18-548/15-548 Tuning Software for Speed

12

for Speed

18-548/15-548 Memory System Architecture
Philip Koopman
October 14, 1998

Required Reading: Cragon 2.8.3

Supplemental Reading: Hennessy & Patterson pp. 405-410
Uhlig, et al., 1995 | SCA paper
Lam etal., 1991 ASPL OS paper
Intel Architectural Optimization Manual

Tuning Software

arnegie
9

Assignments

+ By next classread about Main Memory Architecture:
* Read: Cragon 5.1-5.1.5

» Supplemental Reading:
— Hennessy & Patterson 5.6
— IBM App. Note: Understanding DRAM

¢ Homework 7 due October 21

¢ Lab 4 dueOctober 23

10/14/98

18-548/15-548 Tuning Software for Speed 10/14/98

Where Are We Now?

¢ Wherewe' ve been:
» Cache Organization & Policies
» System-Level Effects

¢ Wherewe'regoing today:
» How can you exploit memory hierarchy effectively?
» How can you avoid being burned by it?

¢ Wherewe'regoing next:
* Main memory

Preview

& Review: interpret execution time chartsto infer cache characteristics
» Cachelevelsand size for each
& Tune softwarefor cache memory performance
» Cache size, associativity, block size, page size
* Read vs. write behavior & policies
+ Create blocked algorithmsto improve locality
» Matrix multiply as an example

18-548/15-548 Tuning Software for Speed 10/14/98

Optimize For Cache Effects

¢ Small Cachesize
» Decompose large data setsinto small ones
» Encourage temporal & spatial locality with algorithm change
¢ Low Associativity
» Remap conflicting instructions/data so as not to reside in same set
* Intermix data so that related dataloads into single cache block
¢ LargeBlock Size
» Access datain sequential order

» Attempt to modify all datain block at once (don't mix “clean” and “dirty”
words)

¢ WritePolicies
» Write back -- group writesto data
» Write buffer -- smooth bursts of write traffic
» Allocation -- force alocation if desirable

CACHE SIZE EFFECTS

18-548/15-548 Tuning Software for Speed

Probing For Cache Size

& Cachesizelimitsability to sequentially re-touch array elements

e Array < cache size all cache hits
e cachesize<array size<cachesize* (1 + 1/assoc.) partial misses
» cachesize* (1+ 1/assoc.) < array size all misses (LRU)

¢ CacheSize Test Program
» Using pointersin loops creates efficient inner loop

int *p, *a, *limt; /* a points to nalloc’'ed array area */

limt = & a[test_size]);

for (i = 0; i < NUMTESTS; i++)
{for (p=a, p<linmt; p++)
{ sum+= *p; }

}
Cache Size Data
¢ Execution speed drops as Measured Data Read Rate
arr ay eXC%dS CaChe S ze (Program sequentially reads array; 4 bytes/load)
. 1K-8KBallfitsinLlcache ™7 { ke L1 Cache

» 8K - 16KB increasing number
of conflict misses as array
wraps around L1 cache twice

+ Steady from 16 KB - 512KB
as L2 cache holds entire array

» Same pattern for L2 cache
misses at 512KB+

512 KB L2 Cache

\

40 4 — Single Task; Alpha Workstation
—— 4 Tasks; Alpha Workstation

1024 KB

Speed (MB/sec read from array)

0 L e R]
1000 10000 100000 1000000

Array Size

10/14/98

18-548/15-548 Tuning Software for Speed 10/14/98

Faster Alphawith L3 Cache

¢ Task interferenceislarge” memory sweeper” runningin background

Effects of Multi-Tasking On Cache Performance

1200

8K L1 Cache

1000 +

800 1
96K 3-way S.A. L2 Cache

—— SINGLE TASK

600 +
—— TASK INTERFERENCE

MB/sec

400 + 8 MB L3 Cache

200 +

t t t t
1 10 100 1000 10000 100000

Array Size (KB)

EXAMPLE CODE
OPTIMIZATION

18-548/15-548 Tuning Software for Speed

Example: Optimizing 2-D Array Code

& Running example:

int a[NI[N, b[NI[NI, c[NI[N, d[NI[N;
for (j =0;] <N j =j++)
for (i =0; i <N i++)
a[il[jl =blillj] * c[illil;
for (j =0; j <N j =j++)
for (i =0; i <N i =i++)
dlilljl =alil[j]l + c[illil;

& Examplerun multipletimesfor timing

» Optimistic, but representative for small arrays (results may be left in cache from
aprevious loop that produced them)

» Actual tested code uses pointers instead of array indexing to reduce overhead
computations (aggressive compilers can do this automatically)

» Sizeof array, N, varied (results shown aretotal data set size for 4 arrays)

Unoptimized Performance

* Nested loop overhead

amortizes over array size ALPHA WORKSTATION PERFORMANCE

» Conflicts occur with arrays 120
that are perfect power of 2 110 - 0P OVERREA?
sizeswhen L1 cacheis Lo | AMORTZED
exceeded 90 -
— N=32; 64; 128; 256 80 |
<
— N=32is16 KB total g 70+ CACHE CONKLICT
E 60 if
g o7 —— ORIGINAL oaKe 26 KB

40 +
30 +

] 1024 KB
20 +

10 —

0 S —
1K 10K 100K 1000K
TOTAL SIZE OF DATA ARRAYS

10/14/98

18-548/15-548 Tuning Software for Speed 10/14/98

L oop I nterchange

int a[NI[N, b[NI[NI, c[NI[N, d[NI[N;
for (j =0, j <N j =j++)
for (i =0; i <N i++)
a[il[jl =blillj] * c[illil;
for (j =0, j <N j =]j++)
for (i =0; i <N i =i++)

diilfjl = alil[j]l + c[i]1[j];

+ Loop interchangereversesorder of indexing
» Workswhen order of loop execution is unimportant
» After interchange arrays are accessed at sequential locations

» Improveslocality at level of both page & block references
/* AFTER LOOP | NTERCHANGE */
int alNI[N], b[NI[N, c[NI[N, d[N[N];
for (i =0; i <N i =i++)
for (j =0; j <N j++4)
alil[j] =blil[j] * c[i]lil;
for (i =0; i <N i =i++)
for (j =0, j <N j =j+¥)
diil(j] = a[i][j] + c[i][j];

L oop Interchange Memory Access

+ Loop interchange converts strided accesses into sequential accesses
» Accesses with large stride only use one word per cache block
— With arrays bigger than cache size, rest of fetch words are evicted before used

» Accesswith “unit stride” (sequential access) use all wordsin cache block in
consecutive iterations

STRIDE = 8 STRIDE =1

AAAMMMAMM

18-548/15-548 Tuning Software for Speed

L oop | nterchange Perfor mance

& Reducesoverhead tosingle
ALPHA WORKSTATION PERFORMANCE

loop
. . 120
» With stride=1! 1101
¢ Entirematrix row fitsin L2 100 |
cachefor N <181 90
+ 128KB data per matrix . 80
« Loop interchange speedupis 5
limited to avoided L1- § 60
misy/L 2-hit delays g 50 - 64KB 256 KB
20 1 — ORIGINAL
| —— LOOP INTERCHANGE
30 +
i 1024 KB
20 +
10 L
1K 10K 100K 1000K

TOTAL SIZE OF DATA ARRAYS

L oop Fusion

/* AFTER LOOP | NTERCHANGE */
int a[NI[N, b[NI[NI, c[NI[N, d[NI[N;
for (i =0; i <N i =i++)
for (j =0; j <N j++)
a[il[jl =blil[j] * c[illil;
for (i =0; i <N i =i++)
for (j =0, j <N j =j++)
diilli] =alil[j] + c[illil;

+ Loop fusion places multiple array computationsin the same loop
* Increasestemporal locality (c used twice; a used twice)
» Reduces looping overhead computations
» Must be careful of inter-loop data dependencies

/* AFTER LOOP FUSI ON */
int a[NI[N, b[NI[NI, c[NI[N, d[NI[N;
for (i =0; i <N i =i++)
for (j =0; j <N j++)
{alilljl =bLil[ji] * clillil;
dlil[ji]l =alillj] + c[il[il;
}

10/14/98

18-548/15-548 Tuning Software for Speed

L oop Fusion Performance

& Cutsloop overhead in half
¢ c[i][j] and a[i][j] stay in

ALPHA WORKSTATION PERFORMANCE

cache between two
statements
» 16 KB getslucky, no
conflict misses
— 4[i][j] stored after c[i]j]
fetched for second time
— Keeping c[i][]] in register

MB/SEC DATA

. . . I
might improve things 50 | 64KB 56 kB
—— ORIGINAL
further 40 —
—— LOOP INTERCHANGE
30 LOOP FUSION I
1024 KB
20
10
0]]
1K 10K 100K 1000K

TOTAL SIZE OF DATA ARRAYS

Array Merging

/* AFTER LOOP FUSI ON */
int a[NI[N, b[NI[NI, c[NI[N, d[NI[N;
for (i =0; i <N i =i++)
for (j =0; j <N j++)
{alillj] =bLil[ji] * clillil;
dlillil = alillj] + c[il[il;
}

& Array merging interminglesarray elements

/* ARRAY MERG NG */

struct merge n{N[N];
for (i =0; i <N i =i++)
for (j =0; j <N j++)
{ mali]l[j] =mb[i][j] * mc[il[j];
mdli][j] =ma[i][j] + mc[il[j];
}

struct nmerge { int a; int b; int c; int d;

» Cachefetching of ablock loads a set of related values at once
» Eliminates accidental conflicts for arrays mapping into same block

10/14/98

18-548/15-548 Tuning Software for Speed

Array Merging Data L ayout

bytes or greater

A0 Al A2 A3

BO B1 B2 B3

(o[o [e2]]

(o0 [o1 [02 | 09 |

fetched as a set

9 -
A2

+ In example, each 4-int array element takes up 16 consecutive bytes
» Touching any one of the elementsloads all 4 into cache for block size of 16

o o EIEY
o IR
2 e
A3 B3 D3

& Array merging worksbest when values aretruly related, and usually

* eg., rea and imaginary portions of a complex number

Array Merging Performance

+ Eliminatesvulnerabilities at
power -of-2 boundaries
» Guarantees spatial locality
* No spikes dueto conflict
misses
» Multiple data available for

superscalar usewheninL1
cache

¢ BUT, nofreelunch

» Modified data mingled with
unmodified data increases
traffic ratio

» Lose ahility to have two misses
pending on non-blocking L1
cache miss

— Non-merged data could
overlap fetch of 2 data blocks
on every miss

MB/SEC DATA

ALPHA WORKSTATION PERFORMANCE

64KB 256 kB \

—— LOOP FUSION
—— ARRAY MERGING

0 e —
1K 10K 100K

TOTAL SIZE OF DATA ARRAYS

10

10/14/98

18-548/15-548 Tuning Software for Speed

Array Placement AsAlternate To Array Merging

+ If array data areunrelated and used in various places, array merging
won'’t be very helpful

+ Instead, lay out arrays so they map to different parts of cache, reducing
conflict misses
» Optimal when cache size is known, but 8K is usually a good guess
/* note: N nust be a power of 2 for this to work */

#def i ne CACHESI ZE 8192
#defi ne OFFSET (CACHESI ZE/ (4* si zeof (int))

a = (int *) malloc(4*N*Ntsizeof (i nt)+CACHESI ZE);
b =a+ NN+ OFFSET; /* maps 25% into cache */
c =b + NN+ OFFSET; /* naps 50%into cache */
d =c + NN + OFFSET; /* naps 75%into cache */

Array Placement

/* ARRAY MERG NG */

struct nmerge { int a; int b; int c; int d; }
struct merge n{N[N];
for (i =0; i <N i =i++)

for (j =0, j] <N j+4)

{ mali]l[j] = mb[i][j] * mc[il[j];
mdlil[j] = malil[j] + mc[i]l[j];

}

& Arraysplaced so that they don’t conflict
» Alternate approach to array merging

» OFFSET must be selected with care so that corresponding [i][j] elements of the
four matrices don’'t map to the same cache set

/* ARRAY PLACEMENT */
int a[NJ[N], junka[OFFSET], b[N[N], junkb[OFFSET];
int ¢c[NN[N], junkc[OFFSET], d[NI[N, junkd[OFFSET];
for (i =0; i <N i =i++)

for (j =0; j <N j++)

{alillj] =blil[ji] * c[illil;

dlillji]l = a[illj] + c[il[il;
}

11

10/14/98

18-548/15-548 Tuning Software for Speed

for (j =0; j <N j++)
{alilli] =bLil[j] * clillil;
diilfj] =alil[j] +c[ill[il;
}
& Writemerging exploitswrite assembly buffer

» Equivalent to array merging only for modified data
» Want number of blocks being written to to fit into WAB
 For thisexample, only awin if WAB is exactly 1 deep

» Not important for copy-back cachesin absence of conflicts
/* WRI TE MERG NG */

for (j =0, j] <N j+4)

{ malil[j] =bLi]l[j] * c[illil;
md{il[j] =malil[j] + c[i]l[j];

}

Performance With Array Placement
. Array placement eliminates ALPHA WORKSTATION PERFORMANCE
conflicts 120
¢ Readsseparated fromwrites 110 ==—— ———
« Avoids write-back of 100 + \
unmodified data because 90 -+ [
arrays aren't intermingled g0 - -
5 0 \
a) 4
Q 60+
g
g 50 i* 64 KB 256 KB \
40 + —
30 | —— LOOP FUSION
—— ARRAY MERGING 1024 KB
20 + ARRAY PLACEMENT
10 L
0 — e
1K 10K 100K 1000K
TOTAL SIZE OF DATA ARRAYS
WriteMerging
/* ARRAY PLACEMENT */
int alNJ[N], junka[OFFSET], b[N/[N], junkb[OFFSET]:
int ¢[NJ[N, junkc[OFFSET], d[N[[N], junkd[OFFSET]:
for (i =0; i <N i =i++)

int b[NJ[N, junkb[OFFSET], c[NI[N], junkc[OFFSET];
struct nerge { int a; int d; } struct nerge n{NI[N;
for (i =0; i <N i =i++)

12

10/14/98

18-548/15-548 Tuning Software for Speed

Write M erging Perfor mance

combined blocks

cache

to keep in mind

* 1block instead of 2

» Twice as frequently
+ Benefit would bemore
pronounced on write-through
machine with write assembly
buffer of size 1 element

* Merging of write values causes 30 4
conflicts as arrays outgrow L2

& Write merging smoothes
demand to write by writing 120 -

* Not ahuge win, but something o

ALPHA WORKSTATION PERFORMANCE

MB/SEC DATA

40 +

20 —

10 —

—— ARRAY PLACEMENT
—— WRITE MERGING

1K

T T T
10K 100K 1000K

TOTAL SIZE OF DATA ARRAYS

Review of Optimization Steps

ALPHA WORKSTATION PERFORMANCE

60 +—

50

MB/SEC DATA

40 +
30 +
20 +

10

16 KB

64 KB 256 KB

ORIGINAL

LOOP INTERCHANGE

LOOP FUSION
ARRAY MERGING

ARRAY PLACEMENT

WRITE MERGING

|
1024 KB

1K

T
10K

T T
100K 1000K

TOTAL SIZE OF DATA ARRAYS

13

10/14/98

18-548/15-548 Tuning Software for Speed 10/14/98

BLOCKED ALGORITHMS

Blocked Algorithms

+ Break problemsup into cache-sized chunks
» Simplifying assumption: no conflict misses
* |If conflict misses occur, use array placement
1-D blockingiscalled “ strip mining”
* Very important optimization for vector supercomputers
» Straightforward to automate with compiler (in many cases)
& Multi-dimensional blocking gets harder
» Often requires algorithmic transformations
* May be best used as embedded in alibrary routing (e.g., matrix multiply)

14

18-548/15-548 Tuning Software for Speed

Matrix Multiply

& SquareMatrices: X=Y *Z
for (i =0; i <N i++)
for (j =0; j <N j++)
{r=0

for (k = 0; k <N k++)
{ r=r +y[il[k]l * z[KI[j]; };
x[P1[j] =7r; h

* Onerow of Y tendsto stay in cacheif not too large

Y Z X

—¢)k 37

for every x[i][j] sweep row of y, column of Z
Y tends to stay in cache; Z does not

Matrix Multiply in Block Form

for (jj =0; jj <N jj +=B)
for (kk = 0; kk < N kk += B)
for (i =0; i <N i++)

for (j = Jjs J <mn(jj+B N); j++)

{r=0
for (k = kk; k < mn(kk+B, N); k++)
{r=r +y[il[k]l * z[KI[il: };
X[I1[j] = x[P]1[j] +r;

s

(note: Hennessy & Patterson have bug on page 409 -- “+B-1" is not correct for j and k loops)

—i}kk

Blocked columns of Y tend to stay in cache
Block of Z tends to stay in cache

15

10/14/98

18-548/15-548 Tuning Software for Speed 10/14/98

Blocked Matrix Multiply Performance

2D Matrix Multiply -- Alpha Workstation

— UNOPTIMIZED

—— BLOCK SIZE 1
BLOCK SIZE 2
BLOCK SIZE 4
BLOCK SIZE 16

—— BLOCK SIZE 64
BLOCK SIZE 128

Speed (equivalent MB/sec)

VN N 2
10 | ™~—
5 - \[\'\1
0 e e e
1K 10K 100K 1000K 10000K

Size of One Array (Bytes)

Optimization Effectiveness

vpenta (nasa7)
gmty (nasa7)
tomcatv

btrix (nasa7)
mxm (nasa7)
spice

cholesky (nasa7)

compress

1 15 2 25 3

Performance improvement

| Merged arrays | Loop [| Loop [| Blocking
interchange fusion

(Hennessy & Patterson Figure 5.17)

16

18-548/15-548 Tuning Software for Speed 10/14/98

OTHER OPTIMIZATIONS

Faked Write Allocation

¢ Forced write allocation

» For write-followed-by-read behavior, force cache alocation by first reading the
data

» Speed-up of 20% on an (admittedly extreme) case for VAX 8800
int a[100];

;ti] =b[i] * cfi];

.(;[i] = a[i] * 42;

BECOMES (with a compiler that respects the volatile keyword):
volatileint a[100];

1;;0 =ali];
ali] = b[i] * cfil;

.(;[i] = a[i] * 42;

17

18-548/15-548 Tuning Software for Speed 10/14/98

Program Mapping Optimization

& Compiler/Linker/Loader can minimize mapping/set conflicts
» McFarling (1989) states that optimization can make direct caches more
effective than unoptimized code on set associative caches
» Same might be accomplished by operating system doing page mapping,
especialy for large L2 caches

REVIEW

18

18-548/15-548 Tuning Software for Speed 10/14/98

Optimize For Cache Effects

¢ Small Cachesize
» Decompose large data setsinto small ones
» Encourage temporal & spatial locality with algorithm change
¢ Low Associativity
» Remap conflicting instructions/data so as not to reside in same set
* Intermix data so that related dataloads into single cache block
¢ LargeBlock Size
» Access datain sequential order
» Attempt to modify all datain block at once (don't mix “clean” and “dirty”
words)
¢ WritePolicies
» Write back -- group writesto data
» Write buffer -- smooth bursts of write traffic
*» Allocation -- force allocation if desirable

Review
& Optimizing software for cache memory requires exploiting both
organization & policy information
» Loop interchange to promote spatial locality at block & page level
» Loop fusion to promote temporal locality (sometimes can hold all valuesin
registers)
» Array merging to promote spatial locality at block level (mostly for reads)
» Separating reads from writes
— Reduces traffic ratio with write back cache & large block sizes
— Increases possihilities for write allocation buffer to merge writes
+ Blocked algorithmsimprove cache usage
* Intentionally wastes computations to reduce memory accesses
» Want block size as big as will fit everything in cache for efficiency

19

