
 

 NOTES FOR 18-791 LECTURE 9:
PROPERTIES AND EXAMPLES OF 

 

Z

 

-TRANSFORMS

 

Distributed: September 27, 2005

Notes: 

 

This handout contains in outline form the lecture notes used for 18-791 Lecture 9, presented by vid-
eotape on September 22. Because the notes were transcribed some time after the lecture was taped, there 
may be some minor differences between these notes and what is seen on the video. The beginning of the 
lecture is covered by the end of the notes for Lecture 8..

 

I. Introduction

 

In the last lecture we reviewed the basic properties of the 

 

z

 

-transform and the corresponding region of con-
vergence. In this lecture we will cover

• Stability and causality and the ROC of the 

 

z

 

-transform (see Lecture 8 notes)

• Comparison of ROCs of 

 

z

 

-transforms and LaPlace transforms (see Lecture 8 notes)

• Basic 

 

z-

 

transform properties

• Linear constant-coefficient difference equations and 

 

z-

 

transforms

• Evaluation of the inverse 

 

z-

 

transform using

• Direct evaluation (not done in detail in this course)

• Partial fraction evaluation 

• Evaluation using long division

• Evaluation using Taylor series
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II. Basic 

 

z

 

-transform properties

 

Introduction: 

 

While the basic 

 

z

 

-transform properties are very similar to those of the corresponding 
DTFTs, they are complicated a little by the fact that we now must also consider the region of convergence 
of the new transform as well. 

We will not review right now all of the properties cited in the text, but we will touch on the most important 
ones.

If the time function  has the 

 

z-

 

transform , with the corresponding ROC , we observe the fol-

lowing general properties of functions and their 

 

z-

 

transforms:

 

• Linearity

 

 

with the ROC being the “overlap” region of the ROCs  and  or 

 

• Time shift

 

 with ROC 

This relation plays a big role in dealing with difference equations, as will be discussed below.

 

• Multiplication in time by a complex exponential

 

 with ROC 

Note that if 

 

a 

 

is purely real, this corresponds to a circularly-symmetric 

 

expansion or contraction

 

 of the 

 

z-

 

plane. If 

 

a

 

 is purely imaginary, this corresponds to a 

 

rotation

 

 of the 

 

z-

 

plane. 

 

• Convolution in time

 

 with ROC 

This, of course, is just like things are with DTFTs.

 

• General multiplication in time

 

This is again a contour integral, which we cannot evaluate using the techniques developed in this class. 
Hence, we will normally use DTFTs rather than 

 

z

 

-transforms whenever we need to consider the 

 

z-

 

trans-
forms of multiplied time functions. We will, however, make use of the relationship that describes the 

 

z-

 

transforms of a function multiplied by a complex exponential.

 

• Differentiation of the 

 

Z-

 

transform
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This is easily proved by differentiating the 

 

z-

 

transform equation with respect to 

 

z. 

 

It plays an important role 
in dealing with systems where multiple poles occur in the same location n the 

 

z

 

-plane.

 

III. Linear constant-coefficient difference equations

 

Introduction: 

 

• Difference equations in discrete time play the same role in characterizing the time-domain response 
of discrete-time LSI systems that differential equations play for continuous-time LTI systems.

• In most general form we can write difference equations as

 

where (as usual)  represents the input and  represents the output. Since we can set  equal to 0 

without any loss of generality, we can rewrite this as 

 

Comments:

 

• In this representation we characterize the present output of an LSI system as a linear combination of 
past outputs combined with a linear combination of the present and previous inputs.

• The difference equations alone do not uniquely specify the system. Initial conditions are needed as 
well. Normally we assume initial rest (

 

i.e.

 

 the output is zero before the input is applied). Otherwise 
the system would be neither linear nor shift-invariant, as discussed in Problem Set 1.

• These equations can be solved analytically, just as in the case of ordinary differential equations. Nor-
mally the solution involves obtaining the homogenous solution (or the natural frequencies) of the sys-
tem, and the particular solution (or the forced response). Details and examples of this are provided in 
the text.

We can solve these equations using the procedure of iteration. For example, consider the equation

or,

x[n] h[n] y[n]

aky n k–[ ]
k 0=

N

∑ bmx n m–[ ]
m 0=

M

∑=

x n[ ] y n[ ] a0

y n[ ] aky n k–[ ]
k 1=

N

∑ bmx n m–[ ]
m 0=

M

∑= =

y n[ ] 1
4
---y n 1–[ ]– 1

8
---y n 2–[ ]– 3x n[ ] 3

4
---x n 1–[ ]–=

y n[ ] 1
4
---y n 1–[ ] 1

8
---y n 2–[ ] 3x n[ ] 3

4
---x n 1–[ ]–+ +=
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Let’s obtain the unit sample response  for this equation via iteration. As we did in class a few days 
ago, this can be done by setting up the table:

IV. Poles and zeros of LSI systems 

Let’s consider again the generic LSI system with  or .

You will recall that the general difference equation for such a system is 

Taking the z-transforms of both sides, we obtain 

In other words, if we have an LSI system that is characterizable by a linear constant-coefficient difference 
equation, the z-transform of the unit sample response, which we refer to as the system function, will always 

be the ratio of two polynomials in , with coefficients that are the coefficients of the corresponding dif-
ference equation. Virtually all of the systems that we will encounter in this course will be of this form.

n x[n-1] x[n] y[n-2] y[n-1] y[n]

0 0 1 0 0 3

1 1 0 0 3 0

2 0 0 3 0 3/8

h n[ ]

x[n] h[n] y[n]

y n[ ] x n[ ]∗h n[ ]= Y z( ) X z( )H z( )=

aky n k–[ ]
k 0=

N

∑ bmx n m–[ ]
m 0=

M

∑=

akz
k–
Y z( )

k 0=

N

∑ bmz
m–

X z( )
m 0=

M
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Y z( ) akz
k–

k 0=

N

∑ X z( ) bmz
m–

m 0=

M
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H z( ) Y z( )
X z( )
-----------

bmz
m–

m 0=

M

∑

akz
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k 0=

N

∑

----------------------------= =

z
1–



18-791 Lecture 9 Notes -5- Fall, 2005

For example, in the case of the difference equation we had looked at previously, 

we obtain

Now, the zeros of the systems are by definition the values of z that cause the numerator of  to equal 
zero (i.e. the roots of the numerator polynomial in z). Similarly, the poles of the system are the values of z 
that cause the denominator of  to go to zero (or the roots of the denominator polynomial in z). We can 

obtain the poles and zeros of our example by multiplying numerator and denominator by .

So, in this system, the zeros are at  and  and the poles are at  and .

Pole locations and the ROC

We note that since the z-transform is infinite at the values of z corresponding to the pole locations, the ROC 
cannot include the locations of the system’s poles. In fact, ROCs are always bounded by circles that are 
centered at the origin of the z-plane, and that pass through the locations of the poles. In this case, the poten-
tial boundaries of the ROCs are circles of radius 1/4 and 1/2. This means that there are three possible ROCs 
for this system:

•  This system would be unstable and have a left-sided unit sample response.

•  This system would also be unstable and have a “both-sided” unit sample response.

•  This system would be stable and have a right-sided (“causal”) unit sample response.

The exact ROC would be known either because it would be given or because you will know whether the 
system is causal and/or stable.
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V. Inverse z-transforms

Recall that the equations that define z-transforms are

As we know, we will not evaluate the complex contour integral for the inverse z-transform directly. Instead 
we will use one of the following techniques:

• Partial fraction expansion

• Long division

• Taylor series expansion

Partial fraction expansion

As is discussed briefly in the videotape, partial fraction expansion is a computational hack algorithm that 
enables us to obtain the results that we would have obtained if we had gone through the formal procedure 
of contour integration over the complex z-plane.

The partial fraction method of obtaining inverse z-transforms builds on the fact that we know that

 for the ROC  and that

 for the ROC 

The simplest case: 

If 

1. the order of the numerator of the polynomial in  is less than the order of its denominator (as it is 
in this case), and

2. all the poles of the z-transform are at different locations in the z-plane (as they are in this case), 

then we can write for the example we have been considering

where the as-yet undetermined coefficients are referred to as the residues of the z-transform, following the 
term used in complex calculus. 
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In general, the residues  corresponding to a pole at location  can be easily obtained using the for-

mula

For our example this becomes:

Hence

and if we are told that the system is causal, then the corresponding inverse z-transform is

Note that the first samples of this function starting with  are 3, 0, and 3/8, as determined previously 
by iteration.

There are actually three possible inverse z-transforms transforms for this system function:

1. If the ROC is , , as noted above. This system is causal and 

stable.

2. If the ROC is , . This system neither causal nor 

stable.

3. If the ROC is , . This system neither causal 

nor stable.
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Partial fractions with numerator order greater than or equal to denominator order:

If the order of the numerator is too large, we can reduce it via long division. For example, if we have the 
transform

, we can apply long division as follows:

(Using MATLAB notation and setting in plain text to control positioning:)

                    -z^(-2)-2z^(-1)-(2/3)

-3z^(-1)+1 )3z^(-3)+4z^(-2)+ z^(-1)+ 5

            3z^(-3)+ z^(-2) 

                    3z^(-2)+ z^(-1)

                    3z^(-2)- z^(-1)

                            2z^(-1)+ 5

                            2z^(-1)-(2/3)

                                    17/3

In other words, the result of this division operation is that

and the corresponding inverse z-transform equals  plus whatever the inverse z-t 

transform of  (which now has a denominator of higher order than the numerator) turns out to be.

Partial fractions with multiple poles in the same location:

If we have multiple poles in the same location, the situation is more difficult. As described in the text, If we 
have s poles at location d in the z-plane, the contribution of the multiple pole to the partial-fraction of the z-
transform is 

where

 evaluated at 

In the general case, with some isolated poles, one set of multiple poles in the same location, and a polyno-
mial of numerator order M and denominator order N, the z-transform would be of the form
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where  is the location of the pole of multiplicity s. If there is more than one location with multiple poles, 

additional series of terms as in the latter term above will be obtained. We will discuss multiple poles in 
more detail in the Thursday lecture. 

Inverse z-transforms by long division

Long division can also be used to obtain inverse z-transforms numerically. For example, consider again the 
transform

Arranging the terms in order of increasing powers of  and dividing we obtain

                                               3+ 0z^(-1)+(3/8)z^(-2)+ .

1-(1/4)z^(-1)-(1/8)z^(-2) ) 3-(3/4)z^(-1)+  0z^(-2)+ 0z^(-3)+ 0z^(-4)+ ...

                            3-(3/4)z^(-1)-(3/8)z^(-2)

                                  0z^(-1)+(3/8)z^(-2)+ 0z^(-3)

                                  0z^(-1) - 0z^(-2) + 0 z^(-3)

                                          (3/8)z^(-2)+0 z^(-3)+ 0z^(-4) 

Hence, the first several terms of the quotient will be 

which, if causal, has by inspection the inverse transform of

Comment:

• A left-sided inverse z-transform could be obtained in similar fashion by arranging the terms in the 
opposite order. This technique cannot be used to obtain both-sided inverse z-transforms.

Inverse z-transforms by Taylor series expansion

Occasionally we are asked to obtain the inverse z-transform of a function that is not a ratio of polynomials 

in z or . Sometimes we can use Taylor series expansion to accomplish this.
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For example, the z-transform  with ROC  can be obtained using series expan-

sion:

The corresponding inverse is obtained easily by inspection as in the case of the results of long division.
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