
12
Embedded $ystem

Engineering Economics

October 7, 2015
18-649 Distributed Embedded Systems

Philip Koopman

&Electrical Computer
ENGINEERING

© Copyright 2008-2014, Philip Koopman

2

Introduction
 Hardware economics

• Why aren’t embedded systems all 32-bit CPUs?
• Examples of microcontroller cost tradeoffs

 Software economics
• Cost of code
• Why saving money on hardware can increase total costs

 Performance margin
• Why using 100% of resources is a bad idea
• Thoughts on assembly language source code to squeeze out system

performance

3

Recurring & Non-Recurring Costs
 Recurring Expenses (RE)

– directly related to each unit produced
• Raw materials
• Manufacturing labor
• Shipping

 Non-Recurring Expenses (NRE)
– “one-time” costs to produce the first unit

• Engineering time
• Semiconductor masks
• Capital equipment (assuming equipment bought up-front)
• Software

 Cost of goods is generally:
• Assumes amortization of NRE over number of items produced









Items
NREREmCostPerIte

#

4

Hardware Costs
 Hardware is more than CPU cost; it includes:

• CPU
• Memory
• A/D; D/A; other I/O
• Clock
• Power supply
• Circuit board
• Cooling
• …

 Constraints on embedded hardware
beyond cost:
• Power
• Size, especially for cooling equipment
• Maximum clock speed (due to radio frequency interference issues)
• Availability of integrated features, especially memory & I/O

(Photos: Intel, 2004)

5

Why Aren’t Embedded CPUs all 32 bits?
 The Intel 386 was 32 bits in 1985, with 275,000 transistors

• Now we can build billions of transistors on a single chip!

 First answer: fast chips are optimized for big programs, not embedded
• 4 MB on-chip cache for an Itanium takes 24 million transistors (assume 6T cell)
• Many, many transistors used for superscalar + out of order execution
• And, you can’t keep it cool in many embedded systems

Moore’s Law

1K

10K

100K

1M

10M

100M

1G

10G

1970 1980 1990 2000 2010

Transistors in High-End Intel CPUs

8086

i486
Pentium

Pentium 4

Itanium 2

Six-Core Xeon 7400

8080

Tr
an

si
st

or
s

Year

6

Embedded Chips Have To Be Small(er)
 Most embedded systems need a $1 to $10 CPU

• Can you afford a $500 CPU in a toaster oven?

 This means die size is smaller than a huge CPU
• Smaller die takes less wafer space, meaning more raw chips per wafer
• And smaller die gets better yield, meaning more good chips per wafer

• Let’s say a big CPU has 100 million transistors for $1000
– At an arm-waving approximation perhaps you can get 2 million transistors for $10
– This could fit an Intel 386 and 256 KB of on-chip memory, BUT no I/O

 Embedded systems have to minimize total size and cost
• So real embedded systems combine CPU, memory, and I/O
• Common to have 8K to 64K of flash memory on-chip
• (Don’t really need more than an 8-bit processor if you only have 64KB of

memory and are operating on 8-bit analog inputs!)

7

How Embedded Microcontrollers Spend Transistors
 32-bit & 64-bit processors: optimize for speed – often $5 - $100
 8- & 16-bit processors: optimize for I/O integration

• Small memory, no operating system – often $0.50 - $10
 Low-end CPUs spend chip area to lower total system cost

PROCESSOR COREI/O – ALL
THE REST!PROCESSOR CORE I/O

MEMORY; PROTECTION &
CPU SUPPORT MEMORY

32-bit ARM CPU 8/16-bit TI CPU

[Cravotta05]

http://eecatalog.com/8bit/2014/01/31/microcontrollers-make-
waves-in-automotive-and-internet-of-things/#

Dollars and units
tell a different story.

32-bit is NOT majority
by number of CPUs.

Charles Murray, Design News, Sept 2015

http://www.designnews.com/author.asp?doc_id=278431

11

Embedded Chips Tend To Be “Old” Technology
 Semiconductor Fab

Economics:
• Cost per wafer

processed drops
when equipment is
depreciated

• Yield increases
with experience

 Result: Chips get
inexpensive right
about the time they
get obsolete
• Y axis on this curve

is about 50% cost
reduction over first
2 years

M
A

N
U

FA
C

TU
R

IN
G

 C
O

S
T

P
E

R
 G

O
O

D
 C

M
2

YEARS OF OPERATION
1 2 3 4 5 6 70

Data Source: Kraft, “Semiconductor
Business, process, product and fab
influence on throughtput, cycle time,
and chip cost, 1996

FAB ENTERS
PRODUCTION

NEXT GENERATION
FAB ENTERS
PRODUCTION

CUTTING
-EDG

E

PRO
DUCTS

CU
TTING

-EDG
E

PRO
DUCTS

LEGACY &
EMBEDDED CHIPS

LEGACY &
EMBEDDED CHIPS

12

Example Embedded Chip Motorola MC9S12A256
 Medium-high end, 16 bit CPU

• (Partly 16 bits because it has more than 64 KB of memory)
 March 2002 chip introduction for automotive market:

• - 256K bytes Flash memory
- 4K bytes EEPROM (byte-erasable)
- 12K bytes of RAM
- Three synchronous serial peripheral interfaces (SPI)
- 25 MHz HCS12 core (40 ns minimum instruction cycle)
- 16-channel, 10-bit analog-to-digital converter (ADC)
- 8-channel, 16-bit timer with capture and compare
- 4-channel, 16-bit or 8-channel 8-bit pulse width modulator (PWM)
- Two asynchronous serial communication interfaces (SCI)
- One I2C communication port (IIC)
- Low electromagnetic emissions and RF noise susceptibility

• $11.88 in 10,000 quantity

• $9.13 for version with 128 KB flash, 2KB EEPROM, 8KB RAM
– (Prices indicate memory is almost half the cost of the larger chip)

13

Hardware Quantity Pricing
 Hardware costs reduce with high volume

• Typical to have price reductions at 10, 100, 1K, 10K, 100K, 1M units/year

 Factors that drive volume pricing
• Lower cost to make the sale and maintain customer relations
• More efficiency in administration, shipping
• Better yield when single chip is made on a large run in fab

 Capital equipment costs dominate semiconductor fab costs
• A $2 billion fab depreciates at the rate of $45,630 per hour for five years
• Large orders reduce risk of expensive idle time at fab

 So, normally you’d want to buy lots of chips at one time
• But, if you have masked ROM this can be a problem if you need to change SW
• (Recall that in masked ROM a metalization layer is used to program the ROM)

14

What About Software Costs?
 High-end vehicle costs approaching 40% for electronics and software

• “90% of all innovations driven by electronics and software”
• 70 Electronic Control Units and 5 system buses
• 50-70% of development costs are related to software

Source: [Frischkorn04] http://aswsd.ucsd.edu/
2004/pdfs/Frischkorn_Keynote
_Workshop_SanDiego2004vers1.2.pdf

Self-
Driving
Cars

15

Productivity: 8-16 SLOC Per Day (1-2 per hour)

 Bigger projects take longer no matter how many people work on it
 For real-world embedded products, my experience is:

• 8 to 16 Source Lines Of Code per day (1-2 SLOC/hr)
• I’ve seen 23 SLOC/day of good code from agile methods (3 SLOC/hr)

– But with minimal paper design package

http://www.qsm.com/Develop_12%20months.pdf

year

16

Software Costs
 “Firmware is the most expensive thing in the universe”

– Jack Ganssle
 Typical embedded software costs $15 - $40 per line of code

• Do the math: $100,000/yr; 2000 hrs/yr; 2 SLOC/hr  $25 / SLOC
– (Note: a $65K engineer might cost $100K with benefits and no overhead)

• Defense work with documentation is $100/line
• Space shuttle code perhaps $1000/line
• Safety critical X-by-wire code probably is more expensive than defense code

 Possible costs for software below (SLOC = Source Lines Of Code)

Program Size $30 / SLOC $100 / SLOC $1000 / SLOC

1,000 SLOC $30K $100K $1M

10,000 SLOC $300K $1M $10M

100,000 SLOC $3M $10M $100M

1,000,000 SLOC $30M $100M $1B

17

Current Automotive SW Cost Models
 Current cost model in many automotive situations

• Costs are based on hardware costs + assembly + overhead
• For example, OEM might pay $6 for something that has $5 of HW costs

 Unrealistic assumptions:
• Engineering costs are free (a small, fixed fraction of hardware costs)

– Software is free (a small, fixed fraction of hardware costs)
• Engineering changes after initial design will be minimal
• Electronics & mechanical engineers can handle software with no special

training

 Example simplistic calculation:
• 10K SLOC on $100 ECU at $100 per SLOC
• Assume 500K units produced with annual model changes

102$
500

1$100$
#
















K
M

Items
NREREmCostPerIte

18

Software Size Trends
 Memory chip sizes increase by factor of 4 about every 3 years

• Rule of thumb: memory is always “full”
• Conclusion: software increases in size by a factor of 4 every 3 years
• (Perhaps not strictly true in terms of “SLOC”, but certainly software gets bigger

every year!)

 This is a fundamental driver of
embedded system economics
• Hardware prices drop slightly

(with slightly better I/O integration)
• Available program memory

grows exponentially

 Chevy Volt has 10M lines of code
• Includes RTOS and libraries
• Model-based synthesis for some

[Ganssle08]

19

But, What If You Mis-Estimate Software Cost?
 Bigger piece of software – original estimate: 100K SLOC at $100

 What if it’s 150K SLOC?

 What if that 150K SLOC costs $200 per SLOC?

 As NRE becomes a non-trivial portion of total cost, risk increases
• Factor of two over-runs on software cost happen all the time
• For 500K units, $160 cost is a $20,000,000 over-run if bid at $120
• It’s important to get engineering estimates right!

120$
500
10$100$

#
















K
M

Items
NREREmCostPerIte

130$
500
15$100$

#
















K
M

Items
NREREmCostPerIte

160$
500
30$100$

#
















K
M

Items
NREREmCostPerIte

20

What About Design Changes?
 Chips cost less in large volume

• Let’s say a microcontroller is $5 in lots of 500,000 units with masked ROM
• So, you buy 500,000 units to get the best price….
• And after 3 months you need to change the software (bugs; requirements; …)

 What happens if you have to throw away 9 months of 500K chips?
• 500K * $5 = $2,500,000
• Toss 500K * 9 / 12 = 375,000 chips => $1,875,000
• Also, the new 375,000 chips will probably be a little more expensive
• AND, there will be a delay getting new chips due to time to make a new mask

 This is why many automotive chips use flash memory
• Changes sometimes occur every week
• So companies use flash memory, but NOT to change software in the field

– Rather, to avoid wasting inventory and delays getting replacement chips
– This is true even though flash memory is more expensive per unit

• RARE to see custom VLSI in long-lived complex networked applications!

21

What About Limited Resources?
 Embedded systems are often

resource constrained
• How much does it really cost to stuff

things into a small system?

 The numbers we’ll discuss are
examples
• Based on best available data
• But, there isn’t that much data, so

consider this discussion an
illustration rather than an exact
answer

http://www.fiftiesweb.com/fashion/cramming.htm
(22 people at St. Mary’s College, CA, 1959

22

Should You Optimize Hardware Cost?
 If HW costs are seen to dominate, it’s tempting to minimize them

• If memory is half of microcontroller cost, then minimizing memory is important

 Example: say you are using 115KB of Flash Memory:
• Assume on MC9S12A256 chip; $11.88

– 256KB flash memory
– 4 KB EPROM
– 12KB RAM

• Attempt to save money by substituting the smaller version at $9.13
– 128KB flash memory
– 2 KB EPROM
– 8KB RAM
– Still leaves 13KB of flash free

 Potential HW savings:
• 500,000 * ($11.88 - $9.13) = $1,375,000 savings per year
• But, this might be a bad idea…

23

The True Cost Of Full Resource Utilization

Boehm, “The High Cost of Software”, 1975

24

True Cost Of Minimal Hardware Resources
 Assume 25,000 SLOC for 115KB at $100/line = $2.5M unadjusted

 Total cost with 256KB Flash:
• 115KB / 256 KB = 45% full
• Cost factor of 1.08

 Software cost with 128KB Flash:
• 115KB / 128 KB = 90% full
• Cost factor of 2.16 factor

• Total cost increases by: $1,300,000 in this example using the cheaper chip

17.28$
500

5.2$08.188.11$_ 





 


K

MCostECU

19.88$
500

5.2$15.213.9$_ 





 


K

MCostECU

Boehm, “The High Cost of Software”, 1975

90% FULL

45% FULL

25

Why Are Full Resources Expensive?
 Full memory:

• Makes it difficult to include instrumentation & diagnosis scaffolding
– Tracking down bugs is difficult if you have no room to move
– Forces omission of run-time error captures that catch rare bugs

• Makes development difficult (no room for test scaffolding in target system)
• Increases need to compact/compress data structures

– Example: packing data into bit fields instead of one byte per flag value
• Promotes excessive use of “clever” structure to reduce program size
• Makes it more difficult to deploy maintenance updates (no room to grow)

 Full CPU & network capacity
• Complicates scheduling meeting real time deadlines
• Encourages use of low-level languages or compiler-specific coding styles
• No spare capacity for new features

 Other things can fill up too…

26

Resources To Monitor
 Using too much of any of these resources can cause problems:

• CPU processing power
• RAM
• Non-volatile memory (Flash, EEPROM, etc.)
• Cycles of reprogramming Flash etc. (special effort to avoid wear-out)
• Disk space
• Battery life (special efforts to reduce power consumption)
• Thermal output (special efforts to avoid overheating)
• Network bandwidth
• Available circuit board real estate
• Number of bits of A/D converter (e.g., 11 bit accuracy on a 12-bit A/D)

 Rule of thumb for US Military-grade systems:
• Leave 50% unused capacity in all dimensions when system is first delivered
• Your reality will vary – but near-100% is always a bad idea

27

Why Code In Assembly Language
 Why code in assembly language?

• Often can get smaller program
• Often can get higher speed
• Sometimes necessary for very specific hardware interactions
• Sometimes necessary to fit in a too-small processor
• Sometimes there are no good compilers available for a tiny microcontroller

• Of course per previous slides you should never get to this situation …
… but in the real world it happens all the time!

 Why would you need smaller program, higher speed even after you
heard this lecture?
• Pre-selected CPU that is too small for the job
• Maximum clock speed limit because of RFI (to avoid RF shielding expense)
• C compiler advertised to be fantastic by vendor turns out to have problems
• …

28

Cost of Coding In Assembly Language
 Raw cost of coding in assembly language

• Generally, productivity in lines of code per day is language independent
• Assume that each line of C produces 5 lines of assembly language

(this is of course very CPU dependent), but you’re clever and only need 4 lines
programming by hand when you save space.

• 625 lines of C @ $200/line = $125,000
• 2,500 lines of assembly @ $200/line = $500,000
• AND, there are likely 400% or 500% as many defects at same defect density!

 Switching to assembly language to buy a cheaper processor:
• Example: Assume $2.75 CPU with 8KB flash; $1.75 CPU with 4KB flash
• Save $1 per CPU; break-even NRE vs. RE point is 375,000 units
• BUT, there are other hidden costs:

– Portability
– More defects!
– Harder to trace code to design documents

29

Nevison’s “Rule of Fifty”
 No matter how many hours you work, you only get 50 useful hours per

week of results
• Except for short term projects (perhaps no more than 4 weeks)
• Why waste everyone’s time by making them put in longer hours?
• [www.projectsolutions.com]

Classic Book:
The Mythical Man-Month
Fred Brooks

31

Summary
 Hardware economics

• Embedded systems get low costs by using somewhat old, high volume
hardware

 Software economics
• “Firmware is the most expensive thing in the world”
• Need to get smart about software, because that’s where the costs are
• Spending hardware $$$ to save software costs is often a smart move

 Performance margin
• Try to leave 50% performance margin when you can
• At or near 100% usage of any resource, expect to suffer severe pain and costs
• Using assembly language to optimize performance usually a bad idea

 Open, difficult question: charging for software
• Creativity required to charge for software if customers are used to paying based

on hardware component content

