18-548/15-548 Vector Architecture 11/4/98

16
Vector Architecture

18-548/15-548 Memory System Architecture
Philip Koopman
November 4, 1998

Required Reading: Cragon 11.0-11.2.2, 11.4-11.6.3 *
€q g ag > egle

Supplemental Reading: Hennessy & Patterson B.1-B.5 ()

Siewiorek & Koopman 5.0-5.9

Siewiorek, Bell & Newell Chapter 44 (Cray 1)

Assignments

+ By next classread about vector performance:
e Cragon11.3-11.3.5,11.7
» Siewiorek & Koopman 7.4 (available on-line)

» Supplemental Reading:
— Hennessy & Patterson B.6-B.9
— Palacharla & Kessler; ISCA 1994

¢ Homework #9 due November 11

¢ Lab #5 due November 20




18-548/15-548 Vector Architecture 11/4/98

Where Are We Now?

¢ Wherewe ve been:
* Main memory
* Disk drives

¢ Wherewe'regoing today:
» Vector architecture
» Vector chaining

¢ Wherewe'regoing next:
* Vector Performance
* Buses

Preview

+ Vector processing overview
* Why wasit agood ideain the 60s?
» (Next lecture -- why it might be agood ideatoday...)

& Generic vector processor architecture
 |It'sabout data pipelining instead of instruction pipelining

+ Data pipelining within vector execution -- extended example
» Vector loads
» Vectors stores
* Vector “chaining”




18-548/15-548 Vector Architecture 11/4/98

WHAT ISVECTOR PROCESSING?

Vector Processing Definition

+ A vector instruction operateson a set of data el ements
» Typicaly elementsin adata array separated by fixed stride

» Typically implemented as aload/store register architecture
(but, “registers’ contain many data elements each)

— Vector load start address, stride, number of elements, register#
— Vector store start address, stride, number of elements, register#
— Vector operation source reg#l, source reg#2, dest reg

+ Traditional supercomputers are vector-based
» Scientific code typically operates on arrays and matrices
* Provides hardware speedup for loop overhead and address generation

+ Vector techniquesare useful, even outside of supercomputing

» Dealing with structured data that caches poorly, especially multimedia data
streams




18-548/15-548 Vector Architecture 11/4/98

Classical Vector Processing Bypasses Cache

CPU SPECIAL-
PURPOSE

I-UNIT E-UNIT MEMORY

REGISTER CACHE Rypaca
FILE

(?)
= ON-CHP [
L2 CACHE

SPECIAL-
PURPOSE
CACHES

VIRTUAL
MEMORY

INTER-
CONNECTION
NETWORK

ON-CHIP
L1 CACHE

DISK FILES &
DATABASES

CD-ROM
TAPE
OTHER etc.

COMPUTERS
& WWW

Historical View of Vector Processing

+ Scientific code speedup (Fortran heritage)
» Regular strided access patterns encouraged hardware speedup for loops
— Single-issue machines didn’t have to spend clocks on loop overhead
— Vector dataloads and stores could exploit interleaved memory capabilities
» When caches became available, they weren't big enough to help

& Reduced semantic gap between application and hardware --
allows compilersto make assumptions about data structures

» Assume no memory overlap on vector loads/stores (don’t stall reads waiting for
writesto complete)

 Eliminate branch mis-prediction penalties (loops replaced by vector length)
* Provided optimized performance in an era of immature compiler technology




18-548/15-548 Vector Architecture 11/4/98

Vectorization As Pipelining

+ Data pipelining, rather than deep instruction execution pipelining
» Single instruction repeated multiple times on multiple data items

+ Single-issue machine could have multiple vector instructions active
» Evenif one clock per result, vectors have many data elements
» Concurrent instruction execution possible even with a single-issue machine

GENERIC VECTOR ARCHITECTURE

(Inspired by the Stardent Titan architecture;
but thisexampleisintentionally not balanced)




18-548/15-548 Vector Architecture 11/4/98

Generic Vector Architecture

VECTOR | . >
REGISTER VECTOR i FUNUC,\E%NAL
FILE < > DATA >
P = SWITCH P
0‘1‘2‘3‘4‘5‘6‘7‘ > < ADD ‘ MUL
A
VECTOR
ADDRESS 4
GENERATORS BUS
ADDR (INTERCONNECT)
VAGO‘VAG1‘VAG2 A Y 7 Y
oc oc oc o
a a a a
a a a a
< <C <C <C
Y VY A y Y _\ A y

BANKO [| BANK 1 || BANK2 || BANK 3

4WAY INTERLEAVED MEMORY
— Vector Address Generators drive strided fetches/stores
— Interconnect/Bus supports pipelined+interleaved loads and stores
— Vector Register File holds collated data sets
— Functional units perform pipelined operations on vector register contents

Vector Register File

& High-speed memory accessible as vector register set

» Each vector register holds multiple data elements forming a vector
(e.g., 8vector registers, each with 64 data elements)

* Length register may permit holding fewer than maximum elements in a vector
register (e.g., vector registers might have only 32 valid data elements, with the
remainder of the vector register contents ignored)

& Vector registersarea contiguous set of data
» Vector Registers aways accessed in sequential data words (with “ stride” of 1)

* Memory arrays/vectors of stride > 1 are converted to/from contiguous data in
VRF by load/store operations

& Alsoneed scalar registers
» Might be kept within VRF and accessed with special address form
» Might be the scalar CPU floating point register set




18-548/15-548 Vector Architecture 11/4/98

Vector Address Generators

+ Coordinates data placement for load and store operations

¢ Generatesstrided memory addresses
» Seeded with vector information:
— Start address
— Stride
— Number of elements
» Generates addresses for memory load/store
& Generatesvector register addresses
» Vector register number
» Offset within vector register

¢ OneVAG needed for each concurrent vector load/store

Functional Units

+ Pipdined arithmetic and logic units, typically:
» Additiorvlogic functions
1) Pre-normalization (align decimal points w.r.t. exponent values)
2) Addition/subtraction
3) Post-normalization (align resultant decimal point) & round
* Multiplication
1) Mantissa multiplication
2) Partia product addition
3) Post-normalization & round
» Division/square root
+ Data may enter and leave functional unit every clock cyclefor high
throughput

» Vector execution model means software guarantees no data dependencies
among vector elements




18-548/15-548 Vector Architecture 11/4/98

Vector Data Switch

# Crossbar switch to connect system components
» Datarate must be one element per clock cycle per port
* Number of ports determined by expected data flow rates
— At least three VRF ports to support LOAD/LOAD/op/STORE functions
— One or more memory ports to support concurrent Loads and Stores
— At least three Functional Unit portsto support LOAD/LOAD/op/STORE functions

Multiple Memory Banks

¢ Low end machine -- interleaved memory
» Memory banks take turns being connect to bus
* Interleaved memory access improves available bandwidth and may reduce
latency for concurrent accesses.
+ High end machine -- multiple concurrent banks
» Might use crossbar switch (instead of bus, not instead of VDS) to connect
several memory banksto the VDS simultaneously
» Might be interleaved and assume different subsets of banks connected each
clock




18-548/15-548 Vector Architecture

Vector Instruction Forms

Result Operandl Operand? Example Data Elements
Vector Memory  --- Load A(i) v
Memory Vector Store A(i) Vv
Vector  Scalar Vector C(@i) U B +A(i) 2v+l
Vector  Vector — --- C(i) U abs(B(i)) 2v
Vector  Vector  Mask C(@i) U B(i) ¢ mask up to 2v
Scalar Vector - Cc U S B(i) v+1
Scalar Vector  Vector cUSB(i)” A(®) 2v+1
Vector  Scalar Vector C(@i) U A™ B(i)* C(i) 3v+l

¢ Keyinstruction: DAXPY
e Y=aX+Y (“double precisonaX plusY”)
* Inner loop of LINPACK

DAXPY -- A Key Operation

+ Used in Gaussian Elimination; “ most used” supercomputer instruction
 LOAD -- LOAD -- OP-- STORE

o for (1=0; i<64;i++) { Y(i)= a* X@)+Y(@); }

/* assume 64-element vector registers*/

LD FO, a ; load scalar a

LV V1, x ; load vector register 1 with x
MULTSV V2, Fo, V1 ; vector-scalar multiply FOisa; V1isX
LV V3,y ; load vector register 2 with y

ADDV V4,V2,V3 ;add vector new Y (V4) =axX +old Y
SV y, V4 ; Store result

¢ Variations
» Vector length register could be set for varying array sizes
— If vector exceeds vector register length, must use “strip mining”
» Some systems have a DAXPY instruction: vLoad; vLoad; DAXPY; vStore

11/4/98



18-548/15-548 Vector Architecture 11/4/98

VECTOR EXAMPLE:
Z(i) = X(i) + Y (i)

Vector Load
VECTOR | - »
REGISTER [ " VECTOR ” FUNUCJ'T%NAL
FILE < > DATA »
I —— —SWITCH P
o#..a-e-ar's 67| > < ADD | MUL
A
VECTOR 4
ADDRESS g BUS
GENERATORS ADDR ™ (IN}éRCONNECT)
VAG%W - T A | A L] A
[m] (] [m] [m]
(] (] (] [m]
<C < < <
Y Y VY Y VY Y VY
BANKO || BANK 1 || BANK 2 || BANK 3
4-WAY INTERLEAVED MEMORY

10



18-548/15-548 Vector Architecture

Vector Load Operation X(i)

ADDR DATA DATA
Beat | VAG | BUS BANK 0 BANK 1 BANK 2 BANK 3 BUS [ SWITCH | VRF
1 | X[0]
2 | X[1] | X[0]
3 | x21] xm1 |rAs x[o]
4 [ XB1] X[21 [CcASX[0] |RAS X[1]
5 | X141 | X[3] |DATAX[0]|CAS X[1] |RAS X[2]
6 | X[51] X[4] |CYCLE DATA X[1] | CAS X[2] |RAS X[3] | X[0]
7 [ xm61] X[5]1 [RAS X[4] |CYCLE DATA X[2] [ CAS X[3] | X[1] X[0]
8 | X171 ] X[6] |CASX[4] |RAS X[5] |CYCLE DATA X[3]| X[2] X[1] X[0]
9 X[7] | DATA X[4] | CAS X[5] |RAS X[6] |CYCLE X[3] X[2] X[1]
10 CYCLE DATA X[5] | CAS X[6] |RAS X[7] | X[4] X[3] X[2]
11 CYCLE DATA X[6] | CAS X[7] | X[5] X[4] X[3]
12 CYCLE DATA X[7]1]| X[6] X[5] X[4]
13 CYCLE X[7] X[6] X[5]
14 X[7] X[6]
15 X[7]
¢ 8-dement vector load
» 8 beat latency to first load
» 8elementsloaded in 15 beats latency
» BUT, could load other data starting at besat 9...
Concurrent Vector Loads
VECTOR |« > >
REGISTER | ” VECTOR o FUNUC,\E'TOSNAL
FILE < > DATA >
‘ SWITCH P
0/1]2|3|4|5/6|7 < ADD MUL
)Y
VECTOR v
ADDRESS o EUS
GENERATORS ADDR ™ Q(ITERCONNECT)
VAG ‘ T 5 ] & o] &
] ] )]
] a @]
< << <<
vy _ YY VYY
BANK 1 || BANK 2 || BANK 3
4-WAY INTERLEAVED MEMORY

11

11/4/98



18-548/15-548 Vector Architecture

Concurrent Vector Load Operations X(i) Y(i)
ADDR DATA DATA

Beat | VAGO | VAG1 | BUS |BKO |BK1 |BK2 |BK3 | BUS SWITCH VRF
1 | X[0]
2 | X[1] | Y[O] | X[0]
3 Y[1] | Y[O] | rX[O]
4 | X[2] X[1] | cX[0] rv[0]
5 Y21 | vray | xmo1 [ rx[a] | cY[o]
6 Y[3] | Y12l | cyc [exqag] v[o] | ry[a3 | X[0]
7 | X3 X121 [ rv[21 | X111 | eyc [eY[al] Y[o] X[0]
8 Y[4] | Y131 leY[21] cyc [ rx[21] Y[a] [ X[1] Y[0] X[0]
9 | X[4] X[31 | Y21 [ rY[31 [ eX[2]1] eyc | Y[1] X[1] Y[0]
10 | X[5] X[41 | cyc [cY[31] X[2] | rX[31] Y[2] Y[1] X[1]
11 Y[5] | Y[4] [ ex[41 ] YI3] | cyc [ eX[31] X[2] Y[2] Y[1]
12 | X[6] X[51 | eX[4]] cyc | rv[41 | X[31 | YI3] X[2] Y[2]
13 v[61 | Y[5] | X[4] | rX[5] | cY[4]] cyc | X[3] Y[3] X[2]
14 Y[7] | Y[6] | cyc [cX[51] Y[4] | rY[5] | X[4] X[3] Y[3]
15 | X[7] X[6]1 | rY[6] | X[5] | cyc |cYI5]| Y[4] X[4] X[3]
16 Y[7] |cY[6]| cyc | rX[6]1 | Y[5] | X[5] Y[4] X[4]
17 X[71 | YI6] | rY[71 [ cX[6]1] cyc | Y[5] X[5] Y[4]
18 cyc |cY[7]] X[6] | rX[7]| YI6] Y[5] X[5]
19 Y[7] | cyc | cX[7]1] X[6] Y[6] Y[5]
20 cyc X[71 | Y[7] X[6] Y[6]
21 cyc | X[7] Y[7] X[6]
22 X[7] Y[7]
23 X[7]

Noteson Concurrent Load Example

+ Singlebusresultsin data bandwidth limit
» Could provide 2 paths (2 buses, or 2 ports on a crossbar switch)
» Could run bus at 2x vector clock cycle (2 beats per clock cycle)
¢ Two VAGscompetefor bus
» Need arbitration logic to assure fair access
* VAGsaren't strictly aternating in order to exploit available memory banks
— VAGs with addresses waiting might go in round-robin order
— But, aVAG might have to skip aturn or wait if the memory bank it needsis busy

12

11/4/98



18-548/15-548 Vector Architecture

Vector Store
VECTOR | - | )
REGISTER VECTOR FUNUCJ'TOSNAL
FILE < > DATA >
g ] ITCH <
0| L2875 < » < ADD MUL
A
VECTOR
ADDRESS - BUS
GENERATORS ADDR ™ (IN}éRCONNECT)
VAG-ewAe+-vaere o« Zl A < A < 2
[a] [a] [a) [a]
o [m] [m] [m]
<C < < <
Y YY YVY VYV
BANKL BANK 1 || BANK 2 || BANK 3
4-WAY INTERLEAVED MEMORY

Vector Store Operation

Z(i)

ADDR DATA DATA

Beat | VAG | BUS VRF | SWITCH BUS BANKO | BANK1 | BANK2 | BANK 3
1 ]2[0] Z[0]
2 | z[1] | Z[0] Z[1] Z[0]
3 |zi21 | zim Z[2] Z[1] Z[0] |RAS Z[0]
4 |z31] z121 Z[3] Z[2] Z[1] |CASZ[0] |[RAS Z[1]
5 | z[41 | z3] Z[4] Z[3] Z[2] |CYCLE [CAsZ[1] |RASZ[2]
6 | zI5] | Z[4] Z[5] Z[4] Z[3] CYCLE | CAS Z[2] |RAS Z[3]
7 | zi61 | zs] Z[6] Z[5] Z[4] |RAS z[4] CYCLE |cAsZ[3]
8 | z[71 | zI6l 271 Z[6] Z[5] | CAS Z[4] |RAS Z[5] CYCLE
9 Z[7] Z[7] Z[6] |CYCLE |CAsSZ[5] |RAS z[6]
10 271 CYCLE | CAS Z[6] |RAS Z[7]
11 CYCLE | cAsZ[7]
12 CYCLE

¢ 8-element vector store
» 4 beat latency to first store -- datatransmission in parallel with addressing

» Assume writing one clock faster than reading because don't have to wait for
datato get back out of DRAM -- address and data arrive concurrently

13

11/4/98



18-548/15-548 Vector Architecture

11/4/98

Vector Add

VECTOR
ADDRESS
GENERATORS

CTIONAL
ITS

MUL

VAGO‘VAG1‘VAG2

4-WAY INTERLEAVED MEMORY

> >
VECTOR
DATA !
SWITCH P —
= ADD
| 1
A
Y
BUS
(INTERCONNECT)
A A A A
o o o [am
o o o o
o o o o
< < < <
Y.V Y.V Y.V \ A /
BANK O || BANK 1 || BANK2 || BANK 3

Vector Add Operation

registers. Z=X+Y

DATA ADDER
Beat VRF SWITCH (3 STAGES)
1 | X[0] | Y[O]

2 | X[1] | Y[1] X[9] | Y[O]

3 | X[2] | Y[2] X[1] | Y[1] Z[0]

4 | X[3] | Y[3] X[2] | Y[2] Z[1] | 2[0]

5 | X[4] | Y[4] X[3] | Y[3] Z[2] | [1] | Z[O]
6 | X[5] | YI[5] X[4] | Y[4] | Z[0] | Z[3] | Z[2] | Z[1]
7 | X[6] | Y[6] | 2[0] | X[5] | Y[S] | Z[1] | Z[4] | Z[3] | Z[2]
8 | X[71 | Y71 [ z[a1 | X161 | vI6l | z[2] | zI5] | z[4] | Z[3]
9 Z121 | X171 | Y71 | z[31] z[e] | z[5] | z[4]
10 Z[3] z[4] | z[71] z[6] | Z[5]
11 Z[4] Z[5] 2171 | z[6]
12 Z[5] Z[6] Z[7]
13 Z[6] Z[7]

14 Z[7]

¢ 8-element vector add
» Datapipelining:

— 7 beatsto first result

— 1 beat per result steady state

14



18-548/15-548 Vector Architecture 11/4/98

Vector Chaining

+ Vector chainingisanalogousto data forwarding in a scalar processor
» Accomplished by hardware
— Semantics of vector operations assume no implicit data hazards among vectors
» Load/op chaining:
— Vectors loaded via data switch from memory
— Subsequent arithmetic operations fed from data switch as data arrives
» Op/op chaining:
— Outputs from arithmetic op fed back into functional units
» Opl/store chaining:
— Outputs from arithmetic op fed straight to memory from data switch

Vector Chaining -- loads (before chaining starts)

| |
VECTOR _lg = o
REGISTER | ” VECTOR > FUNUC'\'II'II_IQSNAL
FILE < > DATA >
P SWITCH
0/7/2|3/4/5/6|7[€ < ADD | MUL
A
VECTOR v
ADDRESS H5s
GENERATORS [ “ADDR > TER'_,ONNECT)
VAG 0| VAG 4 vAG 21 f A T &
L T Q &
a) 0
< <
Y YVY

BANK O BANK 1 || BANK2 || BANK 3

4-WAY INTERLEAVED MEMORY

15



18-548/15-548 Vector Architecture

Vector Chaining -- loads + operation

|
e | g ] ToncTonn
= p? - UNITS

ADD MUL

FiLE ATA >
SWITCH
0/ 1|2 4‘5 6|7 <
i — L
A
VECTOR v
ADDRESS EUS
GENERATORS ADDR > TER'_,ONNECT)
VAG 0] VAG +hvacel o A o 2
! I ) Q (]
[m] [m)] [m)]
< < <
\ 4 Y VY

BANK O BANK 1 || BANK2 || BANK 3

4-WAY INTERLEAVED MEMORY

Vector Chaining -- loads + operation + store

EUNCTIONAL

VECTOR I I
REGISTER | VE

BANKO || BANK 1 || BANK2 || BANK 3

4-WAY INTERLEAVED MEMORY

Gy 70 5 UNITS
SWITCH
0 2;4‘567< < ADD | MUL
r__l L
VECTOR v
ADDRESS = EUS
GENERATORS ADDR QLTERCONNECT)
I A
VAGO‘VAG LvacHl ) /LDJ /f « « 2
Ql J a a a
< < < <
vV VvV VY

11/4/98



18-548/15-548 Vector Architecture

Vector Chaining: load /load / op/ store
Beat | VAGO | VAG1 | VAG1 | ADR BK 0 BK 1 BK 2 BK 3 BUS VDS ADD VRF
1 [ X0
2 [ x[1] | Y] X[0]
3 v[1] v[0] | iX[0]
4 | X[2] Z[0] | X[1] | cX[0] rY[o]
5 Y[2] Y[1] | X101 | rx[1] [ cY[o]
6 Y[3] Y[2] | cyc | cX[1] | Y[O] [ rY[1] | X[O]
7 [ X[3] X[2] | rv[21 | X[a] [ eye [ev[ay] vio] X[0]
8 Y[4] Y[3] | cvi2l | cyc [ rx[21] Y1l | X[1] Y[0] X[0]
9 | X[ X31 | Y21 [ rv[3] [ ex21] eye | vial X[1] Z[0] Y[0]
10 | X[s] X[4] | cyc |cY[31| X[21 | XI31 ] YI2] Y[1] Z[0] X[1]
11 Y[5] Y[4] | ox41 ] Y31 | eye | ex31] X[21 Y[2] Z[1] Z[0] Y[1]
12 | Xx[e] X[5] | cX[4]1] cyc | rv[4]1 | X[3] | YI3] X[2],2[0] Z[1] Y[2]
13 Y[6] Y[5] | X[4] | rX[5] | cY[4] | cyc | X[3] Y[3] Z[2] Z[1] X[21,2[0]
14 Y[7] Y[6] | cyc |cx[51| Y41 | rvI5] | X[4] X[31.2[1] Z[2] Y[3]
15 | X[7] X[6] | ry[6] | X[s] | cyc |cY[5]| Y[4] X[4] Z[3] Z[2] X[31.2[1]
16 Y[71 | cv[6] | cyc | rx[6]1 | Y[5] | X[5] Y[41,2[2] Z[3] X[4]
17 X[71 | vI6l | rv[7] | cx[61| cyc | YI5] X[5] Z[4] Z[3] Y[41,2[2]
18 cyc | cY[71| X[6] [ rX[71] YI6] Y[51,2[3] Z[4] X[5]
19 Y[7] | cyc [ cX[71] X[6] Y[6] Z[5] Z[4] Y[51,2[3]
20 cyc X[71 | Y71 X[61,2[4] Z[5] Y[6],2[0]
21 z[1] | z[0] cye | X[7] [ v[71.z[o] | z[6] Z[5] | x[6].Z[4].2[1]
2 z2] | z[1] 1Z[0] Z[0) | X[7).2[5].2[1] z[6] v[7].Z[2]
23 z[3]1 | z[2] z[0] | rz[1 Z[1] Z[2] Z[7] z[6] | X[71.2[51.Z[3]
24 Z[41 | z[3] cyc |z111 [rz[21 | z[2] Z[6],2[3] Z[7] Z[4]
25 z[5] | z[4] | rz[3] cyc |z[2]1 | zI3] Z[4] Z[7] Z[6],2[5]
26 z[6] | z[51 | z[3] |rz[4] cyc | Z[4] Z[71,2[5] Z[6]
27 Z[71 | z[6] |cyc |z[4] |rz[5] Z[5] Z[6] Z[71,2[7]
28 Z[7] cyc | z[5] |rz[6] | z[6] Z[7]
29 rZ[7] cyc Z[6] Z[7]
30 Z[7] cyc

cyc

Vector Chaining Analysis

¢ Example: 8 addsin 30 beats
» 8 of 30 beats of ADDER consumed
» 24 of 30 beats of bus consumed (both address and data)

» 88 of 120 available beats of memory bandwidth consumed

* Busabottleneck

» Memory bandwidth is close to being a bottleneck
» Vector address generators under-used

* Adder under-used

» Lack of bus bandwidth is a common architectural problem
— Bus bandwidth is more expensive getting a faster CPU

» 24 of 90 available beats of vector address generator consumed

& Problem with this example ar chitecture: lack of balance

— Toy benchmarks don’t use the bandwidth, so there may not be “obvious” benefit

17

11/4/98



18-548/15-548 Vector Architecture 11/4/98

REVIEW

Vector Microprocessors Today?

+ Vector computation model not as compelling asit once was
» Multi-issue, latency-tolerant architectures reduce cost of loop overhead
— Instruction concurrency is available, and can substitute for data concurrency
» Improved compiler technology reduces value of programmer using vectorsto
give hintsto hardware
— Improved algorithms to exploit cache
— Smart pre-fetching hardware, cache bypass, latency tolerance
» Commodity networked computing can often achieve comparable performance
to a supercomputer
— Single-chip CPUs now have very high clock rates
— Improved infrastructure for parallel computing makes it accessible

+ But, desktop CPUs can benefit from super computer tricks
» Strided prefetching to reduce latency and better use memory bandwidth
» Selective bypassing of cache to avoid cache pollution
 Intel i860 was an experiment in this direction; but it was a poor compiler target

18



18-548/15-548 Vector Architecture 11/4/98

Review
+ Vector processing overview
» Exploits regular data access patterns to achieve data movement pipelining
& Generic vector processor architecture
* VRF, VAG, VDS, functional units, memory banks
+ Data pipelining within vector execution
» Vector loads
* Vectors stores
» Vector chaining

19



