
18-548/15-548 Data Management Policies 9/21/98

1

8
Data Management

Policies
18-548/15-548 Memory System Architecture

Philip Koopman
September 21, 1998

Required Reading: Cragon 2.2.4-2.2.6, 3.5.2

Supplemental Reading: VanderWiel paper, July 1997 Computer, pp. 23-30
Przybylski paper, 1990 ISCA, pp. 160-169

Assignments
u By Wednesday September 30 read about memory operation & sizing:

• Understanding SRAM operation (IBM App. Note)
• What’s all this Flash stuff? (National Semiconductor)

u Homework 4 due September 23

u Lab 2 due September 25

u Test 1 on September 28
• In-class review September 23 -- look at example tests before class

18-548/15-548 Data Management Policies 9/21/98

2

Where Are We Now?
u Where we’ve been:

• Data organization
• Associativity

u Where we’re going today:
• Policies -- how to manage the data
• Policies apply to all levels of memory hierarchy

u Where we’re going next:
• Memory operation & cache chip area
• Multi-level caches to improve performance

Preview
u Data fetching policies

• When do you fetch and how much?
• Blocking vs. non-blocking caches

u Data replacement strategies
• How do you select a victim for replacement?

– LRU
– Random

u Data storing policies
• When do you store, and how much?

– Write Allocation
– Write-through & Write-back

• Write buffering

18-548/15-548 Data Management Policies 9/21/98

3

FETCH POLICIES

Fetch Policies
u Order of moving words from main memory to cache

• Which word gets fetched first?
u When can CPU resume processing after cache miss?

• Non-blocking cache

u Conditions that trigger a fetch from main memory to cache
• Fetch on miss (demand fetch for read; block fill for write)
• Software prefetching (compiler/programmer give hints to HW)
• Hardware prefetching (hardware speculatively fetches)

– Special case is instruction prefetching: sequential, branch targets

18-548/15-548 Data Management Policies 9/21/98

4

Cache Fetching: Load Policies
u Block load: always start from

beginning of block
u Load Forward: load only

remainder of sector
• Must load at least all data covered

by a single Valid bit => 1 block or
more

u Fetch Bypass: start from needed
word, then fill rest of block
• Called “critical word first” in H&P
• Also known as “wrap around”

(Cragon Figure 2.14)

Cache Fetching: Resumption of Processing
u Simple fetch: wait until

entire cache block is
present

u Forward (early restart):
restart as soon as word
is available
• Needed to benefit from

wrap-around load policy
• Risk of cache miss to

word already requested
for load into cache
(complicates control
logic) a bit

(After Cragon Figure 2.12)

18-548/15-548 Data Management Policies 9/21/98

5

Non-Blocking Caches
u Non-Blocking means CPU doesn’t stall on cache miss or write

completion
• “Blocking” caches stall CPU until access is completed

u Non-Blocking speeds operation
• Out-of-order execution unit can issue multiple reads
• Once write is issued, can proceed without waiting for write to complete

u Adds complexity
• Check if reads refer to data not yet written
• Ensure proper ordering of reads that map into same cache block (might return

out of order in some memory subsystems)
u Control ties in with data dependency control (e.g., “scoreboard”) --

beyond scope of this course

Non-Blocking Cache Benefits

(After Hennessy & Patterson Figure 5.22)

18-548/15-548 Data Management Policies 9/21/98

6

Hardware Prefetching
u Instruction prefetching [Smith 1982]; “useful for 32- to 64-byte

blocks”
• Always prefetch: prefetch word after current word
• Tagged prefetch: prefetch next block if current block was a cache miss
• Prefetch on misses: have blocks > 1 word; prefetch entire block

u Instruction queues trigger prefetching
• Queue refill for in-line instructions
• Branch target queue speculatively fetches branch targets

u Data prefetching
• IBM S/360/91 speculatively fetches data before instruction released to

execution unit
• Vector address generators (discussed later)
• Data prefetching is difficult

– Need to know effective address, which may be computed
– Need way to inhibit for memory-mapped I/O (e.g., C “volatile” keyword)

Software Prefetching
u Software-initiated, non-blocking load of cache block in anticipation of

need
• Doesn’t halt execution
• BUT, does consume bandwidth

– Might cause stall if another cache miss occurs when this load is being processed
– Want to put in otherwise unused instruction issue slots
– [Callahan 91]: ~33% of data prefetches turn out to have be useful

u Example: Power PC 601
• Data Cache Block Touch -- loads block into cache

u DEC Alpha:
• “use prefetching only when transport times ~ 100 clocks”

18-548/15-548 Data Management Policies 9/21/98

7

Patterned Prefetching
u Obvious prefetching is to exploit sequentiality

• In-order prefetching and large block sizes “look” similar
• Branch prediction prefetches are “logical” in-order instead of physical in-order

u But, can also do patterned prefetches
• Fetch every ith element when accessing a matrix.
• Use software hints to generate prefetch instructions via compiler

u Alternate implementation: large register file
• For out-of-order execution, simply load value into a register well before it is

needed
• BUT, might generate page faults, whereas machine support can ignore prefetch

if not readily accessible

REPLACEMENT POLICIES

18-548/15-548 Data Management Policies 9/21/98

8

Replacement Policy
u Replacement needed for capacity and conflict misses

• Read miss
• Write miss with write-allocate
• Goal: minimize number of conflict misses

u Direct-mapped cache -- only one possible block to replace
u Set associative & associative caches -- select a victim

• Least Recently Used (LRU)
– Typically best

• Random (typically pseudorandom)
– Easier to build, ~12% performance penalty compared to LRU

• First In First Out (FIFO)
– Probably no better than random

LRU Replacement
u Least Recently Used

• Requires status bits to track LRU element per set
• 2-way set associative: keep flag with most recently accessed sector; replace the

other one
• m-way set associative:

– m counters of size log2 m
» Can infer state of one counter from all other counter values; might not be worth trouble

– Initialization:
» Initialize all counters to different values and mark contents “invalid” on system reset

– Allocate new sector:
» allocate sector with counter value of 0
» proceed to access sector below

– Access any sector:
» decrement all counters with values higher than accessed sector
» set accessed sector counter to all 1

18-548/15-548 Data Management Policies 9/21/98

9

LRU Example...

Intel Pentium Pseudo-LRU
u 4-way set associative; but

only a single 3 bit LRU
value
• True LRU would require

3 @ 2-bit counters and
more complicated logic

• B0, B1, B2 track LRU
within set partitions

(Intel Pentium manual)

18-548/15-548 Data Management Policies 9/21/98

10

Random Replacement
u Simulations indicate almost as good as LRU

• Less hardware to implement
• i860 used random replacement

u Obvious way to implement is with Linear Feedback Shift Register
(LFSR)

LRU Can Be Brittle...
u LRU is usually the best with “normal” data

• Works well when temporal locality is smaller than cache size
u BUT, LRU is brittle in degenerate cases

• Example case: array size A with cache size C, iteratively read array
– For cache size C ³ A, LRU results in 0% conflict misses, 0% capacity misses

• Fully associative is brittle
– For A = C+1, gets 100% miss rate (each element removed just as it is about to be

needed)

• Set associative is not quite as bad
– For A = C+k the first k sets of cache get 100% miss rate
– Degrades to 100% overall miss rate with k = C / #sets

• Direct mapped is best
– Degrades smoothly to 100% overall miss rate with A = 2 * C

18-548/15-548 Data Management Policies 9/21/98

11

... While Random Can Be Robust
u Sometimes brittleness is bad

• Especially when customers get “unreasonable” surprises
• For example, increasing the data set of a program to need just one more TLB

entry when the TLB is fully associative with LRU replacement...

u Random, on the other hand, gives smooth behavior in more cases
• More than 0% miss rate even in best case (“false” conflict misses)
• But, not 100% miss rate even when data set larger than cache size

u Random is also suboptimal in the “everyday” case by a few percent

Random Replacement Smooths Response

• If cache weren’t empty when program started, could have greater than 0% miss
rate even for cache size > array size

EFFECTS OF LRU or RANDOM REPLACEMENT
ON ARRAY-SCANNING CODE

Cache Size (KB)

10KB 100KB

M
is

s
R

at
e

0

1

cache size vs LRU a1
cache size vs LRU a2
cache size vs LRU a4
cache size vs LRU a8
cache size vs RAND a1
cache size vs RAND a2
cache size vs RAND a4
cache size vs RAND a8

18-548/15-548 Data Management Policies 9/21/98

12

Degenerate Case For LRU Replacement
u Happens when touching a number of elements > cache size before

returning to first element
u Three regions of behavior (example -- program that iterates scanning

an array):
• 100% cache misses

– cache size < array size - (array size/associativity)

• Linearly decreasing cache misses
– cache size within (array size/associativity) of array size

• 100% cache hits
– cache size > array size

Concept in Real Life:
u Name a real-life situation where LRU replacement of an item is

preferred

u Name a real-life situation where random replacement is practiced
because of the overhead cost of tracking LRU information isn’t worth
the effort

18-548/15-548 Data Management Policies 9/21/98

13

WRITE POLICIES

Write Policies
u Write data destination: is value written to memory or just cache?

• Write through -- always written
• Write back (a.k.a. copy-back) -- written only when cache block evicted
• Write once

– First write as write through; subsequent as write back
– Good hack for multiprocessors

u Write miss: allocate block if it’s a miss?
• Write-allocate -- pick a victim and evict it on write miss
• No-write-allocate -- don’t disturb cache on write miss

18-548/15-548 Data Management Policies 9/21/98

14

Write Through
u When writing, send value to next level down in memory hierarchy

• Typically a write buffer is used as a staging area
u Advantages

• Simpler to implement, especially on multi-processor
• Makes sense if data is seldom re-written

u Disadvantages
• Potentially increased memory traffic (if words are rewritten multiple times)
• Potential coherence problem if write buffer is used (must check write buffer as

well as caches)

Write Back
u When writing to cache, don’t write to memory

• Set Dirty bit indicating modified value present
• Only the last write to a memory location is recorded, when data is “evicted”

from cache
u Advantages

• Reduces bus traffic for high-touch variables
u Disadvantages

• Requires space for dirty bits in cache
• Must be careful to track coherency of evicted value until it reaches memory
• Increases latency for evicting dirty blocks (may be a net loss if data is seldom

rewritten)
– Cache miss must include time to remove block before writing new data
– Read miss latency may not be increased -- overlap eviction with fetching new data

18-548/15-548 Data Management Policies 9/21/98

15

Write-Allocate
u Treats write miss similarly to read miss -- allocates cache sector

containing written value
• Can be used with either write through or write back; usually used with write

back
u Advantages

• Works well for programs that do a lot of write/read (as opposed to read/write)
– Stacks/activation records
– Garbage-collected heaps

• When used with write back can attenuate multiprocessor bus traffic
u Disadvantages

• Must fetch non-written data to complete block (thus, works best if there is one
word per block)

• If large blocks are used, can increase bus traffic to fill unwritten block
fragments

• Can pollute cache with “dead” values that won’t be re-read before eviction

No-Write-Allocate
u On write miss, value is not cached

• Typically used with write-through policy
• Non allocation implies that all write misses use write-through

u Advantages
• Simpler design
• In programs with long latency between write and subsequent read, doesn’t

pollute cache with long-term-storage items
u Disadvantages

• Can really hurt performance if write/read behavior is occurring
– (Software hack: dummy read before writing to simulate write allocation)

18-548/15-548 Data Management Policies 9/21/98

16

DTMR Write Policy Data
(Flynn Figure 5.18)

WRITE BUFFERING

18-548/15-548 Data Management Policies 9/21/98

17

Write Buffer
u With write-through cache: reduces stalls on consecutive writes

• Smooths bursts of bus accesses for back-to-back writes
– Useful for saving multiple registers for procedure call, interrupt, etc.
– Non-blocking implementation must check contents against data dependencies

• 80486 has 4-level write buffer;
[CRAW90] shows average
occupancy of 3

u With write back cache: holds block
during multi-cycle write to memory
• Allows cache to be used while waiting

for write when block size > transfer
size to next level of memory hierarchy

• IBM RS/6000 writes 128-byte block
in 8 clock cycles

u “Main Memory” could instead
be L2 cache

Write Assembly Cache
u Expansion of write buffer idea (write buffer with extra circuitry)

• Holds writes to a physical memory word, waiting for another write to that same
word

• Captures spatial locality of writes
– Stores to structs
– Stores to arrays
– Register pushes for subroutine calls

• Captures temporal locality of writes (e.g., statically allocated scratch variable)
• Primarily effective when write is uncached

– Write no allocate
– Write through

u Examples
• VAX 8800 -- single-line WAC
• NCR -- multi-line WAC’s in workstations

18-548/15-548 Data Management Policies 9/21/98

18

Write Assembly Cache Effectiveness
• WAC block size of 4/8 bytes; Transfer size of 4/8 bytes; 4-way set

associativity
(Flynn Figure 5.40)

Write Priority to Reduce Miss Penalty
u Simple approach is to stall if write buffer non-empty on miss

• Guarantees read miss will access correct data
• Increases miss penalty (1.5x for 4-word buffer on MIPS M/1000)

u Better approach is give reads priority over writes
• On write through, write buffer waits until free bus cycles are available, giving

reads priority
• On write back, reading to fill cache block takes priority over eviction
• Requires control logic to ensure any read miss correctly reflects contents of

write buffer

18-548/15-548 Data Management Policies 9/21/98

19

Customized Policies
u Customizable operating mode depending on expected workload

• Can be general mode bit
• Can be specific for a particular instruction

u MC68040 example
• Noncacheable mode: forces data out of cache

– Shared variables in absence of multiprocessor coherency
• Cacheable, write-through/write-no-allocate

– If compiler “knows” variable won’t be accessed for a long time
– Especially useful for scientific code where arrays > cache size

• Cacheable, write back/allocate
– If compiler “knows” variable will be accessed again soon

• Special access -- freezes cache
– Read/write misses do not allocate
– Useful for deterministic execution times

POLICIES &
ORGANIZATION

18-548/15-548 Data Management Policies 9/21/98

20

Fetch Policies
u Prefetch interacts with block & sector size

• Can use prefetch to fill entire sector instead of just one block
– Reduces memory traffic on writes -- only a block is written, not entire sector

• On unsectored caches prefetch can give sector-prefetch effects
– But, still pay area penalty for one tag per block

Replacement Policy
u LRU replacement can become brittle with highly associative caches

• Saw this in homework #3 with TLB sizing on some machines
• Can be an issue with any computer that manipulates large data arrays -- may

want to use random replacement instead
u LRU replacement uses chip area and time

• Intel uses psuedo-LRU to save space & speed up operation

18-548/15-548 Data Management Policies 9/21/98

21

Write Policies
u Write through may be effective for large block sizes

• Avoids having to write back large block if only one word has changed
u Write-no-allocate may be effective for large block sizes

• Avoids having to read in other words to fill block

u BUT, can avoid both these problems with sectored cache
• Write back conserves bandwidth, especially important on multi-processors
• Write allocate conserves bandwidth for areas having write/read behavior,

generally improves effectiveness of write back cache

u Write assembly buffer can help if write-through policy is used
• Simulates a single-set write back cache
• Want WAB size to have a “block size” appropriate for spatial write locality in

workload.

REVIEW

18-548/15-548 Data Management Policies 9/21/98

22

Review
u Fetch policies determine how and when to fetch data

• Prefetching to improve hit rate; but at cost of bandwidth
• Non-blocking caches help decouple memory and processing strategies

– Required for effective out-of-order execution of memory accesses

u Replacement policies select which block to allocate/evict
• LRU -- complicated but (usually) best
• Random -- easier, less brittle in degenerate cases

u Write policies determine when data is written to memory
• Write through is simpler, but often higher bandwidth than write back
• Write-allocate helps with write-before-read locations
• Write buffering can decouple CPU from memory access

Key Concepts
u Latency & Concurrency

• Prefetch can reduce latency with speculative operations
• Non-blocking caches reduces latency for concurrent memory accesses

u Bandwidth
• Write through vs. write back is a bandwidth tradeoff that depends on program

characteristics
u Replication

• Multiple blocks per sector can decouple desire for prefetch from cost of tags
and cost of writing unmodified data

u Balance
• Miss rate vs. traffic ratio is a classic balance issue

– Write through vs. write back
– Block size, sector size, and prefetch strategy

