
18-548/15-548 Vector Architecture 11/4/98

1

16
Vector Architecture

18-548/15-548 Memory System Architecture
Philip Koopman

November 4, 1998

Required Reading: Cragon 11.0-11.2.2, 11.4-11.6.3

Supplemental Reading: Hennessy & Patterson B.1-B.5
Siewiorek & Koopman 5.0-5.9
Siewiorek, Bell & Newell Chapter 44 (Cray 1)

Assignments
u By next class read about vector performance:

• Cragon 11.3-11.3.5, 11.7
• Siewiorek & Koopman 7.4 (available on-line)

• Supplemental Reading:
– Hennessy & Patterson B.6-B.9
– Palacharla & Kessler; ISCA 1994

u Homework #9 due November 11

u Lab #5 due November 20

18-548/15-548 Vector Architecture 11/4/98

2

Where Are We Now?
u Where we’ve been:

• Main memory
• Disk drives

u Where we’re going today:
• Vector architecture
• Vector chaining

u Where we’re going next:
• Vector Performance
• Buses

Preview
u Vector processing overview

• Why was it a good idea in the 60s?
• (Next lecture -- why it might be a good idea today...)

u Generic vector processor architecture
• It’s about data pipelining instead of instruction pipelining

u Data pipelining within vector execution -- extended example
• Vector loads
• Vectors stores
• Vector “chaining”

18-548/15-548 Vector Architecture 11/4/98

3

WHAT IS VECTOR PROCESSING?

Vector Processing Definition
u A vector instruction operates on a set of data elements

• Typically elements in a data array separated by fixed stride
• Typically implemented as a load/store register architecture

(but, “registers” contain many data elements each)
– Vector load start address, stride, number of elements, register#
– Vector store start address, stride, number of elements, register#
– Vector operation source reg#1, source reg#2, dest reg

u Traditional supercomputers are vector-based
• Scientific code typically operates on arrays and matrices
• Provides hardware speedup for loop overhead and address generation

u Vector techniques are useful, even outside of supercomputing
• Dealing with structured data that caches poorly, especially multimedia data

streams

18-548/15-548 Vector Architecture 11/4/98

4

Classical Vector Processing Bypasses Cache

REGISTER
FILE

ON-CHIP
L1 CACHE

TLB

(?)
ON-CHIP

L2 CACHE

E-UNIT

L2/L3
CACHE

(?)
L3/L4

CACHE

VIRTUAL
MEMORY

CD-ROM
TAPE
etc.

INTER-
CONNECTION

NETWORK

CPU

OTHER
COMPUTERS

& WWW

I-UNIT

SPECIAL-
PURPOSE
CACHES

SPECIAL-
PURPOSE
MEMORY

MAIN
MEMORY

DISK FILES &
DATABASES

CACHE BYPASS

Historical View of Vector Processing
u Scientific code speedup (Fortran heritage)

• Regular strided access patterns encouraged hardware speedup for loops
– Single-issue machines didn’t have to spend clocks on loop overhead
– Vector data loads and stores could exploit interleaved memory capabilities

• When caches became available, they weren’t big enough to help

u Reduced semantic gap between application and hardware --
 allows compilers to make assumptions about data structures
• Assume no memory overlap on vector loads/stores (don’t stall reads waiting for

writes to complete)
• Eliminate branch mis-prediction penalties (loops replaced by vector length)
• Provided optimized performance in an era of immature compiler technology

18-548/15-548 Vector Architecture 11/4/98

5

Vectorization As Pipelining
u Data pipelining, rather than deep instruction execution pipelining

• Single instruction repeated multiple times on multiple data items

u Single-issue machine could have multiple vector instructions active
• Even if one clock per result, vectors have many data elements
• Concurrent instruction execution possible even with a single-issue machine

GENERIC VECTOR ARCHITECTURE

(Inspired by the Stardent Titan architecture;
but this example is intentionally not balanced)

18-548/15-548 Vector Architecture 11/4/98

6

Generic Vector Architecture

– Vector Address Generators drive strided fetches/stores
– Interconnect/Bus supports pipelined+interleaved loads and stores
– Vector Register File holds collated data sets
– Functional units perform pipelined operations on vector register contents

Vector Register File
u High-speed memory accessible as vector register set

• Each vector register holds multiple data elements forming a vector
(e.g., 8 vector registers, each with 64 data elements)

• Length register may permit holding fewer than maximum elements in a vector
register (e.g., vector registers might have only 32 valid data elements, with the
remainder of the vector register contents ignored)

u Vector registers are a contiguous set of data
• Vector Registers always accessed in sequential data words (with “stride” of 1)
• Memory arrays/vectors of stride > 1 are converted to/from contiguous data in

VRF by load/store operations
u Also need scalar registers

• Might be kept within VRF and accessed with special address form
• Might be the scalar CPU floating point register set

18-548/15-548 Vector Architecture 11/4/98

7

Vector Address Generators
u Coordinates data placement for load and store operations
u Generates strided memory addresses

• Seeded with vector information:
– Start address
– Stride
– Number of elements

• Generates addresses for memory load/store
u Generates vector register addresses

• Vector register number
• Offset within vector register

u One VAG needed for each concurrent vector load/store

Functional Units
u Pipelined arithmetic and logic units, typically:

• Addition/logic functions
1) Pre-normalization (align decimal points w.r.t. exponent values)
2) Addition/subtraction
3) Post-normalization (align resultant decimal point) & round

• Multiplication
1) Mantissa multiplication
2) Partial product addition
3) Post-normalization & round

• Division/square root

u Data may enter and leave functional unit every clock cycle for high
throughput
• Vector execution model means software guarantees no data dependencies

among vector elements

18-548/15-548 Vector Architecture 11/4/98

8

Vector Data Switch
u Crossbar switch to connect system components

• Data rate must be one element per clock cycle per port
• Number of ports determined by expected data flow rates

– At least three VRF ports to support LOAD/LOAD/op/STORE functions
– One or more memory ports to support concurrent Loads and Stores
– At least three Functional Unit ports to support LOAD/LOAD/op/STORE functions

Multiple Memory Banks
u Low end machine -- interleaved memory

• Memory banks take turns being connect to bus
• Interleaved memory access improves available bandwidth and may reduce

latency for concurrent accesses.
u High end machine -- multiple concurrent banks

• Might use crossbar switch (instead of bus, not instead of VDS) to connect
several memory banks to the VDS simultaneously

• Might be interleaved and assume different subsets of banks connected each
clock

18-548/15-548 Vector Architecture 11/4/98

9

Vector Instruction Forms

u Key instruction: DAXPY
• Y = aX + Y (“double precision a-X plus Y”)
• Inner loop of LINPACK

Result Operand1 Operand2 Example Data Elements

Vector Memory --- Load A(i) v
Memory Vector --- Store A(i) v
Vector Scalar Vector C(i) Ü B + A(i) 2v+1
Vector Vector --- C(i) Ü abs(B(i)) 2v
Vector Vector Mask C(i) Ü B(i) Ç mask up to 2v
Scalar Vector --- C Ü S B(i) v+1
Scalar Vector Vector C Ü S B(i)´ A(i) 2v+1
Vector Scalar Vector C(i) Ü A´ B(i)+ C(i) 3v+1

DAXPY -- A Key Operation
u Used in Gaussian Elimination; “most used” supercomputer instruction

• LOAD -- LOAD -- OP -- STORE

u for (i = 0; i < 64; i++) { Y(i) = a * X(i) + Y(i); }
/* assume 64-element vector registers */
LD F0, a ; load scalar a
LV V1, x ; load vector register 1 with x
MULTSV V2, F0, V1 ; vector-scalar multiply F0 is a; V1 is X
LV V3, y ; load vector register 2 with y
ADDV V4, V2, V3 ; add vector new Y (V4) = aX + old Y
SV y, V4 ; Store result

u Variations
• Vector length register could be set for varying array sizes

– If vector exceeds vector register length, must use “strip mining”

• Some systems have a DAXPY instruction: vLoad; vLoad; DAXPY; vStore

18-548/15-548 Vector Architecture 11/4/98

10

VECTOR EXAMPLE:
Z(i) = X(i) + Y(i)

Vector Load

18-548/15-548 Vector Architecture 11/4/98

11

Vector Load Operation X(i)

Beat VAG
ADDR
BUS BANK 0 BANK 1 BANK 2 BANK 3

DATA
BUS

DATA
SWITCH VRF

1 X[0]
2 X[1] X[0]
3 X[2] X[1] RAS X[0]
4 X[3] X[2] CAS X[0] RAS X[1]
5 X[4] X[3] DATA X[0] CAS X[1] RAS X[2]
6 X[5] X[4] CYCLE DATA X[1] CAS X[2] RAS X[3] X[0]
7 X[6] X[5] RAS X[4] CYCLE DATA X[2] CAS X[3] X[1] X[0]
8 X[7] X[6] CAS X[4] RAS X[5] CYCLE DATA X[3] X[2] X[1] X[0]
9 X[7] DATA X[4] CAS X[5] RAS X[6] CYCLE X[3] X[2] X[1]

10 CYCLE DATA X[5] CAS X[6] RAS X[7] X[4] X[3] X[2]
11 CYCLE DATA X[6] CAS X[7] X[5] X[4] X[3]
12 CYCLE DATA X[7] X[6] X[5] X[4]
13 CYCLE X[7] X[6] X[5]
14 X[7] X[6]
15 X[7]

u 8-element vector load
• 8 beat latency to first load
• 8 elements loaded in 15 beats latency
• BUT, could load other data starting at beat 9...

Concurrent Vector Loads

18-548/15-548 Vector Architecture 11/4/98

12

Concurrent Vector Load Operations X(i) Y(i)

Beat VAG0 VAG1
ADDR
BUS BK 0 BK 1 BK 2 BK 3

DATA
BUS

DATA
SWITCH VRF

1 X[0]
2 X[1] Y[0] X[0]
3 Y[1] Y[0] rX[0]
4 X[2] X[1] cX[0] rY[0]
5 Y[2] Y[1] X[0] rX[1] cY[0]
6 Y[3] Y[2] cyc cX[1] Y[0] rY[1] X[0]
7 X[3] X[2] rY[2] X[1] cyc cY[1] Y[0] X[0]
8 Y[4] Y[3] cY[2] cyc rX[2] Y[1] X[1] Y[0] X[0]
9 X[4] X[3] Y[2] rY[3] cX[2] cyc Y[1] X[1] Y[0]

10 X[5] X[4] cyc cY[3] X[2] rX[3] Y[2] Y[1] X[1]
11 Y[5] Y[4] rX[4] Y[3] cyc cX[3] X[2] Y[2] Y[1]
12 X[6] X[5] cX[4] cyc rY[4] X[3] Y[3] X[2] Y[2]
13 Y[6] Y[5] X[4] rX[5] cY[4] cyc X[3] Y[3] X[2]
14 Y[7] Y[6] cyc cX[5] Y[4] rY[5] X[4] X[3] Y[3]
15 X[7] X[6] rY[6] X[5] cyc cY[5] Y[4] X[4] X[3]
16 Y[7] cY[6] cyc rX[6] Y[5] X[5] Y[4] X[4]
17 X[7] Y[6] rY[7] cX[6] cyc Y[5] X[5] Y[4]
18 cyc cY[7] X[6] rX[7] Y[6] Y[5] X[5]
19 Y[7] cyc cX[7] X[6] Y[6] Y[5]
20 cyc X[7] Y[7] X[6] Y[6]
21 cyc X[7] Y[7] X[6]
22 X[7] Y[7]
23 X[7]

Notes on Concurrent Load Example
u Single bus results in data bandwidth limit

• Could provide 2 paths (2 buses, or 2 ports on a crossbar switch)
• Could run bus at 2x vector clock cycle (2 beats per clock cycle)

u Two VAGs compete for bus
• Need arbitration logic to assure fair access
• VAGs aren’t strictly alternating in order to exploit available memory banks

– VAGs with addresses waiting might go in round-robin order
– But, a VAG might have to skip a turn or wait if the memory bank it needs is busy

18-548/15-548 Vector Architecture 11/4/98

13

Vector Store

Vector Store Operation Z(i)

Beat VAG
ADDR
BUS VRF

DATA
SWITCH

DATA
BUS BANK 0 BANK 1 BANK 2 BANK 3

1 Z[0] Z[0]
2 Z[1] Z[0] Z[1] Z[0]
3 Z[2] Z[1] Z[2] Z[1] Z[0] RAS Z[0]
4 Z[3] Z[2] Z[3] Z[2] Z[1] CAS Z[0] RAS Z[1]
5 Z[4] Z[3] Z[4] Z[3] Z[2] CYCLE CAS Z[1] RAS Z[2]
6 Z[5] Z[4] Z[5] Z[4] Z[3] CYCLE CAS Z[2] RAS Z[3]
7 Z[6] Z[5] Z[6] Z[5] Z[4] RAS Z[4] CYCLE CAS Z[3]
8 Z[7] Z[6] Z[7] Z[6] Z[5] CAS Z[4] RAS Z[5] CYCLE
9 Z[7] Z[7] Z[6] CYCLE CAS Z[5] RAS Z[6]

10 Z[7] CYCLE CAS Z[6] RAS Z[7]
11 CYCLE CAS Z[7]
12 CYCLE

u 8-element vector store
• 4 beat latency to first store -- data transmission in parallel with addressing
• Assume writing one clock faster than reading because don’t have to wait for

data to get back out of DRAM -- address and data arrive concurrently

18-548/15-548 Vector Architecture 11/4/98

14

Vector Add

Vector Add Operation registers: Z = X + Y

Beat VRF
DATA

SWITCH
ADDER

(3 STAGES)
1 X[0] Y[0]
2 X[1] Y[1] X[0] Y[0]
3 X[2] Y[2] X[1] Y[1] Z[0]
4 X[3] Y[3] X[2] Y[2] Z[1] Z[0]
5 X[4] Y[4] X[3] Y[3] Z[2] Z[1] Z[0]
6 X[5] Y[5] X[4] Y[4] Z[0] Z[3] Z[2] Z[1]
7 X[6] Y[6] Z[0] X[5] Y[5] Z[1] Z[4] Z[3] Z[2]
8 X[7] Y[7] Z[1] X[6] Y[6] Z[2] Z[5] Z[4] Z[3]
9 Z[2] X[7] Y[7] Z[3] Z[6] Z[5] Z[4]

10 Z[3] Z[4] Z[7] Z[6] Z[5]
11 Z[4] Z[5] Z[7] Z[6]
12 Z[5] Z[6] Z[7]
13 Z[6] Z[7]
14 Z[7]

u 8-element vector add
• Data pipelining:

– 7 beats to first result
– 1 beat per result steady state

18-548/15-548 Vector Architecture 11/4/98

15

Vector Chaining
u Vector chaining is analogous to data forwarding in a scalar processor

• Accomplished by hardware
– Semantics of vector operations assume no implicit data hazards among vectors

• Load/op chaining:
– Vectors loaded via data switch from memory
– Subsequent arithmetic operations fed from data switch as data arrives

• Op/op chaining:
– Outputs from arithmetic op fed back into functional units

• Op/store chaining:
– Outputs from arithmetic op fed straight to memory from data switch

Vector Chaining -- loads (before chaining starts)

18-548/15-548 Vector Architecture 11/4/98

16

Vector Chaining -- loads + operation

Vector Chaining -- loads + operation + store

18-548/15-548 Vector Architecture 11/4/98

17

Vector Chaining: load / load / op / store
Beat VAG0 VAG1 VAG1 ADR BK 0 BK 1 BK 2 BK 3 BUS VDS ADD VRF

1 X[0]
2 X[1] Y[0] X[0]
3 Y[1] Y[0] rX[0]
4 X[2] Z[0] X[1] cX[0] rY[0]
5 Y[2] Y[1] X[0] rX[1] cY[0]
6 Y[3] Y[2] cyc cX[1] Y[0] rY[1] X[0]
7 X[3] X[2] rY[2] X[1] cyc cY[1] Y[0] X[0]
8 Y[4] Y[3] cY[2] cyc rX[2] Y[1] X[1] Y[0] X[0]
9 X[4] X[3] Y[2] rY[3] cX[2] cyc Y[1] X[1] Z[0] Y[0]
10 X[5] X[4] cyc cY[3] X[2] rX[3] Y[2] Y[1] Z[0] X[1]
11 Y[5] Y[4] rX[4] Y[3] cyc cX[3] X[2] Y[2] Z[1] Z[0] Y[1]
12 X[6] X[5] cX[4] cyc rY[4] X[3] Y[3] X[2],Z[0] Z[1] Y[2]
13 Y[6] Y[5] X[4] rX[5] cY[4] cyc X[3] Y[3] Z[2] Z[1] X[2],Z[0]
14 Y[7] Y[6] cyc cX[5] Y[4] rY[5] X[4] X[3],Z[1] Z[2] Y[3]
15 X[7] X[6] rY[6] X[5] cyc cY[5] Y[4] X[4] Z[3] Z[2] X[3],Z[1]
16 Y[7] cY[6] cyc rX[6] Y[5] X[5] Y[4],Z[2] Z[3] X[4]
17 X[7] Y[6] rY[7] cX[6] cyc Y[5] X[5] Z[4] Z[3] Y[4],Z[2]
18 cyc cY[7] X[6] rX[7] Y[6] Y[5],Z[3] Z[4] X[5]
19 Y[7] cyc cX[7] X[6] Y[6] Z[5] Z[4] Y[5],Z[3]
20 cyc X[7] Y[7] X[6],Z[4] Z[5] Y[6],Z[0]
21 Z[1] Z[0] cyc X[7] Y[7],Z[0] Z[6] Z[5] X[6],Z[4],Z[1]
22 Z[2] Z[1] rZ[0] Z[0] X[7],Z[5],Z[1] Z[6] Y[7],Z[2]
23 Z[3] Z[2] Z[0] rZ[1] Z[1] Z[2] Z[7] Z[6] X[7],Z[5],Z[3]
24 Z[4] Z[3] cyc Z[1] rZ[2] Z[2] Z[6],Z[3] Z[7] Z[4]
25 Z[5] Z[4] rZ[3] cyc Z[2] Z[3] Z[4] Z[7] Z[6],Z[5]
26 Z[6] Z[5] Z[3] rZ[4] cyc Z[4] Z[7],Z[5] Z[6]
27 Z[7] Z[6] cyc Z[4] rZ[5] Z[5] Z[6] Z[7],Z[7]
28 Z[7] cyc Z[5] rZ[6] Z[6] Z[7]
29 rZ[7] cyc Z[6] Z[7]
30 Z[7] cyc

cyc

Vector Chaining Analysis
u Example: 8 adds in 30 beats

• 8 of 30 beats of ADDER consumed
• 24 of 30 beats of bus consumed (both address and data)
• 24 of 90 available beats of vector address generator consumed
• 88 of 120 available beats of memory bandwidth consumed

u Problem with this example architecture: lack of balance
• Bus a bottleneck
• Memory bandwidth is close to being a bottleneck
• Vector address generators under-used
• Adder under-used

• Lack of bus bandwidth is a common architectural problem
– Bus bandwidth is more expensive getting a faster CPU
– Toy benchmarks don’t use the bandwidth, so there may not be “obvious” benefit

18-548/15-548 Vector Architecture 11/4/98

18

REVIEW

Vector Microprocessors Today?
u Vector computation model not as compelling as it once was

• Multi-issue, latency-tolerant architectures reduce cost of loop overhead
– Instruction concurrency is available, and can substitute for data concurrency

• Improved compiler technology reduces value of programmer using vectors to
give hints to hardware

– Improved algorithms to exploit cache
– Smart pre-fetching hardware, cache bypass, latency tolerance

• Commodity networked computing can often achieve comparable performance
to a supercomputer

– Single-chip CPUs now have very high clock rates
– Improved infrastructure for parallel computing makes it accessible

u But, desktop CPUs can benefit from supercomputer tricks
• Strided prefetching to reduce latency and better use memory bandwidth
• Selective bypassing of cache to avoid cache pollution
• Intel i860 was an experiment in this direction; but it was a poor compiler target

18-548/15-548 Vector Architecture 11/4/98

19

Review
u Vector processing overview

• Exploits regular data access patterns to achieve data movement pipelining
u Generic vector processor architecture

• VRF, VAG, VDS, functional units, memory banks

u Data pipelining within vector execution
• Vector loads
• Vectors stores
• Vector chaining

