18-548/15-548 System-Level Performance Effects 10/7/98

11
System-L evel
Per formance Effects

18-548/15-548 Memory System Architecture
Philip Koopman
October 7, 1998

Required Reading: Cragon: 3.6-3.6.1

Supplemental Reading: Hennessy & Patterson: 5.9 o
Mogul paper, 1991 ASPLOS arnegie
9

Assignments

+ Read about tuning softwar e for speed:
e Cragon 2.8.3

» Supplemental
— Re-read Hennessy & Patterson pp. 405-410
— Lamet al., 1991 ASPL OS paper
— Uhlig, et d., 1995 | SCA paper
— Intel architecture reference manual section 3.5

¢ Homework 7 due October 21
¢ Lab 4 dueOctober 23

18-548/15-548 System-Level Performance Effects 10/7/98

Where Are We Now?

¢ Wherewe' vebeen:
» Cache organization, construction & management policies

¢ Wherewe'regoing today:
» System-level effects on performance
— Operating system
— Tasking/Interrupts

¢ Wherewe'regoing next:
» Tuning software for speed
» Therest of the memory hierarchy

Preview

¢ Why isn't SPECmark cache performancethe last word?
» Understand why operating system can degrade cache performance
» Understand how multitasking can increase conflict misses
» Understand how code bloat affects cache performance

18-548/15-548 System-Level Performance Effects 10/7/98

SPECmarks Give Optimistic Cache Perfor mance

& Operating system software
» SPECmarks only spend 2%-3% of time in operating system
* GUI and file-intensive software may spend 20%-40% of time in OS
* OS has different characteristics than SPEC code
— More branches (poor spatial locality)
— Fewer loops (poor temporal locality)
& Multiprogramming
» Haseffect of periodically flushing some or all of cache, increasing missrate
— Multi-tasking
— Interrupts
» “Transaction processing” involves many short program executions
& Modern software practicesand “ code bloat”
» Complex, layered interfaces
» Modularization of traditional software
» Dispersed object-oriented methods

System+User Miss Rates

¢ DTMR hasasignificantly increased missrate

» Thisisfor fully associative cache; might be worse with direct-mapped because
OS code is more “scattered” -- increasing conflict misses

Effects of System Code

L —8— SYSTEM+USER
—e— DTMR USER ONLY

MISS RATE

0.00 T IR ‘ (Flynn Figure B.1)
1000 10000 100000

CACHE SIZE

18-548/15-548 System-Level Performance Effects 10/7/98

User Code Traces Are Optimistic

¢ System Code (Agarwal 1987)
» System contributes 20% of misses (has poor instruction locality because of
large number of branches)

» Evenworse, 10% - 20% added user code misses due to system call interference

resulting in conflict misses
Fl Fi 5.21]
(Flynn Figure) 80"

A
60
-& User component
-8 System component

50

40 == User/system interference

Percent of total miss rate

0 T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512

Cache size (K bytes)

Concept In Real Life:

& Supposeyou’re spending a Saturday repainting your house (with oil-
based paint, no less).
* You get aphone call from your boss saying you have a meeting with an
important client in 1 hour, and you'd better get in to work in a suit

» What isthe cost of this context switch beyond simply changing clothes?

¢ What would it becalled if it happens again 15 minutes after you get
home and start painting again?

18-548/15-548 System-Level Performance Effects 10/7/98

MULTIPROGRAMMING

Q-Factor

¢ Q =average number of instructions executed between task switches

¢ Small Q meansfrequent task switching
» Not much time for temporal locality to take effect
* Increases system responsiveness at cost of higher task switch overhead

& LargeQ meanstasksrun along time between switching
» Temporal locality can be exploited
» Reduces responsiveness of system, but lower task switch overhead

18-548/15-548 System-Level Performance Effects 10/7/98

Cache* Footprints’
& Multiprogramming causes interference
» “Footprints’ from each task evict cache contents
* Number of evicted lines depends on:
— Qfactor (large Q has more time to evict lines)
— Locality of tasks
— Degree of interference among tasks and how they map to cache
» Higher associativity can smooth MANY FEW
out miss “spikes’ dueto getting conrFLICT CONFLICT
unlucky with cache footprint MISSES MISSES
overlaps
TASK A
REMAP
WHEN
LINKING...
TASK B
CACHE CACHE

Warm Caches

¢ Warm cache -- has suffered from little interference
» Extreme of warm cache is one with no task switching at all (very high Q)

¢ Cache stayswarmiif:
» Cacheishig enough to capture working sets of all tasks
» There are few conflicts
— Set associativity reduces conflicts

— Linker/loader or virtual memory mapping may reduce conflicts by biasing each task
to adifferent group of sets

e Tasksrunfor “along time”

18-548/15-548 System-Level Performance Effects 10/7/98

Cold Caches

+ Cold cache -- high degree of interference
» Extreme of cold cacheisone that is entirely invalidated at high frequency
» But even acold cache may have some shared system routines still resident

¢ Cachegetscold if:
» Executions are short (high proportion of compulsory misses)
» Other tasks evict cache lines before task resumes execution
» System software must flush cache to maintain coherence with memory
— Loading software
— 1/O operations

Mostly Warm Cache-- 2 Tasks

Multiprogramming level = 2
Line size = 16 bytes

Average quantum size
(memory references)

—&— 100
—— 1K
—&— 10K
—&— 20K
—&— 100K

—

Miss rate

o
=
!

—o— Single user
with systems
effects

—#*— DTMR

.001 BELERALAL BRI ALY IR L R
10 100 1K 10K 100K ™

Cache size

(Flynn Figure 5.25)

18-548/15-548 System-Level Performance Effects

Slightly Warm Cache -- 10 Tasks

¢ AsQ becomessmall, inter-task interferenceresultsin high missrate

Multiprogramming level = 10
Line size = 16 bytes

L Average quantum size
(memory references)

—&#— 100
—>— 1K
—O— 10K
—2— 20K
—&— 100K

—_—

Miss rate

—o— Single user
with systems

effects
—&— DTMR

.01 e
10 100 1K 10K 100K ™
Cache size

(Flynn Figure 5.24)

Transactions -- A Challenge

& Transactions
» Very short applications (“ transactions’) loaded on demand
» Tend to touch data a small number of times
 Short transactions don’'t have much chance to benefit from temporal locality
— High number of compulsory misses, no loops, touches data only once
— In contrast to engineering/scientific workload, which has many loops
» Large caches may not help much if most misses are compulsory!

¢ Example: automaticteller transaction
» Read current balance
» Subtract withdrawal
» Write new balance
« Move on to next transaction

¢ Futurechallenge: “ active data”
» Message data carries program with it; executed once when received

10/7/98

18-548/15-548 System-Level Performance Effects

Cold Cache (Transaction Environment)

Miss rate

]00_

107

+ |f tasksend after ashort time, large cachesdon’t help

16-byte line, 4-way associative

Average quantum size
(memory references)
= 100
] -+ 1000
\\BSQ — 10000
! X -~ 20000
s S —— 100000
N Al
NN K
N W -3~ Single user
\ﬁ: with system
i —— Design target
miss rate
2
v LILRLRLL | T T Ty LR | v hRARRL |
10' 102 10° 10t 10° 106

Cache size (bytes)

(Flynn Figure 5.26)

The True Cost of Context Switching

+ Traditionally, cost of context switching isconsidered to be:

Processing timer interrupt
OS scheduling

Register save

Register restore

¢ BUT, cost of cache conflicts can be significant

0.51% to 7.1% speed penalty measured by Mogul & Borg, 1991

¢ The TRUE process state that might be lost includes:

CPU information (branch prediction, buffers, speculative execution results)
Cache contents

TLB contents

Virtual memory pages resident in memory

Disk cache contents

10/7/98

18-548/15-548 System-Level Performance Effects 10/7/98

“Thrashing”

+ Can be caused by too-frequent context switches
» More time spent re-loading context than actually executing work

* Worst case depends on size of combined context working sets --
the pessimistic case is that everything ends up on disk before task is restarted

& Can becaused by too-small cache sizesfor a singletask
» Dataset too large for cache -- gets 100% cache misses

» Dataset too large for physical memory -- gets frequent page faults (traditional
definition of thrashing)

SOFTWARE
ORGANIZATION
EFFECTS

10

18-548/15-548 System-Level Performance Effects 10/7/98

OS Structure Affects |-Cache Misses

Execution Time (%) Components of CPI

|-cache D-cache Write
Benchmark USER 0S (CPlinst) (CPlyata) (CPlyyie)
IBS (Mach 3.0) 62% 38% 0.36 0.28 0.16
IBS (Ultrix 3.1) 76% 24% 0.19 0.30 0.11
SPECint92 97% 3% 0.05 0.08 0.06
SPECfp92 98% 2% 0.05 0.44 0.13

[Uhlig et al. 1995]

& Mach 3isamicro-kernel system -- significantly poorer |-cache
performancethan Ultrix 3.1

» Embedded RTOS may use microkernels to reduce required memory image
» |IBSisaningtruction-intensive benchmarks (discussed later)

The Challenge of Softwar e Productivity

& Programmer productivity growing slower than software size
» Partly feature growth
» Partly inefficient code

o |t makes senseto expend w0 syemComs SOTDRARE
hardwareresourcestosave ~ —— ACTUAL
programming costs

. Especialy whenthe software >
company isn't paying for g
the hardware! § .
o Disk capacity growsat 60% 3
z .

pery o HARDWARE
 But hard disks are till 0 COST
full.. e

0 [[[[[[[
1980 1982 1984 1986 1988 1990 1992 1994

Source: Software Requirements: objects, functions, states; Davis, 1993.

11

18-548/15-548 System-Level Performance Effects 10/7/98

M odern Softwar e Practices Can Reduce L ocality

& Many techniquestrade hardwareresourcesfor programmer
productivity...

& Complex, layered interfaces
» GUI application program interfaces (instead of writing to video RAM)
» Protocol stacks (instead of writing bitsto network)
» Binary-to-binary trandation (to run “WinTel” executables and legacy code)
¢ Modularization & layering of traditional software
» Code re-use; off-the-shelf software components
» Design for change, information hiding
& Object-oriented methods
» Organizing software by objects instead of by sequential actions disperses code

Potential Problems With Object-Oriented SW

¢ Poor spatial locality
» Methods grouped by object type instead of by flow-of-control

» Lack of sequentiality -- block size

— Large blocks may not work well in |-cache if short routines are called (could be
many unused bytes in fetched | block)

» Lack of spatial locality -- TLB entries
— If every method is in a different page, may need many TLB entries
» Lack of gpatial locality -- conflict misses/associativity
— Fragmented code may not disperse evenly across the entire cache
— Could get increase in conflict misses; might need higher degree of associativity

+ Potential solutions:
» Compiler in-lining at cost of increased program size
— Linker in-lining for libraries?
— Causes “code bloat”
* Adjust hardware -- smaller blocks; more TLB entries; increased associativity

12

18-548/15-548 System-Level Performance Effects

Non-SPEC Software & “ Code Bloat”

& |-cache missesincrease
significantly for some software
(IBS benchmark):

— mpeg_play
— jpeg_play
—gs

— verilog

— gcc

— sdet

Misses per 100 Instructions

SPEC92

[] Conflict
[] Capacity

B84 128 256

— nroff
— groff
¢ SPEC softwareisn’t necessarily
representative of desktop
software

» Dataaccesses also change as
multimedia becomes prevalent

Misses per 100 Instructions

[Uhlig et al. 1995]

IBS

| el [
16 32 64 128 256
|-cache Size (KB)

REVIEW

13

10/7/98

18-548/15-548 System-Level Performance Effects 10/7/98

Review
& SPECmarks may not berepresentative of system performance
» Operating system and other software has different locality characteristics

» Multitasking can increase conflict misses by evicting cache blocks
» Modern software practices may have poor locality

Key Concepts

¢ Latency

» Latency penalty for context switching can be high
¢ Bandwidth

» Bandwidth can help for storing and loading state

— eg., Savelrestore entire cache contents on task switch?

+ Concurrency/Replication

* Perhaps have two separate caches for OS & User states?
¢ Balance

* Need to balance amount of system state for context switching against speedup
from caching techniques

14

