
18-548/15-548 Associativity 9/16/98

1

7
Associativity

18-548/15-548 Memory System Architecture
Philip Koopman

September 16, 1998

Required Reading: Cragon pg. 166-174

Assignments
u By next class read about data management policies:

• Cragon 2.2.4-2.2.6, 3.5.2
• Supplemental Reading:

– VanderWiel paper, July 1997 Computer, pp. 23-30
– Przybylski paper, 1990 ISCA, pp. 160-169 (class reserve in library)

u Homework 4 due Wednesday September 23

u Lab 2 due Friday September 25

u Test #1 Monday September 28
• In-class review Wednesday September 23; look at sample tests before then

18-548/15-548 Associativity 9/16/98

2

Where Are We Now?
u Where we’ve been:

• Split I-/D- caching
• Block size tradeoffs from miss rate & traffic ratio point of view

u Where we’re going today:
• Associativity

– Having more than one victim available for cache sector replacement
– In general, associative searching (how to find something based on its value instead

of its address)

u Where we’re going next week:
• Policies for managing cached data
• Multi-level caching & buffering

Preview
u Degrees of associativity

• Direct mapped
• Fully associative
• Set Associative

u Implementing associativity
• How data is looked up from the cache (in detail)
• Performance costs & benefits of increased associativity
• Hacks & tricks

18-548/15-548 Associativity 9/16/98

3

Associativity
u In some cases, two or more frequently used data words might end up

mapped to same cache set
u Associativity - reserves multiple cache sectors for each potential

address set
• All cache sectors that are candidates for holding any particular address form a

set

u Level of associativity varies depending on sectors/set
• Number of sectors in a set used to describe associativity

– 1 sector/set is Direct Mapped = “1-way set associative”
– k sectors/set is k-way set associative
– All sectors in one set is fully associative

• Higher associativity can improve hit rate
– Reduces conflict misses
– Costs more
– Slower cycle time because of comparator

BASIC ASSOCIATIVITY:
DIRECT-MAPPED, SET, FULL

18-548/15-548 Associativity 9/16/98

4

Associativity Options
u [Sets, Sectors, Blocks, Words]

u Direct Mapped cache [S, 1, B, W]
• Each memory location maps into one and only one cache sector
• Fast, simple, inefficient? (this is controversial)
• Maximum conflict misses

u Fully Associative cache [1, Se, B, W]
• Any sector can map to anywhere in memory
• Slow, complex, efficient
• No conflict misses given perfect replacement policy

u Set Associative cache [S, Se, B, W]
• Groups of sectors (“sets”) form associative pools
• A compromise
• Can greatly reduce conflict misses except in degenerate cases

Direct Mapped Structure
u Example: [8, 1, 4, 2]

• 8 sets, 1 sector/set, 4 blocks/sector, 2 words/block

18-548/15-548 Associativity 9/16/98

5

Direct Mapped Addressing
u Each set has exactly 1 sector

• Exactly one possible location for any memory location to map to in cache
u One sector per set -- [S, 1, B, W]

Direct Mapped Operation
u [8, 1, 1, 2]

• 8 Sets
• 1 sector/set
• 1 block/sector
• 2 words/block

u Same tag value can
occur in multiple
locations
• Only tag at

specified index is
checked

(From Cragon Figure 2.8)

18-548/15-548 Associativity 9/16/98

6

Fully Associative Structure
u All sectors are together in a single set

• Any memory location can map to any sector
u Example: [1, 8, 4, 2]

• 1 set, 8 sectors/set, 4 blocks/sector, 2 words/block

Fully Associative Addressing
u One sector per set -- [1, Se, B, W]

18-548/15-548 Associativity 9/16/98

7

Associative Cache (“fully associative”)
u [1, 8, 1, 2]

• 1 “set” of all sectors
• 8 sectors/“set”
• 1 block/set
• 2 words/block

u Tag value must be
unique within cache
• All tags are checked

in parallel for a
match = “associative
search”

(From Cragon Figure 2.6)

Associative tradeoffs
u Can be quite slow because of large number of comparisons

• All tags must be checked before “hit” or “miss” can be declared
• Uses a content-addressable memory cell > 3x bigger than SRAM bit

u Complete associativity gives diminishing returns for large cache
• Conflict misses decrease as there are a large number of sets available
• BUT, commonly used for Virtual Memory TLB

18-548/15-548 Associativity 9/16/98

8

Set Associative Cache [S, Se, B, W]
u Example:

[4, 2, 1, 2]
• 4 sets
• 2 sectors/set
• 1 block/sector
• 2 words/block

• “2-way set
associative
cache”

(From Cragon Figure 2.7)

Set Associative Address Formation
u Same as the “general” case from earlier lecture

18-548/15-548 Associativity 9/16/98

9

Set Associative Tradeoffs
u Robust to accidental mapping of heavily used addresses to the same

sector
• Cache can provide up to k hit locations within same set for k-way set

associativity
• As number of sets gets large (large cache size), chance of getting unlucky with

k+1 distinct accesses to a particular set within a loop reduces
– k+1 distinct accesses is the pathological worst case for LRU -- 0% hit rate

u Compromises complexity/latency compared to fully associative and
direct-mapped
• Can simply read all tags in parallel and use k comparators for k-way set

associativity (want entire set in same memory array row; discussed later)
• Doesn’t require full content-addressable memory arrangement
• Selecting which comparator found the match and gating data increases critical

path

ASSOCIATIVITY
TECHNIQUES

18-548/15-548 Associativity 9/16/98

10

Set Associativity for Larger Caches
u Higher associativity may be only reasonable way to increase physically

addressed cache size
• Page offset bits unaffected by translation -- are only bits available for cache

addressing before address translation (for concurrent address translation &
cache access)

• Cache limited to 2#offset bits sets; increasing associativity permits use of larger
cache size

• (Can also use virtually addressed cache, but this causes problems with aliasing
for data/unified caches)

u Example: IBM 3033 had 16-way set-associative cache of 64KB

u BUT:
• Problem only applies to L1 cache, which is generally small for speed reasons

anyway

DTMR Associativity Data
u 16-byte lines (Flynn Figure 5.13)

18-548/15-548 Associativity 9/16/98

11

Degradation Compared to Fully Associative

(Flynn Figure 5.14)

Concept In Everyday Life:
u What everyday situations/systems display associative look-up

behavior?
• Fully associative

• Set associative

• Direct-mapped lookup

18-548/15-548 Associativity 9/16/98

12

A Hack: Pseudo-Associative Caches
u Direct-mapped cache with 2 access attempts

• (e.g., if cache address 0x300 is a miss, flip top address bit and try 0x100)

u Variable access time -- better for L2 cache+
• Hit on 1st attempt same as normal hit
• If miss on 1st attempt, modify address and try a 2nd time
• It’s a win if:

– Direct-mapped cache faster than 2-way set associative cache
– Miss time is large
– Higher level can tolerate non-uniform hit time

Associativity For Big Caches
u Set associativity might not work for really big cache structures, such as

inverted page tables
u Use general hashing techniques from your favorite algorithms/data

structures course
• Inverted page table example (similar to HP PA):

(Cragon Figure 3.18)

18-548/15-548 Associativity 9/16/98

13

Hashing Name Collisions
u Typically uses a linked list of entries from each hashed entry point

• In reality, don’t want hash table more than about half-full or so; otherwise it
gets clogged with long lists to search.

(Cragon Figure 3.19)

Associativity Rules of Thumb
u “Ideally, associativity should be in range of 4-16” (Cragon pg. 27)

u “The miss rate of a direct-mapped cache of size X is about the same as
a 2- to 4-way set associative cache of size X/2.” (Hennessy & Patterson, pg. 391)

u Single-level caches are made too slow by set-associativity; direct
mapped is better for L1 caches. L2 caches should be, say, 8-way set
associative. (Przybylski section 5.3.3)

u Conclusion -- mild set associativity is a win if:
• You can spare the cycle time (e.g., L2 cache and beyond)
• You can spend the power/area to make the tag fetch and compare faster than

data access
• Signal delays are probably an important factor in deciding associativity

(e.g., if pressed for space, might put tags on-chip and data off-chip)

18-548/15-548 Associativity 9/16/98

14

Associativity In Recent Processors
u Alpha 21164

• Direct mapped L1
• 3-way set associative L2
• Direct mapped L3
• Fully associative D-TLB (64 entries) & I-TLB (48 entries)

u Pentium Pro
• 2-way set associative L1 D-cache; 4-way L1 I-cache
• 4-way set associative L2 cache
• 4-way set associative D-TLB & I-TLB (64 entries each)

u MIPS R-8000
• Direct mapped L1 caches; 4-way set associative L2 cache
• 384-entry(!) TLB; 3-way set associative

u Power PC 604
• 4-way set associative L1 caches
• 2-way set associative D-TLB & I-TLB (128 entries each)

REVIEW

18-548/15-548 Associativity 9/16/98

15

Review
u Associativity tradeoffs

• Fully associative efficient but complex, usually not used for I-/D-cache
• Direct mapped fastest, but may be inefficient
• Set associativity is a good tradeoff if cycle time permits

u Pseudo-associativity can be obtained by hacks
• “Looks” like hashed table searching in a data structures course

Key Concepts
u Latency

• High degrees of associativity risk increasing memory access latency (requires
time for associative match)

u Bandwidth & Concurrency
• Concurrent search of multiple tags makes set associativity feasible

– Exploits latent bandwidth available in tag memory storage
– Parallelizes search for tag match

u Balance
• Latency increase from increased associativity must be balanced against

reduction in conflict miss rate

