
VT Matrix Multiply Design for MEMOCODE ’07

Eric Simpson, Pengyuan Yu, Patrick Schaumont, Sumit Ahuja, Sandeep Shukla
Virginia Tech

Electrical and Computer Engineering Deptartment
Blacksburg, VA 24060

{esimpson, peyu1983, schaum, sahuja, shukla}@vt.edu

Abstract

This design presents a system optimized for complex ma-
trix multiplications on the XUP Virtex-II board. Utilizing
the GEZEL HW/SW co-simulation environment, the result-
ing system achieves ˜25x speedup over a standard software
only implementation. Further system level optimization
(with DMA) results in the same coprocessor being speedup
by at least another order of magnitude.

1 Introduction

This design presents a system optimized for complex
matrix multiplications (C = AB). The initial N×N matri-
ces A, B, and C are contained in DDR RAM. Where each
matrix element is a 32-bit complex number with the most
significat 16-bits representing the real component, and least
significant 16-bits representing the imaginary component.
The multiplier matrix (B) and the product matrix (C) both
use a 16-bit two’s-complement fixed-point format for the
real and the imaginary component. The multiplicand ma-
trix (A) uses a 16-bit two’s-complement fixed-point format
with a 14-bit fractional component.

2 Design

2.1 DDR Optimization

Since hardware accelerators are often IO bound, the de-
sign first aimed to optimize the DDR interface. The XUP
Virtex-II board provides a 64-bit interface to the offchip
DDR RAM. Due to the double data rate operation, the RAM
can provide the FPGA with 128-bits of data per FPGA clock
cycle. Therefore, since the FPGA can access 128-bits of
data in the same time as 32, or 64, the design goal was to
utilize blocks of 128-bits.

In addition, linear accesses provide the greatest through-
put to the DDR RAM. Each DDR access requires a 1 cycle

latency for the command, 2-3 cycles to access the location,
followed by the actual data transfer. By utilizing sequen-
tial memory locations, the data can be transferred in bursts
and therefore minimize the command and access latencies.
In addition, due to the DDR RAM’s pipelined, multibank
architecture, linear bursts also hide the row precharge and
activation time.

2.2 FPGA Resource Optimization

With the plan to perform linear scans through the RAM,
4 elements at a time (128-bits), the design also attempted to
optimize the use of the FPGA’s hard resources. The Virtex-
II provides 136, 18-bit x 18-bit multipliers in the FPGA fab-
ric, along with 136, 18 Kb SelectRAM+ blocks. To utilize
these fast discrete resources, the design performed 32 com-
plex multiplies and accumulates per cycle. Since a single
complex multiplication requires four multiplications and 2
addition/subtractions, a total of 128 multiplications, and 64
addition/subtractions were performed per cycle. In addi-
tion, one accumulate was needed for each of the 32 real
and imaginary components, resulting in another 64 addi-
tion/subtractions each cycle. Therefore, the final design uti-
lizes 128 out of the 136 multipliers and performs 128 addi-
tion/subtractions per cycle.

2.3 Algorithm Optimization

A matrix multiplication algorithm was devised to lin-
early scan through the RAM and perform 32 complex mul-
tiplications per cycle.

The algorithm begins by sending eight blocks of A val-
ues (a block is 4 elements) to the coprocessor. The eight
blocks are from subsequent rows in A. Next, a block from
B is sent to the coprocessor. The four incoming B elements
are multiplied by the first element in each row of the A, and
each of the 32 partial C products are accumulated. After a
full row of B has been processed, the next active elements
in A are the eight elements in the subsequent columns. The



Figure 1. Scalable Coprocessor Architecture

process of sliding over B’s rows, and A’s columns is con-
tinued until the entire B matrix has been traversed. At this
point, the complete product for the first 8xN elements of C
has been computed and can be written back to RAM. The
algorithm then repeats itself computing eight rows of C at a
time until all of the C results have been calculated.

3 System Architecture

An interesting characteristic of the algorithm presented
in section 2.3, is that the algorithm leads to a loosly coupled
and scalable coprocessor architecture. As shown in Fig. 1,
the coprocessor has an input FIFO, output FIFO and sin-
gle register called N-Reg. The controlling processor writes
the dimension of the matrices into N-Reg. For a given co-
processor configuration, N-Reg is the only control param-
eter that needs to be set at runtime. Based off the single
N-Reg parameter, the coprocessor’s entire control FSM is
determined. Therefore, in addition to a simple runtime con-
figuration, the coprocessor’s control logic is captured by a
low-overhead FSM.

The coprocessor’s architecture also allows the designer
to configure parameters optimal for their specific system.
For example, Fig. 1 displays a coprocessor with a sin-
gle MAC row. To implement a coprocessor that com-
putes eight rows in parallel, a single design parameter is
set to add the additional computational capacity. In addi-
tion to computational capacity, the internal datapath width
to the “Aunit” and “MAC Unit” is configurable as well.
In fact, a design was tested and verified with a configu-
ration of (Aunit = 8x4, MAC = 8x4) and (Aunit
= 16x4, MAC = 16x2) within minutes of each other.
Therefore, the coprocessor architecture can scale to utilize
a system’s available resources.

4 Methodology

The system was designed and implemented in the
GEZEL environment. The software and hardware compo-
nents were co-simulated and verified without VHDL level
simulations being required. The fdlvhd tool was used to

Figure 2. System with PPC in datapath

Figure 3. System with DMA controlling data-
path

convert the GEZEL FDL into the coprocessor’s synthesiz-
able VHDL.

5 Results

The results from two system architecture implementa-
tions are shown in Table 1. Both system architectures uti-
lize the same underlying interface to the coprocessor, but
with different elements controlling the datapath to the co-
processor. In Fig. 3, the PPC retrieves the matrix data from
RAM and then sends the data to the coprocessor. Therefore,
in this scenario, the data is transmitted across the bus twice
for every transfer. The resulting system is bottlenecked with
93% of the time spent performing IO operations.

Moving the PPC out of the datapath results in a much
more balanced system, with approximately equal time spent
transferring and computing each block. The dramatic re-
duction results from two main factors. One, instead of each
data item hitting the bus twice, each item is only transferred
once. Two, the DMA controller is able to take advantage of
both bus and DDR RAM burst access.

Table 1. Matrix Multiplication Results
Ref Speedup

N SW SW / PPC SW / DMA1 PPC / DMA
128 0.7s 20.8x 67x 3.2x
256 5.3s 24.5x 132x 5.4x
512 42.0s 26.9x 264x 9.8x

1024 338.0s 28.5x 1540x 54.0x

1Due a bug with the Xilinx EDK 9.1 PLB DMA IP core, the DMA ver-
sion was not submitted for final judging. While the DMA IP core transmits
the correct amount of data and presents valid control signals, the IP core
corrupts the transmitted data.


