18-548/15-548 Cache Data Organization 9/14/98

6
Cache Data
Organization

18-548/15-548 Memory System Architecture
Philip Koopman
September 14, 1998

Required Reading: Cragon 2.2.7,2.3-2.5.2,3.5.8 *
Supplemental Reading: Hennessy & Patterson 5.3, 5.4 CA egle
9

Assignments

+ By next classread about associativity:
* Cragon pg. 166-174

¢ Homework 3 due Wednesday September 16

o Lab 2 dueFriday September 23

18-548/15-548 Cache Data Organization

Where Are We Now?

¢ Wherewe' vebeen:
» Physical memory hierarchy -- size vs. speed
 Virtual memory hierarchy -- mapping

¢ Wherewe'regoing today:
» Details of data organization
— Split vs. Unified caches
— Block size tradeoffs

¢ Wherewe'regoing next time:
» Associativity
» Data management policies

Why Not Use a Huge Cache? (Revisited)

¢ L1lisgenerally implemented ason-chip cache
» Going off-chip takes longer than staying on-chip

¢ Area

¢ Addresstrandation

memory
¢ Compulsory misses may dominate anyway
» Caches bigger than program+data size (working set) don’t help
» Transaction processing has small working sets with short lives

» Slows down with address fanout, chip select, data bus drive for off-chip

» On-chip cache must share chip with CPU; limits size to an extent

» Bitsavailable to address cache usually limited to those not mapped by virtual

9/14/98

18-548/15-548 Cache Data Organization 9/14/98

How Do You Makethe Most of Cache?

& Keep cachearrayssmall & simple
» Faster clock cycle
* Reduced area consumption

¢ Makethebest use of alimited resource (next few lectures)
» Arrange data efficiently
— Split vs. unified caches
— Block and sector size vs. overhead for tags and flag bits
» Minimize miss rate while keeping cycle time & area usage low
— Use associativity in just the right amount
» Use good management policies

Preview

& Design Target Miss Rates

» A conservative starting point for designs
+ Split vs. Unified Caches

* |-cache

» D-cache

* Unified Cache
& Sectors & Blocks

» Bigger is better...
Except when bigger isworse

18-548/15-548 Cache Data Organization 9/14/98

DESIGN TARGET
MISSRATES
(DTMR)

DTMR Overview

+ 1985 1SCA paper by Smith, updated by Flynn in his book
» Conservative estimate of expectations
+ ldeaisbasdline performance data to estimate effects of changesin
baseline cache structure
* Unified cache
» Demand fetch
* Write-back
* LRU replacement
» Fully associative for large blocks; 4-way set associative for 4-8 byte blocks
¢ Thenumbersare, in some sense, a convenient fiction
» Cache performance depends on workload and detailed machine characteristics
» But, DTMRis useful to develop intuition

18-548/15-548 Cache Data Organization 9/14/98

DTMR Benchmark MiX (based on Smith, 1985)

& 49traces
» Variety of applications
* Includes Operating System effects
¢ 6 machinearchitectures
» IBM $/370, IBM S/360, Vax, M68000, Z8000, CDC 6400
7 languages
» Fortran, 370 Assembler, APL, C, LISP, AlgolW, Caobol

*

*

Suggested use for DTMR:

» Provides a conservative baseline for estimating good cache parameters
— Paper concludes “ caches always work”, and are worthwhile to use
» Givesadtarting point for detailed simulations

¢ Datatablesarein Appendix A of Flynn
» Also gives adjustment multipliers for various parameters

Effect of Application Environments
¢ Fully associative, 16-byte blocks ynnFig.5.11)

1095

Type of application

370-fortran
370-cobol A\
370-mvs

8200-ultrix LT :
vax-lisp

vax-mix
32016-unix
DTMR

Miss rate
i

T

IEE RN AN

10! 102 103 104 105
Cache size (bytes)

18-548/15-548 Cache Data Organization 9/14/98

Effect of Machine

(Flynn Fig. 5.12)

]00-

107!

SE Type of machine |

370
8200-vms
8200-ultrix
vax 11/780
32016-unix
360/91
6400

DTMR

i

Miss rate
]

10'2'3

EREE

dldbddbéd

1073
1

10° 103 10% 10°
Cache size (bytes)

O——J

DTMR Compared to SPECMARK
0.035
T (Flynn FigureB.1)
[]
0.03 |
—m— DTMR
0.025 C
2 L] —— SPECMARK AVG
©
w 0.02 L
R
£
2 0.015 L
&
@)
0.01 L
0.005 |
o T T T T T T 1
8KB 16KB 32KB 64KB 128KB 256KB 512KB 1M
Cache size

18-548/15-548 Cache Data Organization 9/14/98

Diminishing Returns

+ Even for “well behaved” programsyou get diminishing returns by
increasing cache size

* baseline DTMR data for 8x cache size increases:
— 20% missratio with 1 KB cache
— 7.5% missratio with 8 KB cache -- 2.7x improvement for 8x size increase
— 3% missratio with 64 KB cache -- 2.5x improvement for 8x size increase
— 1.5% missratio with 512 KB cache -- 2.0x improvement for 8x size increase+

* And, of course, larger memory arrays will cycle more slowly...

¢ Prediction:

» Eventually cache memory will run out of steam, and we’'ll need some other
technology to bridge the main-memory/CPU speed gap

» But, that’sa problem for another course...

INSTRUCTION CACHE

18-548/15-548 Cache Data Organization 9/14/98

Making the M ost of Limited Cache

SPARC SPARC MIPS MIPS IBM VAX Average
Integer Floating Integer Floating S/360

Point Point
Instruction .79 .80 .76 g7 .50 .65 .71
DataRead .15 A7 A5 .19 .35 28 .22
Data Write .06 .03 .09 .04 .15 .07 07

& Optimizefor the Common Case: (cragon Table1.)

* |nstructions ~71%
+ DataRead ~22%
« DataWrite ~7%

» (But, don't forget Amdahl’s Law -- data ends up being important too!)

Exploiting Instruction Locality

¢ Instruction buffers: for look-behind

& Instruction queues: prefetching

¢ Instruction caches; look-ahead & look-behind

18-548/15-548 Cache Data Organization 9/14/98

I nstruction Buffer (Loop Cache)

¢ Retainslast n instructions executed in FIFO queue
+ Short backward branches freeze queue and execute from it

Useful for cache-less processor srunning scientific code

» CDC 6600 had 8 60-bit registers
in the instruction queue
— Upto:

sixteen 30-bit instructions;

thirty-two 15-hit instructions; IN-LINE EXECUTION

combinations
» Cray 1 buffered 256 16-bit instructions

PC —| INSTR7?

INSTR 6
INSTR 5

INSTR 4 LOOP
RETAINED BRANCH

INSTRUCTIONS INSTR 3
INSTR 2

INSTR 1
INSTR O

I nstruction Queues (prefetch)

& Can provide small but effective |-cache
mechanism

» Prefetches sequential instructionsin
advance

» Can keep ingtructions flowing (to a
degree) evenif bus (or single-ported
unified CaChe) is belng used for data IN-LINE EXECUTION

 Cantrigger I-cache prefetching T

automatically

INSTR O » EXECUTION
INSTR 1 UNIT
INSTR 2
INSTR 3
INSTR 4
INSTR 5
INSTR 6
INSTR 7

MEMORY
PREFETCH

18-548/15-548 Cache Data Organization 9/14/98

I nstruction Queuesin Superscalar CPUs

+ Aidsin decoding variable-length & multiple instruction issue
* Instruction decode is relative to head of queue
— Cache & VM misses decoupled from instruction decoding

» Can smooth memory bandwidth demands (to a degree), even if large
instructions are issued quickly

 Pentium prefetches both in-line and one branch-target stream

IN-LINE EXECUTION

INSTR O SUPERSCALAR
INSTR 1 EXECUTION
INSTR 2 UNIT

INSTR 3

INSTR 4

MEMORY INSTR 5
PREFETCH INSTR 6
INSTR 7

Trace Cache

+ Capture paths (traces) through memory
» Expansion on prefetch queue idea
— Prefetches based on branch target prediction

— Retains paths taken through instruction memory in a cache so it will be there next
time the first instruction of the trace segment is encountered

* Includes effects of branch target prediction
» Name comes from trace scheduling (multiflow VLIW machine)

10

18-548/15-548 Cache Data Organization

I nstruction-Only Caches

& Separate cachejust for instructions
 Full cache implementation with arbitrary addressability to contents

» Single-ported cache used at essentially 100% of bandwidth
— Every instruction has an instruction
— But not every instruction has a data load/store...

& Often implemented assuming only reads

» Consistency can be aproblem if writes actually happen
(and they do ... discussed in afew minutes)

Instruction Cache DTMR

¢ Associative, demand fetch, write back, LRU

DTMR INSTRUCTION CACHE MISS RATES

1.0000

0.1000

MISS RATE

BLOCK SIZE
(Bytes)
—— 4
—— 8
A 16 ~e_
v 32 e
B al! e
—@— 128

0.0100

i T T
1K 10K 100K 1000K

CACHE SIZE (Bytes) (After Flynn Fig. 5.28)

11

9/14/98

18-548/15-548 Cache Data Organization 9/14/98

Branch Target Cache

+ Special |-cache -- holdsinstructions at branch target

* Used in AMD 29000 to make most of very small I-cache, no D-cache

— Embedded controller; low cost (e.g., laser printers)

¢ Hideslatency of DRAM access

» In-lineinstructions fetched in page mode from DRAM

» Branching causes delay for new DRAM page fetch

» Branch Target Cache keepsinstructions flowing during DRAM access latency
Used in conjunction with branch prediction strategies

* AMD 29000 predicts branch taken if BTC hit; otherwise keeps fetching in-line

» Branch prediction details beyond scope of this course

AMD 29000 Branch Target Cache

Instruction Address
26 4

I Sector Name | SI |D|

4 Bits

Y
C Y/N Y/N
Target Instructions Target Instructions

(0| Tag |v] SpaceID| 0 1 2 3 |Tag |Vv| SpaceID| 0 1 2 3

L2

Y/N- .
D Select >

(Cragon Figure 7.12) Target Instruction Stream

12

18-548/15-548 Cache Data Organization 9/14/98

DATA CACHE

Data Caches

& Must support reads & writes
» Approximately 75% of data accesses reads
» Approximately 25% of data accesses writes

SPARC MIPS

SPARC Floating MIPS Floating IBM
Integer Point Integer Point

S/360 VAX Average
Instruction .79 .80 .76 g7 .50 65 .71
DataRead .15 A7 .15 .19 .35 28 .22
Data Write .06 .03 .09 .04 .15 .07 .07

+ Probably dual-ported for superscalarswith multiple concurrent
loads/stores

» Thetwo data elements probably aren’t in same cache block

13

18-548/15-548 Cache Data Organization

Data CacheDTMR

& Fully associative, demand fetch, write allocate, write back, LRU

DTMR DATA CACHE MISS RATES

1.0000

0.1000

MISS RATE

BLOCK SIZE
0.0100 4 (Bytes)
] —e— 4
1= g
A 16
V.o 32
1 49— 64
—@® 128

0.0010 | |

i — |
1K 10K 100K

CACHE SIZE (Bytes)

(After Flynn Fig. 5.29)

Special Data Caches

¢ Trandation Lookaside Buffer

» Stores address trandation information between virtual and physical addresses

+ “Stack Cache’ used by CRISP processor (a.k.a. Hobbit chip)
» Kept top of activation record stack for C programsin small on-chip cache

» 32-word cache gave 19% data hit rate
— Memory-to-memory addressing model

— One way of looking at it is hardware-managed instead of compiler-managed register

allocation

14

9/14/98

18-548/15-548 Cache Data Organization 9/14/98

D-Cache/ |-Cache Consistency

+ |-cache contents can become staleif modified
» Self-modifying code
— Hand-written code
— Incremental compilers/interpreters
— Just-In-Time compilation
* Intermingled data & instructions (e.g., FORTRAN)
& Approacheswith split |- & D-cache
* Ignore and have SW flush cache when necessary (e.g., loader flushes)
» Trap with page faults (if data & code aren’t intermingled)
» Permit duplicate lines; invalidate I-cache line on D-cache write

» Do not permit duplicate lines; invalidate either 1-cache or D-cache when other
obtains copy

& No-duplicate-line policy can hurt FORTRAN performance

+ Or,you can just usea unified cache...

Concept In Real Life...

+ Nameareal-lifesituation that is analogous to a split cache situation
» There should be a distinction between the sides of the * split”
» Have you noticed problems with load-balancing?

15

18-548/15-548 Cache Data Organization 9/14/98

UNIFIED CACHE

Split or Unified Cache?

& Split cache
» Separate I-cache optimized for Instruction stream
» Separate D-cache optimized for read+write
» Can independently tune caches
» Providesincreased bandwidth viareplication (2 caches accessed in parallel)

+ Unified cache
 Single cache holds both Instructions and Data
» Moreflexible for changing instruction & data locality
* No problem with instruction modification (self-modifying code, etc.)

* Increased cost to provide bandwidth enough for instruction+data every clock
cycle
— Need dual-ported memory or cycle cache at 2x clock speed

— Alternately, can take an extra clock for loads/stores for low cost designs; they don’t
happen for every instruction

16

18-548/15-548 Cache Data Organization 9/14/98

Unified Caches

Instructions & Data in same cache memory
Requires adding bandwidth for simultaneous |- and D-fetch, such as:
» Dual ported memory -- larger than single-ported memory
» Cycle cacheat 2x clock rate
» Usel-fetch queue
— Fetch entire block into queue when needed; larger than single instruction
— 1-Cycle delay if I-fetch queue empty and need data
No problemswith I-cache modifications; entire cache supportswrites
» Single set of control logic (but, can have two missesin a single clock cycle)
Flexible use of memory
» Automatically uses memory for instruction or data as beneficial
* Resultsin higher hit rate

* o

*

*

*

Falling out of favor for L1 caches, but common for L2 caches

Split vs. Unified Data
+ Unified size Scompared to |-cache size S/2 + D-cache size §/2
100 _ 4-way associative, 16 bytes/line
-z~ Unified
" N - Split (equal)
c 0-1
wn I
2 S~
s N N
o\
S~
\m‘b‘oﬂ
]0-2 T T T Ty T T T T T TTTTT
103 104 10S 106 _
Cache size (bytes) (Flynn Flg. 520

17

18-548/15-548 Cache Data Organization 9/14/98

Split & Unified TLBs

& Similar tradeoffsto split & unified caches

+ Split TLB providesaddresstranslation bandwidth
» Simultaneous Instruction & Data address trandation
» Can size TLBs depending on locality at the page level
— Alpha 21164 has 64 D-TLB entries; 48 I-TLB entries
— Pentium has 64 D-TLB entries; 32 |-TLB entries
+ Unified TLB provides moreflexible allocation
» HP-PA 8000 has 96 entriesin a unified TLB
» Power PC 603e has 64 entriesin a unified TLB

SECTORS & BLOCKS

18

18-548/15-548 Cache Data Organization 9/14/98

Sectors Share Tag Among Blocks

SECTOR 0 SECTOR 1
BLOCK 0 BLOCK 1 BLOCK 0 BLOCK 1
i - - i - i -

[l N Ll) [l —a - N
seTo | TAG |v|D|worp|worbp|v |D|worb|worD|| TAG |v|D|worD|woRD|V |D|wWORD|WORD|

& Sectorsreduce proportional tag overhead
» Single tag shared by severa blocks; exploits spatial locality

¢ H&Puseof word “ block” isactually for “ sector” ; many other authors
aswdll

» “sub-block placement” equivalent to sector+block arrangement

» “large” and “small” blocks usually equivalent to “large” and “small” sectors for
performance trends.

+ Typical block sizefor on-chip cache now 32-64 bytes

Why Large Sectors & Blocks?

¢ Reduced cost for tags
» Words per sector determines pro-rated overhead for tags
& Largesector size
» Fewer tags needed
» But, fewer unique locationsto place data
— P, tendsto increase to extent that spatial locality is poor
& Largeblocks
» Fewer valid/dirty/shared bits needed
» Exploits burst memory transfer modes
* Provides bandwidth for I-fetching
— Multiple instruction fetch for superscalar
— Instruction queue load of multiple words
» 64-hit or larger blocks provides double float load/store bandwidth

» But, cache misses consume more fetch/store bandwidth (cache memory
pollution)

19

18-548/15-548 Cache Data Organization

Why Small Sectors & Blocks?

¢ Small sector size

¢ Smaller block size

* Lower traffic ratio

& Reduces memory traffic & latency compared to larger blocks
» Moreflexibility in data placement, at cost of higher tag space overhead

» More unique locationsto place data
» But, more bits spent on tags (limiting caseis 1 block/sector = 1 tag/block)

» Simpler design (e.g., direct mapped cache, block size of 1 word)
» Fewer words to read from memory on miss

» Fewer words to write to memory on write back eviction

» But, does not exploit burst mode transfers; not necessarily fastest overall design

DTMR for Block Size

1.0000

0.1000 4~

MISS RATE

BLOCK SIZE
0.0100 4~ (Bytes)
] 94
| @ g
1 2 16

0.0010

¢ Associative, demand fetch, write allocate, write back, LRU
DTMR CACHE MISS RATES

10K 100K 1000K

CACHE SIZE (Bytes
(Bytes) (Source: Flynn Table A.1)

20

9/14/98

18-548/15-548 Cache Data Organization

Miss Ratefor Block Sizes

& Missratesgo down until blocks are significant fraction of cache size

DTMR MISS RATES

1.0000

0.1000

MISS RATE

0.0100 —

0.0010 — | | I

4 8 16 32
BLOCK SIZE (Bytes)

CACHE SIZE
(Bytes)
—— 1K
—l— 4K
A 16K
vV 64K
—— 256K
—@— 1024K

(Source: Flynn Appendix A)

Bus Traffic & Block Size

+ Bustrafficincreases with block size, except (perhaps) with lar ge caches

DTMR BUS TRAFFIC RATIO

10.0000

o

=

<

@

9)

m
1.0000

= a v

= v

1) v

8 v i\k’/’/.

e —®
0.1000 | | i 1 1
4 8 16 32 64 128

BLOCK SIZE (Bytes)

CACHE SIZE
(Bytes)
—o— 1K
—l— 4K
A 16K
V64K
—4— 256K
—@— 1024K

(Source: Flynn Appendix A)

21

9/14/98

18-548/15-548 Cache Data Organization 9/14/98

Effects of Extremely Large Sectors

& With only afew sectorsin the cache, conflict missesincrease
dramatically

DB [

Miss
rate

Block size
= 1k -+ 4k -o- 16k
(Hennessy & Patterson Figure 5.11)
-0- 64k —a— 256k

Effective Access Time & Block Size

* ., goesdown with larger block size astemporal locality is exploited
* t, goes back up when cache memory pollution becomes prevalent

EXAMPLE EFFECTIVE ACCESS TIME

DTMR: 1 clock cache hit
10 clocks for 1st 4 bytes on miss
2 clocks for remaining 4-byte words

10.0000

CLOCKS

CACHE SIZE
(Bytes)
—— 1K
—— 4K
A 16K
v 64K
—&— 256K
—@— 1024K

BLOCK SIZE (Bytes)

22

18-548/15-548 Cache Data Organization 9/14/98

Blocks Elsewhere

+ Virtual Memory System
» Page » Sector with 1 block
» Large page may waste memory space if not fully filled

» Small page has high overhead for address trandation information (e.g., requires
more TLB entries for programs with good locality)

¢ Disk Drives
* File system cluster (in DOS) » Cache Sector
» Disk Sector » Cache block

» Large sector size promotes efficient transfers, but wastes space with partially
filled or only dslightly modified sectors.

REVIEW

23

18-548/15-548 Cache Data Organization 9/14/98

Review
¢ Design Target Miss Rates
» A conservative starting point for designs, but a bit dated
+ Instructions and Data have different caching needs
* |-cache: prefetching, branches, * read-mostly”
» D-cache: writes, poorer locality
» Split cache gives bandwidth, unified cache gives flexibility
¢ Cachesectors & blocksaren’t quitethe same
» Sectors account for amortized overhead of tagsvs. missrate
» Block lengths are determined by data transfer widths and expected spatial
locality
& Sectors & Blocks
» Bigger isbetter -- when there is spatial locality
» Smaller is better -- when there isn’'t enough spatial locality
— Conflict misses when too few sectorsin the cache
— Traffic ratio goes up if not enough words are actually used from each block

Key Concepts

¢ Latency
* It'spretty easy to get speedup by buffering instructions, even without a cache
¢ Bandwidth
» Split I- & D- cachesincrease bandwidth, at cost of loss of flexibility
» Larger blocks exploit any high-bandwidth transfer capabilities
¢ Concurrency
» Split caches & split TLBs double bandwidth by using concurrent accesses
+ Balance
» Block size must balance missrate against traffic ratio

24

