18-548/15-548 Data Management Policies 9/21/98

8
Data M anagement
Policies
18-548/15-548 Memory System Architecture

Philip Koopman
September 21, 1998

Required Reading: Cragon 2.2.4-2.2.6,3.5.2

Supplemental Reading: VanderWiel paper, July 1997 Computer, pp. 23-30
Przybylski paper, 1990 | SCA, pp. 160-169

arnegie
9

Assignments

¢ By Wednesday September 30 read about memory operation & sizing:
» Understanding SRAM operation (IBM App. Note)
» What'sall this Flash stuff? (National Semiconductor)

¢ Homework 4 due September 23

o Lab 2 due September 25

& Test 1 on September 28
* In-classreview September 23 -- look at example tests before class

18-548/15-548 Data Management Policies 9/21/98

Where Are We Now?

¢ Wherewe' ve been:
» Dataorganization
» Associativity

¢ Wherewe'regoing today:
» Policies-- how to manage the data
» Policies apply to all levels of memory hierarchy

¢ Wherewe'regoing next:
» Memory operation & cache chip area
» Multi-level cachesto improve performance

Preview

+ Data fetching policies
* When do you fetch and how much?
» Blocking vs. non-blocking caches

+ Datareplacement strategies
» How do you select avictim for replacement?
- LRU
— Random

+ Data storing policies
* When do you store, and how much?
— Write Allocation
— Write-through & Write-back
» Write buffering

18-548/15-548 Data Management Policies 9/21/98

FETCH POLICIES

Fetch Policies

& Order of moving words from main memory to cache
» Which word gets fetched first?
¢ When can CPU resume processing after cache miss?
» Non-blocking cache
& Conditionsthat trigger afetch from main memory to cache
 Fetch on miss (demand fetch for read; block fill for write)
» Software prefetching (compiler/programmer give hintsto HW)

» Hardware prefetching (hardware speculatively fetches)
— Special caseisinstruction prefetching: sequential, branch targets

18-548/15-548 Data Management Policies

Cache Fetching: Load Policies

+ Block load: always start from
beginning of block
& Load Forward: load only
remainder of sector
* Must load at least al data covered
by asingle Valid bit => 1 block or
more
& Fetch Bypass: start from needed
word, then fill rest of block
o Called “critical word first” inH&P
» Also known as “ wrap around’

4 AU Block
A
r A
0 1 2 3
|] |]]

+— Cache Miss on AU #1
t » Block Load

- Load Forward

[
—

" Fetch Bypass
— P

(Cragon Figure 2.14)

Cache Fetching: Resumption of Processing

¢ Simplefetch: wait until
entire cacheblock is
present
¢ Forward (early restart):
restart as soon asword
isavailable
* Needed to benefit from
wrap-around load policy
» Risk of cache missto

logic) abit

(After Cragon Figure 2.12)

MEMORY | 1

Sequential-Simple

CACHE |i|
T

MEMORY [i

Concurrentl-Simple

CACHE |i|
T

Sequential-Forward

word already requested cackE —1
for load into cache T
(complicates control MEMORY f |

Concurrent-Forward

CACHE |i|
T

MEMORY | |

\/

TIME

9/21/98

18-548/15-548 Data Management Policies 9/21/98

Non-Blocking Caches

+ Non-Blocking means CPU doesn’t stall on cache missor write
completion
» “Blocking” caches stall CPU until accessis completed
+ Non-Blocking speeds operation
» Out-of-order execution unit can issue multiple reads
» Once writeisissued, can proceed without waiting for write to complete
& Addscomplexity
» Check if reads refer to data not yet written
» Ensure proper ordering of reads that map into same cache block (might return
out of order in some memory subsystems)
¢ Control tiesin with data dependency control (e.g., “ scoreboard”) --
beyond scope of this course

Non-Blocking Cache Benefits

100%
o 90%
E 80%
T 70%
Y
Cg‘ 60%
s

50%
£
% 40%
% 30%
S 20%
é 10%

0%
&
U
&
(After Hennessy & Patterson Figure 5.22) Benchmarks
o Hitunder 1 miss @ Hitunder2 misses @ Hit under 64 misses I

18-548/15-548 Data Management Policies 9/21/98

Hardwar e Prefetching

& Instruction prefetching [Smith 1982]; “ useful for 32- to 64-byte
blocks”

» Always prefetch: prefetch word after current word

» Tagged prefetch: prefetch next block if current block was a cache miss

» Prefetch on misses: have blocks > 1 word; prefetch entire block

& Instruction queuestrigger prefetching
* Queuerefill for in-line instructions
» Branch target queue speculatively fetches branch targets

+ Data prefetching
* IBM S$/360/91 speculatively fetches data before instruction released to

execution unit
» Vector address generators (discussed later)
» Dataprefetching is difficult
— Need to know effective address, which may be computed
— Need way to inhibit for memory-mapped 1/0 (eg., C“ volatile’ keyword)

Softwar e Prefetching

& Software-initiated, non-blocking load of cache block in anticipation of

need
* Doesn't halt execution

* BUT, does consume bandwidth
— Might cause stall if another cache miss occurs when thisload is being processed

— Want to put in otherwise unused instruction issue slots
— [Callahan 91]: ~33% of data prefetches turn out to have be useful

¢ Example: Power PC 601
» Data Cache Block Touch -- loads block into cache

¢ DEC Alpha:
» “use prefetching only when transport times ~ 100 clocks’

18-548/15-548 Data Management Policies 9/21/98

Patterned Prefetching

+ Obvious prefetching isto exploit sequentiality

 In-order prefetching and large block sizes “look” similar

» Branch prediction prefetches are “logical” in-order instead of physical in-order
+ But, can also do patterned prefetches

» Fetch every ith element when accessing a matrix.

» Use software hints to generate prefetch instructions via compiler
+ Alternateimplementation: largeregister file

» For out-of-order execution, smply load value into aregister well beforeit is
needed

» BUT, might generate page faults, whereas machine support can ignore prefetch
if not readily accessible

REPLACEMENT POLICIES

18-548/15-548 Data Management Policies 9/21/98

Replacement Policy

¢ Replacement needed for capacity and conflict misses
* Read miss
* Write miss with write-allocate
» Goal: minimize number of conflict misses
+ Direct-mapped cache -- only one possible block to replace
& Set associative & associative caches -- select a victim
» Least Recently Used (LRU)
— Typically best
» Random (typically pseudorandom)
— Easier to build, ~12% performance penalty compared to LRU
» FirgtInFirst Out (FIFO)
— Probably no better than random

L RU Replacement

¢ Least Recently Used
* Requires status hits to track LRU element per set

» 2-way set associative: keep flag with most recently accessed sector; replace the
other one
* mway set associative:
— m counters of sizelog, m
» Caninfer state of one counter from all other counter values; might not be worth trouble
— Initiglization:
» Initialize all counters to different values and mark contents“ invalid” on system reset
— Allocate new sector:
» dllocate sector with counter value of 0
» proceed to access sector below
— Access any sector:
» decrement all counters with values higher than accessed sector
» set accessed sector counter to all 1

18-548/15-548 Data Management Policies 9/21/98

LRU Example...
LRU
VALUE DATA

LRU
VALUE DATA

LRU

VALUE DATA
Intel Pentium Pseudo-L RU
¢ 4—Way st ciative; but All four lines No Replace
only asingle 3 bit LRU in the set valid? —— non-valid line
value
« True LRU would require Yas
3 @ 2-bit counters and
more complicated logic B0 =07
* BO, B1, B2track LRU
within set partitions Yes: 10 or i1 No: 12 or 13
least recently least recently
used used
B1 =07 B2=07?
Yes/\o Yes /\‘lu
Replace Replace Replace Replace
10 " 12 13
(Intel Pentium manual)

18-548/15-548 Data Management Policies 9/21/98

Random Replacement

& Simulationsindicate almost as good asLRU
* Less hardware to implement
* 1860 used random replacement

& Obviousway to implement iswith Linear Feedback Shift Register

(LFSR)
XOR XOR PSUEDO-
» BIT 0 —» BIT 1 = BIT 2 —» BIT 3 - BIT 4 » RANDOM
BIT

LRU Can BeBirittle...

¢ LRU isusually the best with “normal” data
» Workswell when temporal locality is smaller than cache size
¢ BUT, LRU isbrittlein degenerate cases
» Example case: array size A with cache size C, iteratively read array
— For cachesize C3 A, LRU resultsin 0% conflict misses, 0% capacity misses
» Fully associativeis brittle

— For A = C+1, gets 100% missrate (each element removed just asit is about to be
needed)

» Set associative is not quite as bad
— For A =C+k thefirst k sets of cache get 100% missrate
— Degradesto 100% overall missrate with k = C/ #sets
» Direct mapped is best
— Degrades smoothly to 100% overall missratewithA =2* C

10

18-548/15-548 Data Management Policies

... While Random Can Be Robust

¢ Sometimesbrittlenessis bad

» Especially when customers get “ unreasonable” surprises
» For example, increasing the data set of a program to need just one more TLB
entry when the TLB is fully associative with LRU replacement...

¢ Random, on the other hand, gives smooth behavior in more cases
* Morethan 0% missrate even in best case (“false” conflict misses)
» But, not 100% miss rate even when data set larger than cache size

& Random isalso suboptimal in the* everyday” case by a few percent

Random Replacement Smooths Response

cache size vs LRU al
—— cache size vs LRU a2
cache size vs LRU a4

cache size vs LRU a8
- cache size vs RAND al
— cache size vs RAND a2
cache size vs RAND a4
cache size vs RAND a8

Miss Rate

EFFECTS OF LRU or RANDOM REPLACEMENT
ON ARRAY-SCANNING CODE

AN

10KB

100KB

Cache Size (KB)

* |If cache weren't empty when program started, could have greater than 0% miss
rate even for cache size > array size

11

9/21/98

18-548/15-548 Data Management Policies

Degenerate Case For L RU Replacement

& Happenswhen touching a number of elements > cache size before
returning to first element
& Threeregionsof behavior (example-- program that iterates scanning
an array):
» 100% cache misses
— cachesize< array size - (array size/associativity)
 Linearly decreasing cache misses
— cache size within (array size/associativity) of array size
* 100% cache hits
— cachesize > array size

Concept in Real Life:

¢ Nameareal-lifesituation where LRU replacement of an itemis
preferred

¢ Nameareal-lifesituation whererandom replacement is practiced
because of the overhead cost of tracking LRU information isn’t worth

the effort

12

9/21/98

18-548/15-548 Data Management Policies 9/21/98

WRITE POLICIES

Write Policies

¢ Writedata destination: isvalue written to memory or just cache?
» Writethrough -- always written
» Write back (a.k.a. copy-back) -- written only when cache block evicted
* Writeonce

— First write as write through; subsequent as write back
— Good hack for multiprocessors

¢ Writemiss: allocate block if it’sa miss?
» Write-allocate -- pick avictim and evict it on write miss
* No-write-allocate -- don't disturb cache on write miss

13

18-548/15-548 Data Management Policies 9/21/98

Write Through

¢ When writing, send value to next level down in memory hierarchy
» Typicaly awrite buffer is used as a staging area
¢ Advantages
» Simpler to implement, especially on multi-processor
* Makes senseif datais seldom re-written
+ Disadvantages
» Potentially increased memory traffic (if words are rewritten multiple times)

» Potential coherence problem if write buffer is used (must check write buffer as
well as caches)

Write Back

¢ When writing to cache, don’'t write to memory
» Set Dirty bit indicating modified value present

» Only the last write to amemory location is recorded, when datais “ evicted”
from cache

¢ Advantages
» Reduces bus traffic for high-touch variables
+ Disadvantages
» Requires space for dirty bitsin cache
* Must be careful to track coherency of evicted value until it reaches memory

* Increases latency for evicting dirty blocks (may be anet lossif datais seldom
rewritten)

— Cache miss must include time to remove block before writing new data
— Read miss latency may not be increased -- overlap eviction with fetching new data

14

18-548/15-548 Data Management Policies 9/21/98

Write-Allocate

& Treatswrite misssimilarly to read miss -- allocates cache sector
containing written value

» Can be used with either write through or write back; usually used with write
back

¢ Advantages
» Workswell for programsthat do alot of write/read (as opposed to read/write)
— Stacks/activation records
— Garbage-collected heaps
» When used with write back can attenuate multiprocessor bus traffic
+ Disadvantages

» Must fetch non-written data to complete block (thus, works best if thereisone
word per block)

« |f large blocks are used, can increase bus traffic to fill unwritten block
fragments

» Can pollute cache with “dead” valuesthat won't be re-read before eviction

No-Write-Allocate

¢ Onwritemiss, valueisnot cached
» Typically used with write-through policy
* Non alocation impliesthat al write misses use write-through
¢ Advantages
» Simpler design
* Inprograms with long latency between write and subsequent read, doesn’t
pollute cache with long-term-storage items
+ Disadvantages

» Canreally hurt performance if write/read behavior is occurring
— (Software hack: dummy read before writing to simulate write allocation)

15

18-548/15-548 Data Management Policies 9/21/98

DTMR Write Policy Data

(Flynn Figure5.18)

10

° —#— 64Lwt
] —o— l6Lwt
S]'0'5 8L Wt
g —fs= 64L b
E’ \W\.\....,,gg)?-m,ww 'I 6L cb
g —o— 8Lcb
g 0.1

i wt = write through
cb = copyback
nL = line size

10 100 1000 10000 100000 1000000
Cache size (bytes)

WRITE BUFFERING

16

18-548/15-548 Data Management Policies 9/21/98

Write Buffer

& With write-through cache: reduces stalls on consecutive writes
» Smooths bursts of bus accesses for back-to-back writes
— Useful for saving multiple registers for procedure call, interrupt, etc.
— Non-blocking implementation must check contents against data dependencies
» 80486 has 4-level write buffer;
[CRAW90] shows average
occupancy of 3 CPU
¢ With write back cache: holds block
during multi-cycle write to memory *
» Allows cache to be used while waiting

for write when block size > transfer ‘
size to next level of memory hierarchy | CACHE v

* IBM RS/6000 writes 128-byte block
in 8 clock cycles WRITE BUFFER
¢ “Main Memory” could instead *

belL 2 cache

MAIN MEMORY

Write Assembly Cache

¢ Expansion of write buffer idea (write buffer with extra circuitry)

» Holds writesto a physical memory word, waiting for another write to that same
word

» Captures spatial locality of writes
— Storesto structs
— Storesto arrays
— Register pushes for subroutine calls
» Capturestemporal locality of writes (e.g., statically allocated scratch variable)
» Primarily effective when write is uncached
— Write no alocate
— Write through
¢ Examples
* VAX 8800 -- single-line WAC
* NCR -- multi-line WAC’ s in workstations

17

18-548/15-548 Data Management Policies 9/21/98

Write Assembly Cache Effectiveness
* WAC block size of 4/8 bytes, Transfer size of 4/8 bytes, 4-way set
associativity
(Flynn Figure5.40)

|- |4-t4-a4
1 18-t8-a4

Relative write traffic

0O 1 2 4 8 16 32 64 128
Number of write cache lines

WritePriority to Reduce Miss Penalty

& Simpleapproach isto stall if write buffer non-empty on miss
* Guarantees read miss will access correct data
* Increases miss penalty (1.5x for 4-word buffer on M1PS M/1000)

+ Better approach isgivereadspriority over writes
» Onwrite through, write buffer waits until free bus cycles are available, giving
reads priority
» Onwrite back, reading to fill cache block takes priority over eviction

» Requires control logic to ensure any read miss correctly reflects contents of
write buffer

18

18-548/15-548 Data Management Policies 9/21/98

Customized Policies

+ Customizable operating mode depending on expected wor kload
» Can be general mode bit
» Can be specific for a particular instruction

¢ MC68040 example
» Noncacheable mode: forces data out of cache
— Shared variables in absence of multiprocessor coherency
o Cacheable, write-through/write-no-alocate
— If compiler “ knows’ variable won't be accessed for along time
— Especially useful for scientific code where arrays > cache size
» Cacheable, write back/alocate
— If compiler “ knows’ variable will be accessed again soon
» Specia access -- freezes cache
— Read/write misses do not allocate
— Useful for deterministic execution times

POLICIES &
ORGANIZATION

19

18-548/15-548 Data Management Policies 9/21/98

Fetch Policies

+ Prefetch interactswith block & sector size
» Can use prefetch to fill entire sector instead of just one block
— Reduces memory traffic on writes -- only a block is written, not entire sector
» On unsectored caches prefetch can give sector-prefetch effects
— But, still pay area penalty for one tag per block

Replacement Policy

¢ LRU replacement can become brittle with highly associative caches
» Saw thisin homework #3 with TLB sizing on some machines

» Can be an issue with any computer that manipulates large data arrays -- may
want to use random replacement instead

¢ LRU replacement useschip area and time
* Intel uses psuedo-LRU to save space & speed up operation

20

18-548/15-548 Data Management Policies 9/21/98

Write Policies

& Writethrough may be effectivefor large block sizes
» Avoids having to write back large block if only one word has changed
& Write-no-allocate may be effective for large block sizes
» Avoids having to read in other wordsto fill block
¢ BUT, can avoid both these problemswith sectored cache
» Write back conserves bandwidth, especially important on multi-processors

» Write allocate conserves bandwidth for areas having write/read behavior,
generally improves effectiveness of write back cache

& Writeassembly buffer can help if write-through policy isused
» Simulates a single-set write back cache

* Want WAB size to have a“block size” appropriate for spatial write locality in
workload.

REVIEW

21

18-548/15-548 Data Management Policies 9/21/98

Review

Fetch policies deter mine how and when to fetch data
» Prefetching to improve hit rate; but at cost of bandwidth
» Non-blocking caches help decouple memory and processing strategies

— Required for effective out-of-order execution of memory accesses

& Replacement policies select which block to allocate/evict
* LRU -- complicated but (usually) best
* Random -- easier, less brittle in degenerate cases

& Write policies determine when data iswritten to memory
» Write through is simpler, but often higher bandwidth than write back
» Write-allocate helps with write-before-read locations
» Write buffering can decouple CPU from memory access

Key Concepts

¢ Latency & Concurrency

 Prefetch can reduce latency with speculative operations

» Non-blocking caches reduces latency for concurrent memory accesses
¢ Bandwidth

» Writethrough vs. write back is a bandwidth tradeoff that depends on program
characteristics

¢ Replication
» Multiple blocks per sector can decouple desire for prefetch from cost of tags
and cost of writing unmodified data
+ Balance

* Missrate vs. traffic ratio is a classic balance issue
— Write through vs. write back
— Block size, sector size, and prefetch strategy

22

