
18-548/15-548 Memory Devices & Chip Area 9/30/98

1

9
Memory Devices

& Chip Area
18-548/15-548 Memory System Architecture

Philip Koopman
September 30, 1998

Required Reading: Understanding SRAM (App. Note)
What’s All This Flash Stuff? (App. Note)

Assignments
u By next class read about multi-level caching:

• Cragon 2.6-2.7, 2.8-2.8.2, 2.8.4
• Supplemental Reading:

– Hennessy & Patterson 5.5
– Jouppi paper, 1990 ISCA, pp. 364-373

u Homework 5 due October 7

u Lab #3 due October 9

18-548/15-548 Memory Devices & Chip Area 9/30/98

2

Where Are We Now?
u Where we’ve been:

• Cache data organization
• Cache management policies

u Where we’re going today:
• Underlying SRAM technology

– While we’re at it -- DRAM & non-volatile memory technology too

• Constraints on size & shape of cache arrays
• Sector size & block size tradeoffs

u Where we’re going next:
• Multi-level caching
• System-level effects (context switching, etc.)

Preview
u How SRAM works

• Memory cells
• Memory Arrays

u How DRAM & flash memory work
• A brief aside -- preview for main memory lecture

u On-chip cache area
• Approximate area calculation

u Size tradeoffs in terms of area vs. data organization
• Sectors
• Blocks
• Associativity

18-548/15-548 Memory Devices & Chip Area 9/30/98

3

Physical Aspects of On-Chip Cache Memory
u Cache memory arrays are physical devices, and have physical

limitations
• Made from SRAM cells that form 2-dimensional geometric arrays
• Have aspect ratio limits based on electrical loading
• Have aspect ratio limits based on cache memory layout

u Real cache design tradeoffs include:
• Changing cache parameters for minimal miss rate
• Changing cache parameters so memory array fits on available chip area

– Including both size & shape

HOW SRAM WORKS

18-548/15-548 Memory Devices & Chip Area 9/30/98

4

SRAM Theory
u Feedback of circuit retains state

• Bit lines read or write value
• Word lines enable access to a row of cells
• Load devices are resistors in “4T” cell designs

(Weste & Eshraghian, Figure 8.40)

Physical SRAM Cell Construction
u Uses “6T” cell design to reduce power consumption -- static CMOS

• In rough terms: about 60% the size of a register bit
• Uses same process technology as CPU logic

18-548/15-548 Memory Devices & Chip Area 9/30/98

5

Dual-Ported SRAM
u Permits two simultaneous accesses to memory array

• Uses two sets of Bit and Word lines, but only one set of cells
• In rough terms: about 40% to 60% larger than single-ported SRAM
• Used for simultaneous instruction & data accesses to unified cache, etc.

(Weste & Eshraghian, Figure 8.42b)

Content Addressable Memory
u Detects match based on contents

• Can be read or written as normal SRAM
• Additional logic to assert Match signal if contents match Bit values
• Used for fully associative caches (e.g., TLB lookup)
• In rough terms:

about 200% the size
of a register bit

(Weste & Eshraghian, Figure 8.42c)

18-548/15-548 Memory Devices & Chip Area 9/30/98

6

HOW DRAM &
FLASH MEMORY WORK

DRAM Cells
u DRAM optimized for small size, not speed

• Uses different process technology than SRAMs or CPUs
– Integrated DRAM + CPU is not efficient

18-548/15-548 Memory Devices & Chip Area 9/30/98

7

DRAM cell operation
u Transistor + capacitor

• Transistor used to access data
• Capacitor used to store data value (for a while, anyway)

u Data leaks from capacitor over time
• Cells must be continually “refreshed” to recharge capacitor, every few

milliseconds
• Reading cell discharges capacitor -- data must be re-written after reading (looks

like a “refresh” operation)

Non-Volatile Memory
u Non-volatile memory retains information with power turned off

• Battery-backed SRAM -- battery provides standby power
• Masked ROM -- metalization contains information
• PROM -- fuses blown during programming
• EPROM -- gates charged during programming; UV light to erase
• EEPROM -- EPROM, but can use high voltage to erase
• Flash memory -- Evolution of EEPROM, only one transistor per cell

u Non-volatile memory historically used in the memory hierarchy
• “Control store” for microcoded instruction implementation
• Program memory for embedded microcontrollers
• Boot memory for larger processors (instead of front-panel/bootstrap loader)

18-548/15-548 Memory Devices & Chip Area 9/30/98

8

Flash Memory Operation
u Flash memory holds data on a floating transistor

gate
• Gate voltage turns transistor on or off for reading data
• Degradation of oxide limits cycles

– 100K cycles for NOR flash
– 1M cycles for NAND flash

MEMORY ARRAY
CONSTRUCTION

18-548/15-548 Memory Devices & Chip Area 9/30/98

9

Memory Array Geometry
u 2-D array composed of

identical memory cells
• Address decoder is a de-mux

that selects one row
• Sense amps detect and amplify

memory cell value
• Word select takes a subset of

columns that have the byte/word
of interest

Memory Array Aspect Ratio
u Aspect ratio (length:width) constrains data words/row

Example: 64-Kbit array (consider 32-bit data words, but not control/tag bits)

1:4

4:1
1:1

18-548/15-548 Memory Devices & Chip Area 9/30/98

10

Sector Size Constrained By Memory Array
u Integral number of sectors per memory row

• Normally a power of 2 to simplify address decoding
• Memory array need not be a power of 2 wide (sectors may not be a power of 2

number of bits)

Memory Array Width
(bits)

Permissable
Sector Sizes

Aspect Ratio
8 KB Cache

64 32, 64 4:1
128 32, 64, 128 2:1
256 32, 64, 128, 256 1:1
512 32, 64, 128, 256, 512 1:2

Set Size Constrained By Memory Array
u Want entire set in a single cache memory array row

• Row must hold data, tags, flags for all blocks in an entire set
• Simultaneous tag access for set-associative compare
• Simultaneous data access so it is ready to be selected at word demuxers

u For highly associative caches can use tricks
• Keep tags+flags in a separate memory array with entire set in same row
• Use address bits to split large blocks among memory rows

18-548/15-548 Memory Devices & Chip Area 9/30/98

11

ON-CHIP
CACHE
AREA

Cache Area Factors
u Area is sum of data and overhead

• Data bit area
• Tag+flag bit area
• Overhead area (decode logic, sense amps, drivers, mux/demux)

u Many memories “want” to be square or near-square (i.e., not
skinny/flat)
• Balances area overhead for address decoder & sense/drive circuits
• Balances capacitive load on row & column lines

u For following models, assume an integral number of sets per row...

18-548/15-548 Memory Devices & Chip Area 9/30/98

12

Cache Area Model
u Simple area model, normalized to cache memory bit cell size

• S = sets in cache
• A = associativity (sectors / set)
• X = blocks / sector
• B = block size (bits), including flags
• T = tag size (bits), including LRU counter (if any) for each sector
• R = sets per row (determines aspect ratio)
• V = width overhead (in fractional column widths) for sense amps/buffers
• Z = height overhead (in fractional row heights) for decoder

– (ignores n Log n addressing/muxing effects for length & width -- assume sense
amps/drivers are the majority of the cost)

u Width = R * A * (T + B*X) + V
u Height = (S / R) + Z

()[]

 +

++== Z

R
SVXBTARHWArea *****

Example for DTMR Baseline
u 32 KB cache

– Write back; unified; assume 32-bit total virtual address size
– S = 256 sets of 8 sectors * 16 data bytes/sector = 32KB in cache

» 8 address bits needed for 256 sets

– A = 8 sectors per set
– X = 1 block / sector
– B = 16 bytes + 2 flags = 130 bit block size (bits), including flags

» 4 address bits needed for 16 bytes

– T = 32-4-8 = 20 address bits tag size (bits), + 3-bit LRU counter per sector = 23
– R = 1 set per row (can try with various integer powers of 2)
– Assume V = Z = 10; periphery overhead costs 10 row/column cell equivalents

u Width = R * A * (T + B*X) + V = 1 * 8 * (23 + 130*1) + 10 = 1234
u Height = (S / R) + Z = (256/1) + 10 = 266

u Area = W * H = 328,244 memory cell equivalents

18-548/15-548 Memory Devices & Chip Area 9/30/98

13

Example Area Tradeoff
• 32KB DTMR, assume 32 bit address, V=Z=10 units

Interpreting DTMR Area Example
u DTMR “wants” a short, fat aspect ratio

• DTMR is (approximated by) 8-way set associative
• 8-way set associative; 32 KB cache; 16 bytes/sector

– 256 sets of 1224 bits; 1 set per row; aspect ratio ~ 1 : 4.8

• 2-way & 4-way set associative have aspect ratios closer to square
u Block size increasing is good to a point

• Reduces tag overhead until aspect ratio overhead dominates at 64-byte block
• This doesn’t account for traffic ratio increases

u 4-way set associativity or direct mapped look interesting
• BUT: any less than 8-way set associative requires virtual memory pages > 4 KB

(12 bits used in cache addressing means 12 untranslated bits available)

u Policy changes & split cache make little size difference
• Policy affects few bits
• Split cache mostly adds a second decoder overhead, but buys doubled

bandwidth

18-548/15-548 Memory Devices & Chip Area 9/30/98

14

Array & Cell Designs Affect Speed
u Speed a function of:

• Speed of address decoding, clock ramp-up time, etc.
• Capacitive loading of word lines (proportional to array width)
• Capacitive loading of bit lines (proportional to array height)
• Speed of sense amps (and loading of array outputs)

Example SRAM Access Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10 100 1000 10000 100000

TOTAL ARRAY SIZE (BITS)

A
C

C
E

S
S

 T
IM

E
 (n

s)

16
32
64
128

BITS/WORD

On-Chip Cache Geometry Tradeoffs
u Associativity

• Low associativity helps aspect ratio for smaller (L1-sized) caches
• Low associativity decreases tag size and LRU counter size
• High associativity helps ease virtual memory page size constraint

u Sector size
• Small sectors help aspect ratio if highly associative
• Large sectors reduce tag overhead
• Multiple blocks per sector benefit from reduced tag overhead per block

u Split Cache
• Unified cache may have lower overhead cost (don’t need 2 address decoders)
• Split cache relieves virtual memory page size pressure by 1 bit

u Policy choices have less, but non-zero, area cost
• LRU requires counters; random needs only one LFSR for whole cache
• Write back requires dirty bit

18-548/15-548 Memory Devices & Chip Area 9/30/98

15

REVIEW

Review
u Memory technology selection involves tradeoffs

• Speed+bandwidth vs. size
• Volatility/power/lifetime

u Cache memory array area involves:
• Aspect ratio limits
• Sectors
• Blocks
• Associativity

18-548/15-548 Memory Devices & Chip Area 9/30/98

16

Key Concepts
u Latency

• “Square” memory array minimizes access latency
u Bandwidth

• Wider memory arrays offer potentially higher access bandwidth, but may be
slow or unwieldy

u Concurrency
• Multiple sectors per cache row provides parallel lookup of tags and data

u Balance
• Memory array aspect ratio and overhead requires balancing all the cache data

organization parameters

