completed within a 1. Ave rage Schedule taking over a year to .
year -k complete 3
A 5 -
: Trend
Sc) Sc
he 10 he
L & du g du
Em .r' . .‘__.__.- le h‘q-.' le
= Hg B Small number Mo A 1 fa Mo
> N LB 1 . nt e L. | nt
m A% of projects greater [! h 1
- g than 75.000 S hs
L . ESLOC ot
and completed in
less than 12 0.1 01
months -
| | | 0.01 . . . , 001
0.01 0.1 1 10 100 1000 10000 0.01 0.1 1 10 100 1000 10000

Effective SLOC (thousands)

Effective SLOC (thousands)

http://www.gsm.com/Develop_12%20months.pdf

¢ Bigger projects take longer no matter how many people work on it

¢ For real-world embedded products, my experience is:
o 81to 16 Source Lines Of Code per day (1-2 SLOC/hr)
e [|’ve seen 23 SLOC/day of good code from agile methods (3 SLOC/hr)

— But with minimal paper design package 15

Software Costs

¢ “Firmware is the most expensive thing in the universe”
— Jack Ganssle
¢ Typical embedded software costs $15 - $40 per line of code

e Do the math: $100,000/yr; 2000 hrs/yr; 2 SLOC/hr =» $25/SLOC
— (Note: a $65K engineer might cost $100K with benefits and no overhead)

o Defense work with documentation is $100/line
 Space shuttle code perhaps $1000/line
» Safety critical X-by-wire code probably is more expensive than defense code

¢ Possible costs for software below (SLOC = Source Lines Of Code)

Program Size $30/SLOC $100/SLOC | $1000/SLOC
1,000 SLOC $30K $100K $1M

10,000 SLOC $300K $1M $10M

100,000 SLOC $3M $10M $100M
1,000,000 SLOC $30M $100M $1B

Current Automotive SW Cost Models

¢ Current cost model in many automotive situations
» Costs are based on hardware costs + assembly + overhead
* For example, OEM might pay $6 for something that has $5 of HW costs

¢ Unrealistic assumptions:

» Engineering costs are free (a small, fixed fraction of hardware costs)
— Software is free (a small, fixed fraction of hardware costs)

» Engineering changes after initial design will be minimal

» Electronics & mechanical engineers can handle software with no special
training

¢ Example simplistic calculation:
e« 10K SLOC on $100 ECU at $100 per SLOC
e Assume 500K units produced with annual model changes

CostPerltem = RE + NRE =$100+ M—Mj =$102
500K

ltems

17

Software Size Trends

¢ Memory chip sizes increase by factor of 4 about every 3 years
* Rule of thumb: memory is always “full”
» Conclusion: software increases in size by a factor of 4 every 3 years

 (Perhaps not strictly true in terms of “SLOC”, but certainly software gets bigger

every year!
yy) How big will your current project be?

Under 10k ines of code

¢ This is a fundamental driver of = 38%
embedded system economics 10-50k L0C
: _ — 19%
 Hardware prices drop slightly 50- 100k LOC
(with slightly better 1/0O integration) = 22%
* Available program memory 100-500k LOC
grows exponentially - 8%
500k-1m LOC
M 8%
¢ Chevy Volt has 10M lines of code Over 1m LOC
6%

e Includes RTOS and libraries }

 Model-based synthesis for some .
y Total Responses: 157 [Ganssle08]

18

But, What If You Mis-Estimate Software Cost?

¢ Bigger piece of software — original estimate: 100K SLOC at $100

CostPerltem = RE + NRE =$100 + M =$120
Items 500K

¢ What if it’s 150K SLOC?

CostPerltem = RE + NRE =$100 + $lﬂ =%$130
ltems 500K

¢ What if that 150K SLOC costs $200 per SLOC?

CostPerltem = RE + NRE =$100 + w =$160
ltems 500K

¢ As NRE becomes a non-trivial portion of total cost, risk increases
 Factor of two over-runs on software cost happen all the time
« For 500K units, $160 cost is a $20,000,000 over-run if bid at $120
e [t’s iImportant to get engineering estimates right!

19

What About Design Changes?

¢ Chips cost less in large volume
e Let’s say a microcontroller is $5 in lots of 500,000 units with masked ROM
* S0, you buy 500,000 units to get the best price....
* And after 3 months you need to change the software (bugs; requirements; ...)

¢ What happens if you have to throw away 9 months of 500K chips?
500K * $5 = $2,500,000

Toss 500K * 9 /12 = 375,000 chips => $1,875,000

Also, the new 375,000 chips will probably be a little more expensive

AND, there will be a delay getting new chips due to time to make a new mask

¢ This is why many automotive chips use flash memory
* Changes sometimes occur every week
« So companies use flash memory, but NOT to change software in the field

— Rather, to avoid wasting inventory and delays getting replacement chips
— This is true even though flash memory is more expensive per unit

 RARE to see custom VLSI in long-lived complex networked applications!

What About Limited Resources?

¢ Embedded systems are often
resource constrained

 How much does it really cost to stuff
things into a small system?

TELEPHONE
T —

& The numbers we’ll discuss are
examples
» Based on best available data

o But, there isn’t that much data, so
consider this discussion an
Illustration rather than an exact
answer

http://www.fiftiesweb.com/fashion/cramming.htm
(22 people at St. Mary’s College, CA, 1959

21

Should You Optimize Hardware Cost?

¢ If HW costs are seen to dominate, it’s tempting to minimize them
 [f memory is half of microcontroller cost, then minimizing memory is important

¢ Example: say you are using 115KB of Flash Memory:

e Assume on MC9S12A256 chip; $11.88
— 256KB flash memory
— 4 KB EPROM
— 12KB RAM

o Attempt to save money by substituting the smaller version at $9.13
— 128KB flash memory
— 2 KB EPROM
— 8KB RAM
— Still leaves 13KB of flash free

¢ Potential HW savings:
e 500,000 * ($11.88 - $9.13) = $1,375,000 savings per year
e But, this might be a bad idea...

22

The True Cost Of Full Resource Utilization

Experience

—
— —

relative programming cost per instruction

Folklore

0 | L]
4] 25 50 75 100

utilization of speed and memory capacity (percent)

Boehm, “The High Cost of Software”, 1975
Figure 5. Hardware Strains Cause Major Software Impact

True Cost Of Minimal Hardware Resources
¢ Assume 25,000 SLOC for 115KB at $100/line = $2.5M unadjusted

¢ Total cost with 256KB Flash:)

: ol 90% FULL M8

« 115KB /256 KB = 45% full N B

e Cost factor of 1.08
1.08¢$2.5M K Y
ECU Cost=$11.88+ () =$17.28 | v Y4
¢ Software cost with 128KB Flash: % m/ ;
« 115KB /128 KB = 90% full 0 i o
« Cost factor of 2.16 factor wilisstion of spaed At ermory chpaciiy (pascert]

Boehm, “The High Cost of Software”, 1975
Figure 5. Hardware Strains Cause Major Software Impact

=$19.88

ECU Cost=$9.13+ (2'15'$2'5M)

» Total cost increases by: $1,300,000 in this example using the cheaper chip

24

Why Are Full Resources Expensive?

¢ Full memory:

Makes it difficult to include instrumentation & diagnosis scaffolding
— Tracking down bugs is difficult if you have no room to move
— Forces omission of run-time error captures that catch rare bugs

» Makes development difficult (no room for test scaffolding in target system)

* Increases need to compact/compress data structures
— Example: packing data into bit fields instead of one byte per flag value

* Promotes excessive use of “clever” structure to reduce program size
» Makes it more difficult to deploy maintenance updates (no room to grow)

¢ Full CPU & network capacity
o Complicates scheduling meeting real time deadlines
» Encourages use of low-level languages or compiler-specific coding styles
* No spare capacity for new features

¢ Other things can fill up too...

25

Resources To Monitor

¢ Using too much of any of these resources can cause problems:

CPU processing power

RAM

Non-volatile memory (Flash, EEPROM, etc.)

Cycles of reprogramming Flash etc. (special effort to avoid wear-out)
Disk space

Battery life (special efforts to reduce power consumption)

Thermal output (special efforts to avoid overheating)

Network bandwidth

Available circuit board real estate

Number of bits of A/D converter (e.g., 11 bit accuracy on a 12-bit A/D)

¢ Rule of thumb for US Military-grade systems:

Leave 50% unused capacity in all dimensions when system is first delivered
Your reality will vary — but near-100% is always a bad idea

26

Why Code In Assembly Language

¢ Why code in assembly language?

Often can get smaller program

Often can get higher speed

Sometimes necessary for very specific hardware interactions

Sometimes necessary to fit in a too-small processor

Sometimes there are no good compilers available for a tiny microcontroller

Of course per previous slides you should never get to this situation ...
... but in the real world it happens all the time!

¢ Why would you need smaller program, higher speed even after you
heard this lecture?

Pre-selected CPU that is too small for the job
Maximum clock speed limit because of RFI (to avoid RF shielding expense)
C compiler advertised to be fantastic by vendor turns out to have problems

27

Cost of Coding In Assembly Language

¢ Raw cost of coding in assembly language

Generally, productivity in lines of code per day is language independent

Assume that each line of C produces 5 lines of assembly language
(this is of course very CPU dependent), but you’re clever and only need 4 lines
programming by hand when you save space.

625 lines of C @ $200/line = $125,000
2,500 lines of assembly @ $200/line = $500,000
AND, there are likely 400% or 500% as many defects at same defect density!

¢ Switching to assembly language to buy a cheaper processor:

Example: Assume $2.75 CPU with 8KB flash; $1.75 CPU with 4KB flash
Save $1 per CPU; break-even NRE vs. RE point is 375,000 units

BUT, there are other hidden costs:
— Portability
— More defects!
— Harder to trace code to design documents

28

Nevison’s “Rule of Fifty”

¢ No matter how many hours you work, you only get 50 useful hours per

week of results

Except for short term projects (perhaps no more than 4 weeks)
* Why waste everyone’s time by making them put in longer hours?
[www.projectsolutions.com]

Weekly Hours Returned

60

50

45

35

30

-~
-

. = -
line of pachine productivity
-~

-~
-~
-~
~
-
e 4 week level, Jensen. et. al., 1997
- ~
-
-
-~
- A
e A +
1 week level, Nevison, 1992 /
/
A /
. /
e~ A/
/
— 7
A T / .
A% 4 week level, Coipsof Engineers, 1979

evel and 12

week level for 50 and 60 hours, Businey

s Roundtable, 1982

h
[m]
A
A J
productivity at burnout, Nevison. 1992
o i)
A
} t t
40 50 60 70
Weekly Hours Worked

29

Classic Book:
The Mythical Man-Month
Fred Brooks

summary

& Hardware economics

 Embedded systems get low costs by using somewhat old, high volume
hardware

¢ Software economics
o “Firmware iIs the most expensive thing in the world”
* Need to get smart about software, because that’s where the costs are
« Spending hardware $$$ to save software costs is often a smart move

¢ Performance margin
e Try to leave 50% performance margin when you can
o At or near 100% usage of any resource, expect to suffer severe pain and costs
« Using assembly language to optimize performance usually a bad idea

¢ Open, difficult question: charging for software

» Creativity required to charge for software if customers are used to paying based

on hardware component content
31

