
18-548/15-548 System-Level Performance Effects 10/7/98

1

11
System-Level

Performance Effects
18-548/15-548 Memory System Architecture

Philip Koopman
October 7, 1998

Required Reading: Cragon: 3.6-3.6.1

Supplemental Reading: Hennessy & Patterson: 5.9
Mogul paper, 1991 ASPLOS

Assignments
u Read about tuning software for speed:

• Cragon 2.8.3

• Supplemental
– Re-read Hennessy & Patterson pp. 405-410
– Lam et al., 1991 ASPLOS paper
– Uhlig, et al., 1995 ISCA paper
– Intel architecture reference manual section 3.5

u Homework 7 due October 21
u Lab 4 due October 23

18-548/15-548 System-Level Performance Effects 10/7/98

2

Where Are We Now?
u Where we’ve been:

• Cache organization, construction & management policies

u Where we’re going today:
• System-level effects on performance

– Operating system
– Tasking/Interrupts

u Where we’re going next:
• Tuning software for speed
• The rest of the memory hierarchy

Preview
u Why isn’t SPECmark cache performance the last word?

• Understand why operating system can degrade cache performance
• Understand how multitasking can increase conflict misses
• Understand how code bloat affects cache performance

18-548/15-548 System-Level Performance Effects 10/7/98

3

SPECmarks Give Optimistic Cache Performance
u Operating system software

• SPECmarks only spend 2%-3% of time in operating system
• GUI and file-intensive software may spend 20%-40% of time in OS
• OS has different characteristics than SPEC code

– More branches (poor spatial locality)
– Fewer loops (poor temporal locality)

u Multiprogramming
• Has effect of periodically flushing some or all of cache, increasing miss rate

– Multi-tasking
– Interrupts

• “Transaction processing” involves many short program executions
u Modern software practices and “code bloat”

• Complex, layered interfaces
• Modularization of traditional software
• Dispersed object-oriented methods

System+User Miss Rates
u DTMR has a significantly increased miss rate

• This is for fully associative cache; might be worse with direct-mapped because
OS code is more “scattered” -- increasing conflict misses

Effects of System Code

CACHE SIZE

1000 10000 100000

M
IS

S
 R

A
TE

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DTMR USER ONLY
SYSTEM+USER

(Flynn Figure B.1)

18-548/15-548 System-Level Performance Effects 10/7/98

4

User Code Traces Are Optimistic
u System Code (Agarwal 1987)

• System contributes 20% of misses (has poor instruction locality because of
large number of branches)

• Even worse, 10% - 20% added user code misses due to system call interference
resulting in conflict misses

(Flynn Figure 5.21)

Concept In Real Life:
u Suppose you’re spending a Saturday repainting your house (with oil-

based paint, no less).
• You get a phone call from your boss saying you have a meeting with an

important client in 1 hour, and you’d better get in to work in a suit
• What is the cost of this context switch beyond simply changing clothes?

u What would it be called if it happens again 15 minutes after you get
home and start painting again?

18-548/15-548 System-Level Performance Effects 10/7/98

5

MULTIPROGRAMMING

Q-Factor
u Q = average number of instructions executed between task switches

u Small Q means frequent task switching
• Not much time for temporal locality to take effect
• Increases system responsiveness at cost of higher task switch overhead

u Large Q means tasks run a long time between switching
• Temporal locality can be exploited
• Reduces responsiveness of system, but lower task switch overhead

18-548/15-548 System-Level Performance Effects 10/7/98

6

Cache “Footprints”
u Multiprogramming causes interference

• “Footprints” from each task evict cache contents
• Number of evicted lines depends on:

– Q factor (large Q has more time to evict lines)
– Locality of tasks
– Degree of interference among tasks and how they map to cache

• Higher associativity can smooth
out miss “spikes” due to getting
unlucky with cache footprint
overlaps

Warm Caches
u Warm cache -- has suffered from little interference

• Extreme of warm cache is one with no task switching at all (very high Q)

u Cache stays warm if:
• Cache is big enough to capture working sets of all tasks
• There are few conflicts

– Set associativity reduces conflicts
– Linker/loader or virtual memory mapping may reduce conflicts by biasing each task

to a different group of sets

• Tasks run for “a long time”

18-548/15-548 System-Level Performance Effects 10/7/98

7

Cold Caches
u Cold cache -- high degree of interference

• Extreme of cold cache is one that is entirely invalidated at high frequency
• But even a cold cache may have some shared system routines still resident

u Cache gets cold if:
• Executions are short (high proportion of compulsory misses)
• Other tasks evict cache lines before task resumes execution
• System software must flush cache to maintain coherence with memory

– Loading software
– I/O operations

Mostly Warm Cache -- 2 Tasks

(Flynn Figure 5.25)

18-548/15-548 System-Level Performance Effects 10/7/98

8

Slightly Warm Cache -- 10 Tasks
u As Q becomes small, inter-task interference results in high miss rate

(Flynn Figure 5.24)

Transactions -- A Challenge
u Transactions

• Very short applications (“transactions”) loaded on demand
• Tend to touch data a small number of times
• Short transactions don’t have much chance to benefit from temporal locality

– High number of compulsory misses, no loops, touches data only once
– In contrast to engineering/scientific workload, which has many loops

• Large caches may not help much if most misses are compulsory!

u Example: automatic teller transaction
• Read current balance
• Subtract withdrawal
• Write new balance
• Move on to next transaction

u Future challenge: “active data”
• Message data carries program with it; executed once when received

18-548/15-548 System-Level Performance Effects 10/7/98

9

Cold Cache (Transaction Environment)
u If tasks end after a short time, large caches don’t help

(Flynn Figure 5.26)

The True Cost of Context Switching
u Traditionally, cost of context switching is considered to be:

• Processing timer interrupt
• OS scheduling
• Register save
• Register restore

u BUT, cost of cache conflicts can be significant
• 0.51% to 7.1% speed penalty measured by Mogul & Borg, 1991

u The TRUE process state that might be lost includes:
• CPU information (branch prediction, buffers, speculative execution results)
• Cache contents
• TLB contents
• Virtual memory pages resident in memory
• Disk cache contents

18-548/15-548 System-Level Performance Effects 10/7/98

10

“Thrashing”
u Can be caused by too-frequent context switches

• More time spent re-loading context than actually executing work
• Worst case depends on size of combined context working sets --

the pessimistic case is that everything ends up on disk before task is restarted

u Can be caused by too-small cache sizes for a single task
• Data set too large for cache -- gets 100% cache misses
• Data set too large for physical memory -- gets frequent page faults (traditional

definition of thrashing)

SOFTWARE
ORGANIZATION

EFFECTS

18-548/15-548 System-Level Performance Effects 10/7/98

11

OS Structure Affects I-Cache Misses

u Mach 3 is a micro-kernel system -- significantly poorer I-cache
performance than Ultrix 3.1
• Embedded RTOS may use microkernels to reduce required memory image
• IBS is an instruction-intensive benchmarks (discussed later)

[Uhlig et al. 1995]

Execution Time (%) Components of CPI

Benchmark USER OS
I-cache
(CPIinstr)

D-cache
(CPIdata)

Write
(CPIwrite)

IBS (Mach 3.0) 62% 38% 0.36 0.28 0.16

IBS (Ultrix 3.1) 76% 24% 0.19 0.30 0.11

SPECint92 97% 3% 0.05 0.08 0.06

SPECfp92 98% 2% 0.05 0.44 0.13

The Challenge of Software Productivity
u Programmer productivity growing slower than software size

• Partly feature growth
• Partly inefficient code

u It makes sense to expend
hardware resources to save
programming costs
• Especially when the software

company isn’t paying for
the hardware!

u Disk capacity grows at 60%
per year
• But hard disks are still

full...

18-548/15-548 System-Level Performance Effects 10/7/98

12

Modern Software Practices Can Reduce Locality
u Many techniques trade hardware resources for programmer

productivity...

u Complex, layered interfaces
• GUI application program interfaces (instead of writing to video RAM)
• Protocol stacks (instead of writing bits to network)
• Binary-to-binary translation (to run “WinTel” executables and legacy code)

u Modularization & layering of traditional software
• Code re-use; off-the-shelf software components
• Design for change, information hiding

u Object-oriented methods
• Organizing software by objects instead of by sequential actions disperses code

Potential Problems With Object-Oriented SW
u Poor spatial locality

• Methods grouped by object type instead of by flow-of-control
• Lack of sequentiality -- block size

– Large blocks may not work well in I-cache if short routines are called (could be
many unused bytes in fetched I block)

• Lack of spatial locality -- TLB entries
– If every method is in a different page, may need many TLB entries

• Lack of spatial locality -- conflict misses/associativity
– Fragmented code may not disperse evenly across the entire cache
– Could get increase in conflict misses; might need higher degree of associativity

u Potential solutions:
• Compiler in-lining at cost of increased program size

– Linker in-lining for libraries?
– Causes “code bloat”

• Adjust hardware -- smaller blocks; more TLB entries; increased associativity

18-548/15-548 System-Level Performance Effects 10/7/98

13

Non-SPEC Software & “Code Bloat”
u I-cache misses increase

significantly for some software
(IBS benchmark):

– mpeg_play
– jpeg_play
– gs
– verilog
– gcc
– sdet
– nroff
– groff

u SPEC software isn’t necessarily
representative of desktop
software
• Data accesses also change as

multimedia becomes prevalent
[Uhlig et al. 1995]

REVIEW

18-548/15-548 System-Level Performance Effects 10/7/98

14

Review
u SPECmarks may not be representative of system performance

• Operating system and other software has different locality characteristics
• Multitasking can increase conflict misses by evicting cache blocks
• Modern software practices may have poor locality

Key Concepts
u Latency

• Latency penalty for context switching can be high
u Bandwidth

• Bandwidth can help for storing and loading state
– e.g., Save/restore entire cache contents on task switch?

u Concurrency/Replication
• Perhaps have two separate caches for OS & User states?

u Balance
• Need to balance amount of system state for context switching against speedup

from caching techniques

