
7
Distributed
+Embedded

Systems
Distributed Embedded Systems

Philip Koopman
September 16, 2015

© Copyright 2000-2015, Philip Koopman

2

Introduction
 Time Trigger vs. Event Trigger

• Two different approaches to networking

 Distributed embedded systems – progression of ideas
• Distributed power switching
• Muxed control signals
• Distributed computation
• “Smart nodes” – an extreme case of distribution

 Distributed vs. centralized tradeoffs
• List of common wins, loses, and draws
• In industry, tradeoff studies often try to justify things based on the “draws”

instead of the “wins”

3

Example System – Elevator Hall Call Button

 Up Button
• Button press

 Up Button Light
• Light on
• Light off

 Down Button
• Button press

 Down Button Light
• Light on
• Light off

4

Elevator Call Button: Event-Based Messages
 Button Press

• Turn on button light
• Send a “button pressed” message every time the button is pressed
• Keep button light turned on for 500 msec after button pressed

– Then turn button light off unless an acknowledgement message is received
• Turn button light off when told to by hallway computer

 Hallway computer (one for all floors)
• When button is pressed, send acknowledgement to keep light on
• When button is pressed, notify dispatching computer to send elevator car
• When car doors open, send “turn button light off” message

 For dependable systems, need handshake messages at every step
• Might be at application layer
• Might be at network protocol layer

5

Elevator Call Button: Time-Triggered Messages
 Send “button” and “button light” messages every 150 msec

• Each message has current state of “on” or “off”

 Button Press
• Set “button state” variable to “pressed” (gets copied to hallway computer)
• Turn on button light and force on for 500 msec; then follow message value
• Whenever you can, check the button light state and set light accordingly

(perhaps every 150 msec)

 Hallway computer (one for all floors)
• While button is pressed, notify dispatching computer to send elevator car

– Set button light state to “on”
• When car doors open, set button light state to “off” & button state to “off”

 Message acknowledgements often not required
• Missed button light state messages are self-correcting
• User must correct a completely missed “button press” message by pressing

again

6

Tradeoff: When Do You Send A Message?
 Event-based messages (“events”)

• Send messages in response to an event
– Similar to event-triggered systems
– Think “asynchronous” state machine transitions

• Can have high message frequency with an “event shower”

 Time-Triggered messages (“state variables”)
• Message sending is invisible to application programmer

– Send messages periodically with the latest information
– Think “synchronous” state machine transitions
– “Looks” like a very small piece of shared memory

• Reduces problems with missed messages
• Matches communication & computing load to system control loop speeds rather

than external environment
• Have to infer that an event happened based on observing a value change

– Might be easy to miss a sequence of quick events

7

Generic Event-Triggered Approach
 Sensors feed computers

• But their values arrive
asynchronously –
whenever values are
available

• So, sensor values must
be queued

 Computers are
demand driven
• They process values from

queues when available
• Network messages are queued for transmission

 Network is demand driven
• Transmission queues release messages according to some network protocol

 Actuators are demand driven
• Actuator outputs occur in response to event messages

8

Problem – Coordinating Events
 Car example: transmission unlocks to shift out of park if:

• Engine is running AND
• Parking brake is OFF AND
• Brake is ON

 But, this is too simplistic!
• There are many arrival orders

9

Asynchronous State Machine Problem
 Asynchronous state machines have trouble with complex condition

• Need to use states to keep track of which events have been seen if order is
flexible

• (This is also a problem with UML sequence diagrams)

 Other models are possible that work around this
• Colored Petri nets handle this situation better
• But they can have problems with interrupts and asynchronous events

10

Generic Time-Triggered Approach
 Computers poll sensors

• Sensors queried
periodically

• Sampled whether or not
there has been a change

 Computers are
time triggered
• Sensors are sampled

when it is time perform
a computation

• State variables are placed in buffers for later transmission on network
 Network is periodic

• Copies of buffers are sent to all nodes periodically
• Receiving nodes store most recent values, even if previous value unused
• Remember the “blackboard architecture?” The receive buffers are that node’s

locally stored copy of the current blackboard contents
 Actuators are periodically driven

• Actuators outputs asserted periodically regardless of change/no change

11

Time Triggering Simplifies Event Coordination
 Example: transmission unlocks to shift out of park if:

• Engine is running AND
• Parking brake is OFF AND
• Brake is ON

ENGINE ON
& BRAKE ON
& PB OFF

ENGINE OFF
| BRAKE OFF
| PB ON

12

General Time Triggered Design Notes
 Design based on periodically updated state variables

• Every compute/communication block has a state variable buffer
• Buffer contents are updated whenever source sends an update
• Buffer values are read whenever consuming functional block needs them
• Generally, each value is updated atomically, but related values might not be

updated together (so they might be out of synch by a cycle)

13

Design Difference: Event vs. Time Triggered
 Event triggered:

• State machine only changes states when event occurs
– Actions within state are executed exactly once, when state is entered

• Each arc can have ONLY ONE incoming event/message
– Instantaneous state changes
– Events arrive via network message or are serialized in some other way
– Requirements statements can depend on exactly ONE message (and possibly state

variables specifically managed by the object)
• In many cases these are simpler to understand & design

– But, they are easily confused by dropped, duplicated, or out-of-order messages
– Coordinating multiple messages requires messy temporary variables

 Time triggered:
• State machine changes periodically based on variables and most recent inputs

– State machine has to infer events by noting state changes
– Can change state based on multiple messages and/or local variable values
– Actions within each state are executed continually

• Tend to be more robust to dropped or out-of-order messages

14

Mindless Formula for TT Behavioral Requirements
 Time-triggered system:

• <ID> (Null or <message value>, … <message value>)
and (Null or <variable value test>, … <variable value test>)

shall result in <message transmitted>, …
<variable value assigned>, …

• Can trigger on zero or more messages; zero or more variables
– OK for left hand side trigger to ONLY be a state variable (or always be true)
– Right hand side can have zero or more messages; zero or more variable values
– “Shall” or “should” are both acceptable

• OK to transmit multiple messages; OK to assign multiple variables

• EVERY VERB GETS A NUMBER

Questions on TT vs. ET?

16

Distributed Computing – Step By Step Evolution
Let’s work through how systems evolve from electromechanical to distributed

STEP 1 – no computer at all

 You don’t need a computer at all to operate light bulbs with switches!
 Non-computer control is possible

• RLC circuits, analog transistors, etc.

POWER
SOURCE A

A

A

S

A

CONTROLS

17

Why Add A Computer?
 Permits optimization

• Using a many-to-many relationship for actuators to control sensors requires
relays or other signal isolation (isolation relays would also be “computation”)

• Can change control loop behavior depending on system operating modes

 Enables adding sophisticated features in software
• Safety interlocks

– Require brake pedal to be depressed before shifting into gear
• Active safety operations

– Car locks doors once shifted into gear
• Timers, counters, conditional logic

– Variable interval wipers that adapt to rain intensity

 Enables context-sensitive operation
• Switches can be momentary closure “soft switches”
• Permits controller to set value even when switch isn’t pressed

– Example: rear view window heaters off after timeout or if outside temp is hot

18

Centralized System
 Central computer

• Reads input sensors
• Provides motive power to actuators
• Common ground (e.g., metal vehicle frame) used as electrical return path

S

S

POWER
SOURCE A

A

A

S

A

CENTRAL
COMPUTER

Wire Bundle

Wire Bundle

Wire Bundle

19

http://www.baesystems.com/gallery/air/images/FADEC_Full_Authority_Digital_Engine_Control_Testinghires.jpg

20http://www.bigcee.com/faq/KLR650-color-wiring-diagram.jpg

21

ADD SLIDE – picture of wire harnessAutomobile Wiring Harness (scale: about 8 feet tall)

22

What Can Be Improved Next?
 Computer has to switch power to actuators

• Power switching components can be much larger than microcontroller
• Power-carrying wires can form a thick, heavy wire bundle – every conductor

has to carry activation power, not just a signal

 So, let’s move power switching out to periphery of system

23

Remote Power Switched System
 Actuator outputs from computer are control signals

• Power is fed to remote switching modules that obey control signals from CPU
• No computational power in power switches – can be just power transistors
• Blue lines are low-current logic signals, not high-current switched power

S

S

POWER
SOURCE REMOTE

SWITCHING
A

A

A

S

A

CENTRAL
COMPUTER

REMOTE
SWITCHING

Wire Bundle

Wire Bundle

Wire Bundle

24

Why Use Remote Power Switching?
 Thinner, lighter centralized cable bundles

• Pure centralized approach requires all power to touch CPU, causing congestion
• Control signal wires can be thinner, lighter, and more flexible than power-

controlled actuator wires
• Remote switched power can be run from power supply directly to switching

nodes
– Cable can daisy-chain from region to region
– Yes, the power cable needs to be thicker since it handles all power loads, but not as

thick as a bundle of switched power lines

 This sets the stage for networking in the next evolutionary step
• Remote power switching isn’t a convincing win on wiring, but is a good start
• What if we replace all the analog control wires with a network?

25

Next, Use Multiple Computers
 It doesn’t take much more to put a CPU at each remote power switch

• We already have housing, circuit board, power distribution
• Compared to that, a $1 microcontroller can be an acceptable additional cost

 But, analog signals from central CPU to remote CPUs is inefficient
• So, let’s change multiple analog signals to serial digital communications

S

S

POWER
SOURCE REMOTE

CONTROLLER
A

A

A

S

A

CENTRAL
COMPUTER

REMOTE
CONTROLLER

Wire Bundle

Wire Bundle

Wire Bundle

26

Continue The Progression To Many CPUs
 Many sensors are near actuators

• Sensor/actuator pairs are used to close control loops
• Many embedded systems aren’t that big, so it’s hard to be too far from a CPU

 Add CPUs so that all sensors & actuators connect to a remote CPU
• This changes to a fully distributed approach
• “Central” CPU might not really exist, just “big” and “small” distributed CPUs
• While we’re at it, switch to a network instead of point-to-point wiring

27

Mostly-Distributed Control Network
 Both power and control signals flow across a shared wire

• Remote power switch nodes have a small computer for networking

S

S

POWER
SOURCE

REMOTE
CONTROLLER

A

A

A

S

A

CENTRAL
COMPUTER

REMOTE
CONTROLLER

Wire Bundle

REMOTE
CONTROLLER

28

Example: Central Control + 4 Corner Controllers

[Kassakian96]

29

Fully Distributed Control Network
 Main difference is no central CPU

• No “Brain” node calling the shots – all the computation is distributed
• If all the remote CPUs can handle functionality, do you need a central CPU?

(answer depends mostly on the software architecture)

S

S

POWER
SOURCE

DISTRIBUTED
CONTROLLER

A

A

A

S

A

DISTRIBUTED
CONTROLLER

Wire Bundle

DISTRIBUTED
CONTROLLER

30

Distributed Embedded Control Tradeoffs
 Multiplexing control wires saves weight, wire cost, cable thickness

• One digital wire replaces multiple analog wires
• Network must be fast enough to keep control loops closed

– Much more on this later, but in general this can be done
• Can use one wire per distribution node if network bandwidth is a concern

 Network interface computer added to remote switching nodes
• Interfacing to even a simple network requires computer-like capability

– In simplest case, computer just “muxes” wires
• Local computer’s job is to translate control signals and switch power locally

 More complicated computers permit functions to migrate
• Once we have a remote computers, why not do computation there beyond just

network interface?
• Carried to its logical conclusion, don’t even need the central computer anymore

– But, doing this requires a significant rethinking of software architecture

31

Fine Grain Distributed System
 Each sensor and actuator also has CPU, power switching, network connection

• This is what the course project is all about

S

S

POWER
SOURCE

A

S

A

Wire Bundle

CTL

CTL

CTL

CTL

CTL

CTL

CTL

ACTL

ACTL

32

Why Distributed Might Be Better
 Lots of little things can be better than one big thing

• Extensibility / Flexibility / Task Partitioning

http://cesa-automotive-electronics.blogspot.com/2012/09/dual-voltage-power-supply-system-with.html

34

Centralized System Advantages
“Put all your eggs in the one basket and – watch that basket!” -- Mark Twain

 Simple programming model (the one we’re taught as undergrads)
• Ability to think about distributed architectures is an uncommon skill

 Powerful CPU(s)
• Can use CPU for any needed function (can use desktop PC sometimes)
• Can adapt CPU loading to operating mode

 Better operating environment for digital electronics
• Put machine in sheltered area away from combustion, environment

 Arguably simpler software configuration
• All changes are made in one place in the system

 Can grow up to limits of equipment rack
• More restrictive than one might think in a harsh environment system

 Any of these reasons might be sufficient to justify a centralized system

35

When Is It “A Wash?” (no advantage)

 Total system cost/weight
• Housing + cooling costs may outweigh wiring savings
• Distributed system has components in harsher environment than central systems

 System expandability
• Central system has limit on I/O connectors
• Distributed system has limit on bus fanout (typically 32 nodes)

– But, arguably easier to install repeaters/bridges
• Distributed system has limited communication bandwidth (compared to

backplane)

 Inventory costs
• Distributed systems have cheaper components, potentially but more kinds of

them

36

Distributed Advantages – Modularity
 Modular system development, support, and evolution

• A different team designing each node
• Well-defined, tightly enforced interface (system message formats)
• Can upgrade individual models and limit effect of changes on rest of system

 Limits competition for resources among different features
• Can add compute+I/O power incrementally
• But, wastes resources on a node that might be inactive most of the time

– Difficult to “time share” compute resources

 Reduces interactions
• Easier to make worst-case guarantees on a per-module basis
• Can re-certify only modules that have changed
• Can have “critical” and “non-critical” modules, reducing certification effort

37

Example: Car Subsystems
 Different subsystems often provided by different

vendors
• Engine, transmission, anti-lock brakes, power

windows, etc.

 Different CPU for each subsystem means:
• Each vendor has a CPU all to itself – minimal

software integration issues
• Can change any component without worrying about

details of internal software affecting other
subsystems

• Change to convenience subsystem (windows) can be
easily shown to have no effect on safety critical
subsystem (brakes)

TRANSMISSION

ENGINE

POWER
WINDOWS

ANTI-LOCK
BRAKES

N
et

w
or

k

38

Diagnosability
 Very often this is the decisive advantage

• Decreasing maintenance and repair costs can make a big difference!

 Remote diagnosability
• Can isolate problems based on available processors
• Especially useful on systems where cables and connectors have high failure

rates

 General ideas:
• Each controller can diagnose its own sensors/actuators
• Each controller can diagnose its local connection to the network
• Each controller can determine which other controls seem to be alive
• Sampling a few controllers or network segments identifies problem areas

39

Diagnosability Example

40

Summary Of Other Distributed Advantages
 Flexibility

• Can modify or upgrade systems by changing components

 Robust data transmission
• Digital network lets you use error coding, controlling noise on signals

 Simpler to build and maintain
• Single bus means you can’t hook the wrong wires up – there is only one “wire”!

 Enables fault tolerance
• A single CPU is a single point of failure – multiple CPUs support fault

tolerance

 Improves safety certifiability
• Separate CPU for critical functions means non-critical CPU can’t cause safety

faults

41

Flexibility
 Can add new components more easily

• Multiple vendors can add components to a well defined HW+SW standard
interface

• New components can have different physical size/shape as long as they can
interface to the network

 Scalable systems can be created on a pay-as-you-scale basis
• More copies of components added as system grows

– (But, there are limits before repeaters are needed for network)
• But, individual node packaging might be too much overhead if most systems

have only 2 or 3 copies of a component
– A single module with a couple long signal wires might be cheaper than a couple

modules with a network wire

(optional details)

42

Example: Elevator Hall Call Buttons
 Can build using two standard units:

• Two-button unit for middle floors
• One-button unit for end floors (spin arrow around for top

floor)

 Adding more floors involves adding more button boxes
to network
• Cost of long wiring runs makes using a network worthwhile

 But, for 2 or 3 floor lifts (which are the most prevalent):
• Middle floor buttons aren’t the majority of those used
• Might be cheaper just to use a single controller box with

discrete wires

N
et

w
or

k

N
et

w
or

k

N
et

w
or

k

Elevator Hall Call button assemblies;
one button box per floor

(optional details)

43

Robust Data Transmission
 Analog data suffers from noise

 Digital data can be noise
resistant
• Error detect & retransmit
• Error correcting codes

 Digital sensor/actuator data provides
better tradeoffs
• Lower bit rate gives better SNR
• Arbitrarily high precision at cost of bit rate

 Once you have digital data transmission,
you also get a distributed processor

(optional details)

44

Simpler To Build And Maintain
 Single network wire vs. wiring harness

• Hard to connect to the wrong wire if there is only one wire
• Thinner wire, lighter overall weight
• Far fewer lightning protection devices (if applicable)

 Maintain by replacing entire node
• Potentially easier on-line repair (“hot swap”)
• Can potentially function with one node broken or missing

 Potentially takes no space at all
• Electronics can be stuffed into nooks and crannies of system

 Potentially better error containment
• If one node fails, entire system does not fail...
• … as long as network does not fail and node did not have unique data

(optional details)

45

More Flexible Deployment
 Buying a centralized computer can be a significant expense

• Creates significant barrier for someone on a budget (e.g., a homeowner)
• Significant investment required before seeing any results at all

 Sometimes phased deployment/upgrade is better
• Limited budget, want incremental improvements
• Limited down-time for system during upgrades; need phased deployment

 Distributed systems can help, if designed appropriately
• Replace old sensors/actuators with smart ones that are backward compatible
• Any installed smart systems can provide incremental improvements
• Can defer expense of central coordinating/optimizing compute nodes until

sensors and actuators are in place for them to control

• In the usual case incremental deployment has higher overall cost
– But it is often the only practical way to accomplish business goals

(optional details)

46

Provides Essential Fault Tolerant Capability
 A single CPU has a single point of failure (the CPU)

• Duplicated hardware (multi-channel system) can help improve reliability
• But a nasty fault or security breech can still slip through
• And, a 2-of-2 system fails silent, does not fail operational

 Distributed systems have greater fault tolerance potential
• Different nodes can cross-check each other
• Breaking into one node does not (necessarily) get you into other nodes
• If they don’t have common mode software failures, system can be more robust

 Distributed systems can tolerate arbitrary (uncorrelated) faults
• Multi-channel architecture without a central voter
• Can fail operational by consensus voting to exclude faulty nodes from results
• (See Byzantine Generals problem)

(optional details)

47

Certifiability
 Distributing functions potentially encapsulates changes

• Changing a non-critical node might not effect critical nodes
• (But, be careful about indirect changes such as resource consumption)

 Changing one critical node might not affect other critical nodes
• If system components can be certified individually
• AND, each component depends only on advertised interfaces to other

components
• AND, change on one component does not change interface
• Then, PERHAPS, this means you don’t have to recertify entire system

• BUT, for now, this is a research hope more than a reality
• It certainly is a way to reduce risk of certification problems by containing

changes even if you do have to recertify system just to be sure

(optional details)

48

Extra-Functional Pitfalls
 Safety

• Making systems safe despite arbitrary failures is difficult
• (Single-CPU systems generally can’t do this at all, however.)

 Reliability
• For a given failure rate per component, adding more components reduces

reliability (there are more things to break)
• This can be compensated for with advantages of diagnosability and redundancy,

but be careful

 Maintenance
• Network can help maintenance by exposing key information in a single place
• Diagnosing concurrent, distributed system usually requires more sophisticated

skills, tools, and training

(optional details)

49

Distributed Tradeoff Pitfalls
 Distributed advantages are often subtle

• Require rethinking of system approach to be a win
• Can appear as non-functional attributes: (diagnosability, maintainability)
• May only be beneficial by making new functions easier to add: (flexibility)

 Distributed systems also have scalability limits, but they are just
different than for centralized systems
• Electrical fanout of buses / requires repeaters
• Network bandwidth saturations / requires bridges and careful architecting
• Complexity of distributed software (different than many are used to designing)
• A poorly architected distributed system (especially just a porting of a

centralized system) probably negates all benefits yet incurs extra cost for being
distributed

 Distributed systems require new skills
• Design & debug skills for concurrent, distributed systems
• Maintenance and operation skills (e.g., network monitoring tools)

(optional details)

50

Difficult Problems / Research Areas
 Quantified tradeoffs

• It appears that the win for distributed systems is in the squishy areas, not in
easily quantified dollars and sense

• Many systems are driven to distributed at first, then discover benefits once they
are there. For example:

– Automotive driven by need for access to sensors for fuel emission monitoring
– Automotive driven by physical limits on wire bundle size
– X-by-wire driven by desire for Byzantine fault tolerance

(optional details)

51

Why Are Distributed Systems Different?
 Can’t just chop up a centralized architecture and distribute it

• At least not if you want distributed advantages!

 Control flow must be decentralized
• Close fast control loops locally
• Attempt to have weak dependence on other units for basic functionality

(enables graceful degradation)

 Data Flow is a limitation
• Latency – round trips on a network can cause control lag
• Bandwidth – inexpensive networks have limited bandwidth
• Reliability – networks drop packets due to noise, congestion, etc.

 SW architecture should be compatible with HW architecture
• Creating a good distributed architecture is more art than science

52

Notes On Required Reading
 Ch 10: Software architecture

• We discussed architecture in the last lecture
• If you are highly distributed you need a software architecture that maps cleanly

onto a distributed hardware architecture
• If you use a “brain” software module and install it in a door lock CPU…

– … That really isn’t a distributed system…
… It is a centralized software architecture running on a distributed HW platform
… and at 1 Mbps network bandwidth performance will be terrible

 Ch 11: Modularity
• Modularity Is Good

– You’ve (hopefully) heard this many times before, but this chapter reinforces it
• All the ideas for modules are critical in a distributed system

– Low coupling: not too many messages between modules
– High cohesion: all functions involving a sensor/actuator placed near that device
– High composability: should be able to build many different variants out of a

standard set of distributed building block computers, sensors, actuators

53

Review
 Distributed architectures bring significant potential benefits

• Modularity – system integration of subsystems
• Flexibility – can scale up system and use heterogeneous components
• Diagnosability – can isolate faults more effectively
• Robust data transmission – network enables error control coding
• Flexible & incremental deployment – no single big box to buy up front
• Potentially improved fault tolerance & certifiability
• BUT, common purported advantages often don’t materialize

(cost, weight, expandability)

 But, these benefits do not come for free
• All aspects of architecture must support distribution (software as well as hardware)
• Distributed, concurrent design generally requires more sophisticated skills, tools, and

infrastructure than centralized designs

 Sometimes centralized is better
• Usually because it is easier to design/implement if you don’t care about distributed

advantages for a particular application

